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Abstract. We prove a global Lorentz estimate of the Hessian of strong solu-
tions to a class of asymptotically regular fully nonlinear elliptic equations over

a C1,1 smooth bounded domain. Here, the approach of the main proof is based

on the Possion’s transform from an asymptotically regular elliptic equation to
the regular one.

1. Introduction

Let Ω be a bounded domain with ∂Ω ∈ C1,1 in Rn for n ≥ 2. The main purpose
of this paper is to attain a global Calderón-Zygmund type estimate in the scale
of Lorentz spaces for the Hessian of strong solutions to the Dirichlet problem of
asymptotical regular fully nonlinear elliptic equations of nondivergence form. The
studied problem is

F (x,D2u) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where the real valued function F (x,D2u) : Ω × S(n) → R is an asymptotically
regular elliptic operator which S(n) is the space of real n× n symmetric matrices,
and f is any given function in Lorentz spaces Lγ,q(Ω) with γ > n and 0 < q ≤ ∞.

The Calderón-Zygmund estimate is a popular research to various elliptic and par-
abolic problems in recent decades. In the settings of discontinuous coefficients, an
interior and boundary W 2,p estimate for linear elliptic equations with VMO (Van-
ishing Mean Oscillations) discontinuous coefficients was first proved by Chiarenza,
Frasca, and Longo [8, 9]. Since then, there have been a lot of research activities on
the Calderón-Zygmund theory of elliptic and parabolic equations and systems in di-
vergence or non-divergence form. Regarding fully nonlinear elliptic equations (1.1),
an interior W 2,p estimate was first obtained by Caffarelli in [6] if f ∈ Lp with p > n
under the assumption of a small measure to the oscillation of F (x,M) in the vari-
able x uniformly for M . Later, Caffarelli and Huang [7] further showed that under
the assumptions of F (x,M) with a small multiplier of BMO in x and the prereq-
uisite of Evans-Krylov estimates [12], if f belongs to the generalized Campamato-
John-Nirenberg spaces, then D2u correspondingly belongs to the same spaces as f .
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Recently, Winter [21] also used a similar technique to establish the corresponding
boundary estimate so as to get a global W 2,p-solvability of the associated boundary-
value problem. All these papers showed that a small oscillation assumption in the
L∞ or Ln integral average sense is imposed on the operators F (x,M) in x. Re-
cently, Krylov et al [11, 14, 15] developed W 2,p-solvability for fully nonlinear elliptic
and parabolic equations with VMO “coefficients” whose local oscillations are mea-
sured in a certain average sense allowing rather rough discontinuity. After that,
Dong-Krylov-Li [11] demonstrated an interior solvability in W 2,p for p > n and
W 2,1
p for p > n+ 1, respectively, to fully nonlinear elliptic and parabolic equations

with VMO “coefficients” in bounded domains or cylinders. Moreover, Byun et al
[4] also attained the global weighted W 2,p estimates of the Hessian for fully non-
linear elliptic equations with small BMO “coefficients” in a bounded C1,1 domain
via rather different geometrical approaches.

On the other hand, Lorentz spaces are a two-parameter scale of spaces which
refine Lebesgue spaces in some sense. It is an important observation that requir-
ing the principle coefficients to have small mean oscillations in the integral average
sense is sufficient to achieve higher integrability and Lorentz regularity. Since the
pioneering work of Talenti [20] based on symmetrization, there were a large of lit-
erature on the topic of Lorentz regularity to elliptic and parabolic PDEs. Recently,
Mengesha-Phuc in [16] used a kind of geometrical approach to prove the weighted
Lorentz regularity of the gradient for quasilinear elliptic p-Laplacian equations, and
Zhang-Zhou [24] extended their results to the setting of quasilinear p(x)-Laplacian.
Meanwhile, Baroni in [1, 2] made use of so-called Large-M-inequality principle in-
troduced by Acerbi-Mingione to show the Lorentz estimates of gradient for evolu-
tionary p-Laplacian systems and obstacle parabolic p-Laplacian, respectively.

