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Abstract. Some representation theorems for the solutions of the Dirichlet
problem and the Neumann problem on Klein surfaces are proved by using an

analogue of the harmonic kernel function on symmetric Riemann surfaces.

1. Introduction

In this article we study boundary-value problems for harmonic functions on
Klein surfaces, through their double covers by symmetric Riemann surfaces in the
sense of Klein, that is, Riemann surfaces endowed with fixed point free antiana-
lytic involutions. The harmonic kernel function is related to the classical domain
functions, such as the Green function and the Neumann function on a Klein sur-
face, introduced earlier, see [4, 10]. Thus, it is possible to solve both the boundary
value problems of potential theory on a Klein surface, once the harmonic kernel
function on a symmetric Riemann surface is known. We develop a symmetrization
technique based on the correspondence between Klein surfaces and symmetric Rie-
mann surfaces. The idea of using the double cover has been successfully used to
study objects on a Klein surface by Alling and Greenleaf [2], Andreian Cazacu [3],
Bârză and Ghişa [4, 5].

2. Preliminaries

Klein surfaces are the most general two-dimensional real manifolds that support
harmonic functions. In this paper, the methods introduced in [2, 4, 10] are used to
extend results about boundary value problems for harmonic functions on Riemann
surfaces to Klein surfaces. The extension required new concepts and techniques
such as the well known relationship between Riemann surfaces and Klein surfaces,
see [2, 11]. Namely, given a compact Klein surface (X,A), there exists a double
cover f : O2 → X of X by a Riemann surface O2, such that O2 has an antianalytic
involution k (called symmetry in the sense of Klein) with f ◦ k = f . Moreover, X
is dianalytically equivalent with O2/H, where H is the group generated by k, with
respect to the usual composition of functions. Also, if O2 is a Riemann surface
on which a fixed point free antianalytic involution k exists, then O2/H carries a
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unique dianalytic structure, which makes the canonical projection π : O2 → O2/H
a dianalytic function. Throughout this paper, we identify X with the orbit space
O2/H.

By Klein’s definition, the pair (O2, k) is a symmetric Riemann surface.
Any compact Klein surface can be conceived as a region X of the complex plane

bounded by a finite number of analytic Jordan curves, see [11].
Let F : X → R be a function on X. Its lifting f to O2 is given by

F (z̃) = f(z) = f(k(z)), z ∈ O2, z̃ = π(z). (2.1)

A function f on O2 with the property (2.1) is called a symmetric function.
Also, if g : O2 → R is a function on O2, then the function f = g + g ◦ k is a

symmetric function on O2. Thus, relation (2.1) defines a function F on X.
We consider the symmetric metric on O2, defined by dσ = 1

2 (|dz|+ |dw|), where
w = k(z), z ∈ O2. Then

dΣ(z̃) = dσ(z) = dσ(k(z)), z ∈ O2,

is a metric on X. The metric dΣ is invariant with respect to the group of conformal
or anticonformal transition functions of X.

Let γ̃ be a piecewise smooth Jordan curve on X. Then γ̃ has exactly two liftings
γ and k ◦ γ on O2, see [7], and by definition∫

eγ FdΣ =
∫
γ

fdσ =
∫
k◦γ

fdσ.

For more details about measure and integration on Klein surfaces, see [2].
Let u be a C1-function defined in a neighborhood of the σ-rectifiable Jordan curve

γ, parameterized in terms of the arc σ-length. Therefore, γ : z = z(s) = x(s)+iy(s),
s ∈ [0, l], where l is the σ-length of γ. Then the normal derivative of u on γ with
respect to dσ, denoted by ∂u

∂nσ
, is the directional derivative of u in the direction of

the unit normal vector nσ = ( dydσ ,−
dx
dσ ).

Given Ω a region of X bounded by a finite number of σ-rectifiable Jordan curves,
then π−1(Ω) = D is a symmetric subset of O2, since k is an antianalytic involution,
without fixed points and π ◦ k = π. For details about Green’s identities for the
symmetric region D in terms of dσ, see [4].