We would like to point out that another key ingredient is that F (x,D2u) is
assumed to be an asymptotically regular. It was Chipot and Evans [10] to first
introduce the notion of asymptotically regular in the elliptic framework, and Ray-
mond [17] further considered a Lipschitz regularity to asymptotically regular prob-
lems with p-growth. Since then there are a large of literatures on the topic of
asymptotically regular problems. In particular, Scheven and Schmidt in [18, 19]
recently obtained a local higher integrability and a local partial Lipschitz continu-
ity with a singular set of small positive measure for the gradient Du to the system
which exhibits a certain kind of elliptic behavior near infinity, respectively. Fur-
thermore, a global Lipschitz regularity result was extended by Foss in [13]. Very
recently, Byun-Oh-Wang [5] proved global Calderón-Zygmund estimates for non-
homogeneous asymptotically regular elliptic and parabolic problems in divergence
form in the Reifenberg flat domain by covering the given asymptotically regular
problems to suitable regular problems. Furthermore, Byun-Cho-Oh [3] extended
the same conclusions to the setting of nonlinear obstacle elliptic problems. Zhang-
Zheng [22, 23] also further extended the work of Byun-Oh-Wang [5] to the case of
obstacle parabolic problems in the scale of Lorentz spaces.

Inspired by those recent works mentioned above, in this paper we consider a
global Lorentz estimate of the Hessian of strong solutions to the Dirichlet problem
(1.1) for asymptotical regular fully nonlinear elliptic equations over a C1,1 bounded
domain. More precisely, our aim is to attain a global Lorentz estimate of the second
derivative to the Dirichlet problem (1.1) with asymptotically regular nonlinearity.
Indeed, it is a natural refined outgrowth of Byun et al’s recent papers [5]. In
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particular, the Lebesgue space Lγ is a special case of Lorentz space Lγ,q when
q = γ. Before stating the main result, let us give some basic concepts and facts.

Let us first recall that the Lorentz space Lγ,q(Ω) with 1 ≤ γ <∞ and 0 < q <∞,
which is the set of measurable function g : Ω→ R such that

‖g‖qLγ,q(Ω) := q

∫ ∞
0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

)q/γ dµ
µ
< +∞.

While the Lorentz space Lγ,∞ for 1 ≤ γ < ∞, q = ∞ is set to be the usual
Marcinkiewicz space Mγ(Ω) with quasinorm

‖g‖Lγ,∞ = ‖g‖Mγ(Ω) := sup
µ>0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

) 1
γ

< +∞.

The local variant of such spaces is defined in the usual way. Moreover, we note that
by Fubini’s theorem there holds

‖g‖γLγ(Ω) = γ

∫ ∞
0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

)dµ
µ

= ‖g‖γLγ,γ(Ω),

so that Lγ(Ω) = Lγ,γ(Ω); cf. [1, 2]. In this context, we denote by C(n, λ,Λ, . . . )
a universal constant depending only on prescribed quantities and possibly varying
from line to line.

In this article, we are interested in the case that F (x,M) is asymptotically
elliptic. This is to say that it is getting closer to some real-valued function G(x,M)
as ‖M‖ goes to infinity, where G(x,M) satisfies the following uniformly elliptic
assumption.

Definition 1.1. (uniformly ellipticity) We sayG(x,M) : Ω×S(n)→ R is uniformly
elliptic if there exist constants 0 < λ ≤ Λ < ∞ such that for any x ∈ Ω and any
M ∈ S(n), there holds

λ‖N‖ ≤ G(x,M +N)−G(x,M) ≤ Λ‖N‖, ∀N ≥ 0. (1.2)

Remark 1.2. (i) We write N ≥ 0 whenever N is a non-negative definite symmet-
ric matrix. ‖N‖ denotes the (L2, L2)-norm of N , that is, ‖N‖ = sup|x|=1 |Nx|.
Therefore ‖N‖ is equal to the maximum eigenvalue of N whenever N ≥ 0.

(ii) The uniformly elliptic assumption implies that G(x,M) is monotone increas-
ing and Lipschitz in M ∈ S(n).