Let F be a continuous real-valued function on ∂Ω. The Dirichlet problem on X
for the region Ω, consists in finding a harmonic function U in Ω with prescribed
values F on ∂Ω. We define f = F ◦ π on ∂D. Then f = f ◦ k on ∂D, thus f is a
symmetric, continuous real-valued functions on ∂D. The Dirichlet problem on X,

∆U = 0 in Ω
U = F on ∂Ω

(2.2)

is equivalent with the Dirichlet problem on O2

∆u = 0 in D

u = f on ∂D,
(2.3)

see [4, 10].
Let G be a continuous real-valued function on ∂Ω. The Neumann problem on

X for the region Ω, consists in finding a harmonic function U in Ω with prescribed
normal derivatives values G on ∂Ω. We define g = G ◦ π on ∂D. Then g = g ◦ k
on ∂D, thus g is a symmetric, continuous real-valued functions on ∂D. By the
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symmetry of g, we obtain the compatibility condition
∫
∂D

gdσ = 0, for the existence
of a solution to the Neumann problem on O2 for the symmetric region D, see [8].
The Neumann problem on X

∆U = 0 in Ω
∂U

∂nΣ
= G on ∂Ω

(2.4)

is equivalent with the Neumann problem on O2

∆u = 0 in D

∂u

∂nσ
= g on ∂D,

(2.5)

see [4].
The Dirichlet problem on O2 for the region D and the boundary function f has a

unique solution, provided that ∂D has only regular points, see [1]. If the Neumann
problem (2.5) has a solution, then it is unique up to an additive constant, see [8].

The symmetric conditions on the boundary imply symmetric solutions for the
problems (2.3) and (2.5), for details see [4] and the original source [11].

Proposition 2.1. The solution u of problem (2.3) is a symmetric function in D.

Proposition 2.2. A solution u of problem (2.5) is a symmetric function in D.

3. Symmetric harmonic kernel function

Let D be a symmetric region in the complex plane, bounded by a finite number
of σ-rectifiable Jordan curves. In this section we introduce closed systems (ϕi)i∈I
of harmonic functions in D, which are orthonormal with respect to the Dirichlet
integral

D{ϕi, ϕj} =
∫∫

D

(∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)
dx dy.

We recall some notions and results about orthogonal harmonic functions, see [6].
Let Λ2(D) be the set of harmonic functions ϕ(z) in D with a finite Dirichlet

integral
D{ϕ} = D{ϕ,ϕ} <∞ (3.1)

such that
D{ND(z; ζ), ϕ} = −2πϕ(ζ), (3.2)

where ND(z; ζ) is the Neumann’s function of D with its singularity at the fixed
point ζ, ζ ∈ D.

Remark 3.1. If ϕ has continuous boundary values, ϕ will be normalized by the
condition ∫

∂D

ϕdσ = 0. (3.3)

Proposition 3.2. There exists a closed system (ϕi)i∈I for Λ2(D), which is or-
thonormal with respect to the Dirichlet integral, i.e.

D{ϕi, ϕj} = δij , δii = 1, δij = 0, i 6= j.



4 M. ROŞIU EJDE-2017/132

Let ζ be a point inside D. The harmonic kernel function KD(z; ζ) of the closed
orthonormal system (ϕi)i∈I , for the region D, with respect to the point ζ, is the
function defined by

KD(z; ζ) =
∞∑
i=1

ϕi(z)ϕi(ζ), z ∈ D.

Remark 3.3. The harmonic kernel function depends on the domain D.

An extensive study of the harmonic kernel function can be found in Bergman [6].
It is known, see [6], that the harmonic kernel function KD(z; ζ), the Green function
GD(z; ζ) and the Neumann function ND(z; ζ) satisfy the relation

KG(z; ζ) =
1

2π
[ND(z; ζ)−GD(z; ζ)], z ∈ D. (3.4)

First, we derive formulas that solve problem (2.3). We prove that if u is harmonic
inside a region D and continuous on ∂D, then we can determine the values of u
inside of D by integrating on ∂D the product of u times the normal derivative of the
harmonic kernel function for the region D, which is a fixed function that depends
only on D.

Proposition 3.4. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. If u is harmonic in D and continuous on D, then for all
ζ in D,

u(ζ) = −
∫
∂D

u(z)
∂KD(z; ζ)

∂nσ
dσ. (3.5)

Proof. From [4, 9], the solution of the Dirichlet problem (2.3) is

u(ζ) =
1

2π

∫
∂D

u(z)
∂GD(z; ζ)

∂nσ
dσ, ζ ∈ D. (3.6)

Using (3.4), we obtain

∂KD(z; ζ)
∂nσ

=
1

2π
∂ND(z; ζ)

∂nσ
− 1

2π
∂gD(z; ζ)
∂nσ

= − 1
L
− 1

2π
∂GD(z; ζ)

∂nσ
,

for z ∈ ∂D, where L is the length of ∂D, see [9]. Combining this with (3.6), we
find that

u(ζ) = −
∫
∂D

u(z)
∂KD(z; ζ)

∂nσ
dσ − 1

L

∫
∂D

u(z)dσ.

Since the boundary values satisfy the normalization condition
∫
∂D

u(z)dσ = 0, we
obtain relation (3.5). �

Next, we derive formulas that solve problem (2.5). From Green’s formula for
the Laplacian, in terms of dσ, the prescribed values of the normal derivatives must
satisfy the compatibility condition∫

∂D

∂u(z)
∂nσ

dσ = 0.

Proposition 3.5. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. If u is harmonic in D, then, up to an additive constant,

u(ζ) =
∫
∂D

∂u(z)
∂nσ

KD(z; ζ)dσ, ζ ∈ D. (3.7)
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Proof. Using Green’s second identity, it follows that, up to an additive constant, a
solution of the Neumann problem is given by

u(ζ) =
1

2π

∫
∂D

∂u(z)
∂nσ

ND(z; ζ)dσ, ζ ∈ D. (3.8)

The constant is chosen such that u(z) is in Λ2(D). By (3.4), for ζ ∈ ∂D, we obtain

KD(z; ζ) =
1

2π
ND(z; ζ).

Substituting this in (3.8), we obtain (3.7). �

Let K(k)
D (z; ζ̃) be the function defined by

K
(k)
D (z; ζ̃) =

1
2

[KD(z; ζ) +KD(z; k(ζ))], z ∈ D,

where KD(z; k(ζ)) is the harmonic kernel function of the closed orthonormal system
(ϕi)i∈I , for the region D, with respect to the point k(ζ). The function K

(k)
D (z; ζ̃)

is in Λ2(D).

Proposition 3.6. If D is a symmetric region, then the function K
(k)
D (z; ζ̃) is sym-

metric with respect to z on D i.e. for every z ∈ D,

K
(k)
D (z; ζ̃) = K

(k)
D (k(z); ζ̃).

Proof. We use (3.4) and the symmetric properties of the corresponding symmetric
Green’s function and symmetric Neumann’s function, see [4, 10]. �

The function K
(k)
D (z; ζ̃) is called the symmetric harmonic kernel function of the

closed orthonormal system (ϕi)i∈I , for the region D, with respect to the point
ζ̃ = {ζ, k(ζ)}.

4. Integral representations on the double cover

The next theorem yields a formula for the symmetric solution of the problem
(2.3).

Theorem 4.1. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let f be a symmetric, continuous function on ∂D. There
exists a unique symmetric function u on D, which is harmonic on D, continuous
on D, such that u = f on ∂D. For all ζ in D,

u(ζ) = −1
2

∫
∂D

f(z)
[∂KD(z; ζ)

∂nσ
+
∂KD(z; k(ζ))

∂nσ

]
dσ. (4.1)

Proof. Since k is an involution of D, the function u(ζ)+u(k(ζ))
2 is a symmetric func-

tion on D. By Proposition 3.4,

u(ζ) = −
∫
∂D

u(z)
∂KD(z; ζ)

∂nσ
dσ, ζ ∈ D. (4.2)

Replacing ζ with k(ζ) in (4.2), we obtain

u(k(ζ)) = −
∫
∂D

u(z)
∂KD(z; k(ζ))

∂nσ
dσ, ζ ∈ D. (4.3)
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Adding (4.2) to (4.3) and dividing by 2, it follows that

u(ζ) + u(k(ζ))
2

= −1
2

∫
∂D

u(z)
[∂KD(z; ζ)

∂nσ
+
∂KD(z; k(ζ))

∂nσ

]
dσ, ζ ∈ D.

By Proposition 2.1, u is a symmetric function on D, then the left-hand side of the
last equality is u(ζ) and we conclude that for all ζ in D,

u(ζ) = −1
2

∫
∂D

u(z)
[∂KD(z; ζ)

∂nσ
+
∂KD(z; k(ζ))

∂nσ

]
dσ.

The uniqueness of the solution of the Dirichlet problem for harmonic functions
implies relation (4.1). �

Next we obtain a formula for the symmetric solution of the problem (2.5).