We next introduce the definition of asymptotically elliptic operators.

Definition 1.3. F (x,M) is asymptotically elliptic if there exists a uniformly el-
liptic operator G(x,M) and a bounded function ω : R+ → R+ with lim

r→∞
ω(r) = 0

such that
0 ≤ |F (x,M)−G(x,M)| ≤ ω(‖M‖)(1 + ‖M‖) (1.3)

for all M ∈ S(n) and any x ∈ Ω.

By a direct calculation, we conclude that

lim
‖M‖→∞

F (x,M)−G(x,M)
‖M‖

= 0, (1.4)

uniformly with respect to x ∈ Ω.
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We define function βG to measure the oscillation of G(x,M) in the variable x.
Let G : Ω× S(n)→ R and let x0 ∈ Ω be fixed. For x ∈ Ω, we define

βG(x, x0) := sup
M∈S(n)\{0}

|G(x,M)−G(x0,M)|
‖M‖

. (1.5)

Now, let us summarize our main results as follows.

Theorem 1.4. Assume γ > n and 0 < q ≤ ∞ . Let u ∈ W 2,n(Ω) be a strong
solution to (1.1) with f ∈ Lγ,q(Ω) and ∂Ω ∈ C1,1. Then there exists a small positive
constant β0 = β0(n, λ,Λ, γ, q) such that if F (x,D2u) is asymptotically elliptic with
G(x,D2u) satisfying uniformly elliptic condition and( 1

|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0, (1.6)

for any x0 ∈ Ω and 0 < r < R0. We suppose that G(x,D2u) is convex and positive
homogeneous of degree one in D2u. Then we have D2u ∈ Lγ,q(Ω), satisfying the
estimate

‖D2u‖Lγ,q(Ω) ≤ C(‖f‖Lγ,q(Ω) + 1), (1.7)

where C = C(n, λ,Λ, γ, q,Ω). In the case q = ∞ the constant C depends only on
n, λ,Λ, γ,Ω.

To realize our aim, some ideas from [5] are employed in our main proof. For
example, to get the global Lorentz estimate we use an equivalent representation of
Lorentz norm, the Hardy-Littlewood maximal functions, and the Poisson formula
by constructing a regular problem from the given irregular problem.

The rest of this article is organized as follows. In section 2, we first prove the
global Lorentz estimates of the corresponding regular problem, and then we give
a proof of the main result by taking a transformation from given asymptotically
regular problem to a suitable regular problem.

2. Proof of Theorem 1.4

We prove Theorem 1.4 by employing an appropriate transformation to construct
a uniformly elliptic operator from a given asymptotically elliptic operator. To this
end, we assume that real-valued function F (x,M) is asymptotical to a uniformly
elliptic G(x,M), which satisfies convex and positive homogeneous of degree one in
M and (

–
∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0,

for any x0 ∈ Ω and 0 < r < R0, where β0 > 0 will be determined later. By
Definition 1.3, we have

lim
‖M‖→∞

F (x,M)−G(x,M)
‖M‖

= 0.

Now we write a real-valued function H(x,M) : Ω× S(n) by

‖M‖H(x,M) := F (x,M)−G(x,M); (2.1)

then there exists an K = K(β0) > 1 such that

‖M‖ ≥ K ⇒ |H(x,M)| ≤ β0, ∀x ∈ Ω. (2.2)
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For any fixed point x ∈ Ω, we next define a new real-valued function H̃(x,M)
by

H̃(x,M) :=


H(x,M) if ‖M‖ ≥ K,
‖M‖
K H

(
x, K
‖M‖M

)
if 0 < ‖M‖ < K,

0 if M = 0.
(2.3)

It follows that H̃(x,M) is also convex in M , positive homogeneous of degree one
in M , and

H̃(x,M) ≤ β0, ∀M ∈ S(n), (2.4)

uniformly with respect to x ∈ Ω.
Note that H̃(x,M) = H(x,M) if ‖M‖ ≥ K. Therefore, for M 6= 0 we have

F (x,M) = G(x,M) + ‖M‖H(x,M)

= G(x,M) + ‖M‖H̃(x,M) + ‖M‖(H(x,M)− H̃(x,M))

= G(x,M) + ‖M‖H̃(x,M)

+ ‖M‖χ{M∈S(n):‖M‖<K}(H(x,M)− H̃(x,M)),

(2.5)

where χ{M ∈ S(n) : ‖M‖ < K} denotes the characteristic function on the set
{M ∈ S(n) : ‖M‖ < K}. In the setting of M = 0, we define ‖M‖H(x,M)|M=0 :=
F (x, 0)−G(x, 0), then the formula (2.5) still holds for all M ∈ S(n).

Let u ∈ W 2,n be a strong solution of the Dirichlet problem (1.1). Define G̃ :
Ω× S(n)→ R by

G̃(x,M) := G(x,M) + ‖M‖H̃(x,D2u). (2.6)

Then, by (2.5) and (2.6), it yields

F (x,D2u) = G̃(x,D2u) + ‖D2u‖χ{‖D2u‖<K}(H(x,D2u)− H̃(x,D2u)), (2.7)

where χ{‖D2u‖ < K} = χ{x ∈ Ω : ‖D2u‖ < K} denotes the characteristic function
on the set {x ∈ Ω : ‖D2u(x)‖ < K}. Thus, from (1.1) it implies that u is a strong
solution of

G̃(x,D2u) = f + ‖D2u‖χ{‖D2u‖<K}(H̃(x,D2u)−H(x,D2u)) := g, x ∈ Ω. (2.8)

To prove Theorem 1.4, we also need to show that the new nonlinearity G̃ satisfies
uniformly ellipticity and the oscillation condition (1.6) in the Ln integral average
sense with small constant 3β0. More precisely, we have the following lemma.

Lemma 2.1. Let u ∈W 2,n(Ω) be a strong solution of the Dirichlet problem (1.1).
Assume that F (x,M) is asymptotically elliptic with G(x,M) satisfying(

–
∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0, (2.9)

for any x0 ∈ Ω and 0 < r < R0. Then we have the following conclusions:

(i) If 0 < β0 ≤ λ/3, then G̃(x,M) is uniformly elliptic.
(ii) For any x0 ∈ Ω and 0 < r < R0, G̃(x,M) satisfies(

–
∫
Br(x0)∩Ω

βG̃(x, x0)ndx
)1/n

≤ 3β0. (2.10)
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Proof. (i) Let 0 < β0 ≤ λ
3 . For any M,N ∈ S(n) with N ≥ 0, we have

G̃(x,M +N)− G̃(x,M) = G(x,M +N)−G(x,M) + (‖M +N‖ − ‖M‖)H̃(x,M)

because of (2.6). From (2.4) it follows that

H̃(x,D2u) ≤ β0, (2.11)

uniformly with respect to x ∈ Ω. We have the triangle inequality

| ‖M +N‖ − ‖M‖ | ≤ ‖N‖ . (2.12)

Hence, by (1.2), (2.11) and (2.12), we find that

G̃(x,M +N)− G̃(x,M) ≥ λ‖N‖ − β0‖N‖ = (λ− β0)‖N‖ ≥ 2λ
3
‖N‖,

and

G̃(x,M +N)− G̃(x,M) ≤ Λ‖N‖+ β0‖N‖ = (Λ + β0)‖N‖ ≤ (Λ +
λ

3
)‖N‖,

since 0 < β0 ≤ λ
3 . Namely,

λ̃‖N‖ ≤ G̃(x,M +N)− G̃(x,M) ≤ Λ̃‖N‖, (2.13)

where λ̃ = 2
3λ and Λ̃ = Λ + λ

3 . So the assertion (i) is proved.
(ii) Let x0 ∈ Ω and 0 < r < R0. For any x ∈ Br(x0) ∩ Ω, it follows from (2.4)

and (2.6) that

|G̃(x,M +N)− G̃(x,M)| ≤ |G(x,M)−G(x0,M)|+ 2β0‖M‖, (2.14)

which implies

βG̃(x, x0) = sup
M∈S(n)\{0}

|G̃(x,M)− G̃(x0,M)|
‖M‖

≤ sup
M∈S(n)\{0}

|G(x,M)−G(x0,M)|
‖M‖

+ 2β0

= βG(x, x0) + 2β0.