Theorem 4.2. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let g be a symmetric, continuous function on ∂D. If
u is harmonic in D and g is its normal derivative on ∂D, then up to an additive
constant,

u(ζ) =
1
2

∫
∂D

g(z)[KD(z; ζ) +KD(z; k(ζ))]dσ, ζ ∈ D. (4.4)

Proof. By analogy with the proof of the Theorem 4.1, we are using Proposition 3.5
instead of Proposition 3.4. �

5. Integral representations on a Klein surface

Let X be compact Klein surface and let Ω be a region bounded by a finite
number of σ-rectifiable Jordan curves. Then there exists a symmetric Riemann
surface (O2, k) such that X is dianalytically equivalent with O2/H, where H is the
group generated by k, with respect to the usual composition of functions. Then, Ω is
obtained from the symmetric region D by identifying the corresponding symmetric
points.

Let ζ̃ be a point inside Ω. The harmonic kernel function KΩ(z̃; ζ̃) of the closed
orthonormal system (ϕi)i∈I , for the region Ω, with respect to the point ζ̃ = {ζ, k(ζ)}
is defined by

KΩ(z̃; ζ̃) = K
(k)
D (z; ζ̃) = K

(k)
D (k(z); ζ̃), z̃ = π(z) ∈ Ω.

Remark 5.1. From Proposition (3.6), it follows that KΩ(z̃; ζ̃) is well defined on
Ω.

By Theorem 4.1, we obtain the following representation of the solution of problem
(2.3) on a symmetric region D, in terms of the symmetric harmonic kernel function.

Theorem 5.2. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let f be a symmetric, continuous function on ∂D. There
exists a unique symmetric function u on D, which is harmonic on D, continuous
on D, such that u = f on ∂D. For all ζ in D we have

u(ζ) = −
∫
∂D

f(z)
∂K

(k)
D (z; ζ̃)
∂nσ

dσ. (5.1)

By Theorem 4.2, we obtain the following representation of the solution of (2.5)
on a symmetric region D, in terms of the symmetric harmonic kernel function.
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Theorem 5.3. Let D be a symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let g be a symmetric, continuous function on ∂D. If
u is harmonic in D and g is its normal derivative on ∂D, then up to an additive
constant,

u(ζ) =
∫
∂D

g(z)K(k)
D (z; ζ̃)dσ, ζ ∈ D. (5.2)

The symmetric solutions on O2 determine the solutions of the similar problems
on the Klein surface X.

We obtain the solution of (2.2) on the region Ω, with respect to the harmonic
kernel function, for the region Ω.

Theorem 5.4. Let F be a continuous real-valued function on the border ∂Ω. The
solution of (2.2) with the boundary function F is the function U defined on Ω, by
the relation u = U ◦π, where π is the canonical projection of O2 on X and u is the
solution (5.1) of the problem (2.3) on the symmetric region D, with the boundary
function f = F ◦ π.

Proof. By definition, ∆U(ζ̃) = ∆u(ζ) = 0, for all ζ̃ ∈ Ω, where ζ̃ = π(ζ), thus U is
a harmonic function. The symmetry of the function f on ∂D, implies

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F (ζ̃), for all ζ̃ ∈ ∂Ω.

By the uniqueness of the solution, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, where ζ̃ = π(ζ), is the solution of the problem (2.2) on Ω. �

The next theorem gives a solution of the problem (2.4) on the region Ω, with
respect to the harmonic kernel function, for the region Ω.

Theorem 5.5. Let G be a continuous real-valued function on the border ∂Ω. Then,
up to an additive constant, the solution of (2.4) with the normal derivative G on
∂Ω is the function U defined on Ω, by the relation u = U ◦ π, where π is the
canonical projection of O2 on X and u is the solution (5.2) of the problem (2.5) on
the symmetric region D, with the normal derivative function g = G ◦ π on ∂D.

Proof. By definition, ∆U(ζ̃) = ∆u(ζ) = 0, for all ζ̃ ∈ Ω, where ζ̃ = π(ζ), thus U is
a harmonic function. The symmetry of the function g on ∂D, implies

∂U(ζ̃)
∂nσ

=
∂u(ζ)
∂nσ

= g(ζ) = g(k(ζ)) = G(ζ̃), for all ζ̃ ∈ ∂Ω.

Thus, up to an additive constant, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

is the solution of problem (2.4) on Ω. �
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