(2.15)

Therefore, by (2.9), (2.15) and the Minkowski inequality we obtain( 1
|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG̃(x, x0)ndx
)1/n

≤
( 1
|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

+ 2β0

≤ β0 + 2β0 = 3β0,

(2.16)

which implies the assertion (ii). �

We recall an interior Lorentz estimate of strong solutions to fully nonlinear uni-
formly elliptic equations, whose proof can be found in [23] by using the approach
of large-M-inequality principle originated from Acerbi-Mingione’s work. More pre-
cisely, let us consider the fully nonlinear uniformly elliptic equations

G(x,D2u) = f(x), in Ω (2.17)

with f ∈ Lγ,q(Ω).
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Lemma 2.2 ([23, Corollary 1.4]). Assume γ > n and 0 < q ≤ ∞. Let u ∈W 2,n(Ω)
be a strong solution to (2.17) satisfying uniformly ellipticity and f ∈ Lγ,q(Ω). If
G(x,D2u) is convex and positive homogeneous of degree one in D2u, then there
exists a small positive β0 = β0(n, λ,Λ, γ, q) such that if G(x,D2u) satisfies( 1

|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0,

for every x0 ∈ Ω and 0 < r < R0; then we have D2u ∈ Lγ,qloc (Ω). Moreover, there
exists a radii R1 = R1(n, λ,Λ, γ, q) such that for each ball B2R(x0) ⊂⊂ Ω and
0 < R ≤ R1 with the estimate

‖D2u‖Lγ,q(BR) ≤ C(‖D2u‖Ln(B2R) + ‖f‖Lγ,q(B2R)), (2.18)

where C = C(n, λ,Λ, γ, q). In the case q =∞ the constant C and R1 above depend
only on n, λ,Λ, γ.

Next, we establish a local boundary estimate in the scale of Lorentz spaces by
using the idea of odd/even extensions over the flat boundary. Fixed a point x0 ∈ ∂Ω,
without loss of generality let us write

∂Ω is flat near x0 lying in the plane {x1 = 0}.
Then we may assume there exists an open ball B2R(x0) with center x0 and radius
2R such that

B+
2R := B2R(x0) ∩ {x1 > 0} ⊂ Ω,

B−2R := B2R(x0) ∩ {x1 < 0} ⊂ Rn − Ω.

We also set Γ2R = B2R(x0) ∩ {x1 = 0}.

Lemma 2.3. For γ > n and 0 < q ≤ ∞, let u ∈ W 2,n(Ω) be a strong solution of
local boundary value problem

G(x,D2u) = f(x), in B+
2R,

u = 0, on Γ2R

(2.19)

with f ∈ Lγ,q(Ω). Then there exist small positive constants δ and R0 depending
only on n, λ,Λ, γ, q such that, G(x,D2u) satisfying uniformly elliptic, G(x,D2u) is
convex and positive homogeneous of degree one in D2u and(

–
∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0,

we have
‖D2u‖Lγ,q(B+

R) ≤ C
(
‖D2u‖Ln(B+

2R) + ‖f‖Lγ,q(B+
2R)

)
, (2.20)

for each half ball B+
2R with 0 < R ≤ R0, where C = C(n, λ,Λ, γ, q). In the case

q =∞, the constant C above depends only on n, λ,Λ, γ.

Proof. Note that G(x,D2u) is convex and positive homogeneous of degree one in
D2u and (

–
∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0,

which implies

G(x,D2u) = GD2
iju

(x,D2u)D2
iju := aij(x)D2

iju.
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Let us now define û in B2R(x0) with x0 on the flat boundary by

û(x1, x′) =

{
u(x1, x′) if x1 ≥ 0,
u(−x1, x′) if x1 < 0,

and extend aij(x) = aij(x1, x′) from {x1 ≥ 0} to {x1 < 0} by even or odd reflection,
depending on the indices i and j. Specifically, when x1 ≥ 0, âij(x) = aij(x); when
x1 < 0,

âij(x) =

{
aij(−x1, x′), if i = j = 1 or i, j ∈ {2, . . . , n},
−aij(−x1, x′), if i ∈ {2, . . . , n} and j = 1.

Also set â1j = âj1. We see that the nonlinearity Ĝ(x,D2û) satisfy uniformly elliptic,
convex and positive homogeneous of degree one in D2û and(

–
∫
Br(x0)∩Ω

β bG(x, x0)ndx
)1/n

≤ β0,

Let f̂ be the odd extension of f with respect to x1, then it is easy to check that
f̂ ∈ Lγ,q(B2R(x0)). By Lemma 2.2 it implies that the extended û is a strong solution
of Ĝ(x,D2û) = f̂ in B2R(x0), then it gives rise to the local Lorentz estimate (2.18).
Therefore, the desired estimate (2.20) is obtained by restricting û from B2R(x0) to
B+

2R. �

Using the standard flattening and covering arguments, we can derive a global
Lorentz estimate as follows.

Theorem 2.4. For γ > n and 0 < q ≤ ∞, let u ∈W 2,n(Ω) be a strong solution to
the following Dirichlet problem

G(x,D2u) = f(x), in Ω,
u = 0, on ∂Ω,

(2.21)

G(x,D2u) satisfying uniformly elliptic, convex and positive homogeneous of degree
one in D2u with the following oscillation on “coefficients”(

–
∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β0

for some small positive constant β0 = β0(n, λ,Λ, γ, q). If f ∈ Lγ,q(Ω) and ∂Ω ∈
C1,1, then D2u ∈ Lγ,q(Ω) and there exists a positive constant C = C(n, λ,Λ, γ, q,Ω)
with the estimate

‖D2u‖Lγ,q(Ω) ≤ C‖f‖Lγ,q(Ω). (2.22)
While q =∞, the constant C depends only on n, λ,Λ, γ,Ω.

Proof. (1) For fixed any point x0 ∈ ∂Ω, we now flatten the boundary near x0

in order to apply the flat boundary estimates (2.20). Thanks to the assumption
∂Ω ∈ C1,1, there exists a neighborhood N0 3 x0 and a C1,1-diffeomorphism Φ :
N0 → B2R such that

Φ(x0) = 0, and Φ(N0 ∩ Ω) = B+
2R(0).

We write y = Φ(x), x ∈ N0 ∩ Ω, and define Ψ = Φ−1, then x = Ψ(y). Define
ũ(y) = u(Ψ(y)) = u(x) for y ∈ B+

2R. Then it is readily checked that ũ ∈W 2,n(B+
2R)

is a strong solution of the flat initial-boundary problem

F̃ (y,D2ũ) = f̃(y) in B+
2R,
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ũ = 0 on Γ2R ∪B+
2R,

where

F̃ (y,D2ũ) := F
(
Ψ(y),

(
DΦT ◦Ψ

)
D2ũ (DΦ ◦Ψ) +Dũ

(
D2Φ ◦Ψ

))
,

f̃(y) := f(Ψ(y)).

It is obvious that F̃ is convex in D2ũ and F̃ (y, 0) = 0. Moreover, we readily see that
β eF (y, y0) ≤ C(Φ)βF (Ψ(y),Ψ(y0)) for any y, y0 ∈ B+

2R; and F̃ satisfies the similar
assumptions of Lemma 2.3 with different positive constants. Therefore, it yields

‖D2ũ‖Lγ,q(B+
R) ≤ C

(
‖D2ũ‖Ln(B+

2R) + ‖f̃‖Lγ,q(B+
2R)

)
.

Converting back to the original x-variables, we conclude

‖D2u‖Lγ,q(Ψ(B+
R)) ≤ C

(
‖D2u‖Ln(Ψ(B+

2R)) + ‖f‖Lγ,q(Ψ(B+
2R))

)
, (2.23)

From this estimate, along with the interior bound (2.18) in Lemma 2.2, the standard
covering arguments lead to

‖D2u‖Lγ,q(Ω) ≤ C
(
‖D2u‖Ln(Ω) + ‖f‖Lγ,q(Ω)

)
, (2.24)

for some positive constant C depending on n, λ,Λ, γ, q,Ω, which implies

‖u‖W 2Lγ,q(Ω) ≤ C
(
‖Du‖Lγ,q(Ω) + ‖D2u‖Ln(Ω) + ‖f‖Lγ,q(Ω)

)
. (2.25)

(2) At this point, the desired estimate (2.22) follows from the uniqueness property
of the homogeneous equation. Indeed, if (2.22) is not true, there exists a sequence
{uk}∞k=1 and {fk}∞k=1 such that uk for each k is a strong solution of the problem

F (x,D2uk) = fk(x) in Ω,
uk = 0 on ∂Ω,

with the estimate

‖uk‖W 2Lγ,q(Ω) > k‖fk‖Lγ,q(Ω), for all k ≥ 1. (2.26)

Without loss of generality, we may suppose that

‖uk‖W 2Lγ,q(Ω) = 1. (2.27)

Then it follows from (2.26) that

‖fk‖Lγ,q(Ω) <
1
k
→ 0, as k →∞. (2.28)

Since {uk}∞k=1 is uniformly bounded in W 2Lγ,q(Ω), there exists a subsequence,
which be still denoted by {uk}∞k=1, and a function u0 ∈W 2Lγ,q(Ω), such that

uk ⇀ u0 weakly in W 2Lγ,q(Ω), uk → u0 in Lγ,q(Ω), as k →∞. (2.29)

It is easy to check that u0 is a strong solution of

F (x,D2u0) = 0, in Ω,
u0 = 0, on ∂Ω.

(2.30)
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Accordingly, u0 = 0 due to the uniqueness of strong solutions to zero initial-
boundary problem (2.30), so it follows from (2.28) and (2.29) that

fk → 0 in Lγ,q(Ω),

uk ⇀ 0 weakly in W 2Lγ,q(Ω),

uk → 0 in Lγ,q(Ω),

(2.31)

as k →∞. Note that W 2Lγ,q(Ω) ↪→W 2Ln(Ω) because γ > n, hence

‖uk‖Ln(Ω) → 0, ‖Duk‖Ln(Ω) → 0, as k →∞. (2.32)

Moreover, letting the measure ν = dx, we see that

Duk → 0 ν-a.e. in Ω as k →∞ (up to subsequence),

which implies

|{x ∈ Ω : |Duk| > µ}| → 0 for all µ > 0 as k →∞,
so by the Lebesgue Dominated Convergence Theorem we obtain

Duk → 0 in Lγ,q(Ω) as k →∞. (2.33)

Combining (2.25), (2.27), (2.31), (2.32) and (2.33), it yields

1 ≤ C
(
‖Duk‖Lγ,q(Ω) + ‖D2uk‖Ln(Ω) + ‖fk‖Lγ,q(Ω)

)
→ 0 as k →∞,

which is a contradiction. This completes the proof. �

In view of the lemma 2.1, the asymptotically elliptic equation (1.1) turns out
to be a uniformly elliptic equation (2.8). For the asymptotically elliptic equation,
lemma 2.1 and the existing theory for fully nonlinear, uniformly elliptic equation,
see Lemma 2.2, will be employed to finally derive the required estimate. We are
now ready to prove our main result.

Proof of theorem 1.4. From (2.8), for any given positive constant β0, as in Lemma
2.2, we define a new data β1 := min{λ3 , 1}, and set

β̃0 :=
1
3

min{β0, β1} > 0.

Then there exists a real-valued function H̃(x,D2u) such that

|H̃(x,D2u)| ≤ β0 < 1 for all x ∈ Ω.

Now let u ∈ W 2,p be a strong solution of the problem (1.1) and assume that
F (x,D2u) is asymptotically elliptic with G(x,D2u) which satisfies( 1

|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG(x, x0)ndx
)1/n

≤ β̃0,

for any x0 ∈ Ω and 0 < r < R0. Then by Lemma 2.2, G̃(x,D2u) is uniformly
elliptic and satisfies( 1

|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

βG̃(x, x0)ndx
)1/n

≤ 3β̃0 ≤ β0,

for any x0 ∈ Ω and 0 < r < R0.
According to f ∈ Lγ,q(Ω) and equality (2.8), we have

|g(x)| ≤ |f(x)|+ 2|D2u(x)|χ{‖D2u‖<K}.
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which implies that

|{x ∈ Ω : |g(x) > µ|}|

≤ |{x ∈ Ω : |f(x)| > µ

2
}|+ |{x ∈ Ω : 2|D2u(x)|χ{‖D2u‖<K} >

µ

2
}|.

Therefore,

‖g‖qLγ,q(Ω) ≤ q
∫ ∞

0

(
µγ |{x ∈ Ω : |f(x)| > µ

2
}|
)q/γ dµ

µ

+ q

∫ ∞
0

(
µγ |{x ∈ Ω : 2|D2u(x)|χ{‖D2u‖<K} >

µ

2
}|
)q/γ dµ

µ

= 2qq
∫ ∞

0

(µγ |{x ∈ Ω : |f(x)| > µ}|)q/γ dµ
µ

+ 2qq
∫ ∞

0

(
µγ |{x ∈ Ω : 2|D2u(x)|χ{‖D2u‖<K} > µ}|

)q/γ dµ
µ
.

Since
|{x ∈ Ω : 2|Du2(x)|χ{‖D2u‖<K} > µ}| ≤ |{x ∈ Ω : 2K > µ}|,

we can derive that

‖g‖qLγ,q(Ω) ≤ 2q‖f‖qLγ,q(Ω) + 2qq
∫ ∞

0

(µγ |{x ∈ Ω : 2K > µ}|)q/γ dµ
µ

= 2q‖f‖qLγ,q(Ω) + 2qq
∫ 2K

0

(µγ |{x ∈ Ω : 2K > µ}|)q/γ dµ
µ

+ 2qq
∫ ∞

2K

(µγ |{x ∈ Ω : 2K > µ}|)q/γ dµ
µ

≤ 2q‖f‖qLγ,q(Ω) + 2qq
∫ 2K

0

(µγ |Ω|)q/γ dµ
µ

+ 0

= 2q‖f‖qLγ,q(Ω) + 2qq|Ω|q/γ
∫ 2K

0

µq−1dµ

= 2q‖f‖qLγ,q(Ω) + 2q|Ω|q/γ(2K)q

≤ C(‖f‖qLγ,q(Ω) + 1).

Thus, we have
‖g‖Lγ,q(Ω) ≤ C(‖f‖Lγ,q(Ω) + 1),

for some positive constant C = C(β0,K, n, γ, q, |Ω|).
Considering

H(x,M) =
F (x,M)−G(x,M)

‖M‖
≥ 0

for all M ∈ S(n) and x ∈ Ω, we have H̃(x,M) ≥ 0 for all x ∈ Ω due to the definition
of H̃. This shows that H̃(x,D2u) ≥ 0 for all x ∈ Ω. On the other hand, we know
G(x,M) and ‖M‖ are convex in M ; therefore F̃ (x,M) = G(x,M)+H̃(x,D2u)‖M‖
is also convex with respect to M . We then apply Theorem 2.4 to g ∈ Lγ,q(Ω) and
G̃(x,D2u) to discover u ∈W 2,n with the estimate

‖D2u‖Lγ,q(Ω) ≤ C‖g‖Lγ,q(Ω) ≤ C(‖f‖Lγ,q(Ω) + 1), (2.34)

where C = C(n, λ,Λ, R0,Ω, γ, q) is a positive constant. This completes the proof.
�
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