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SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A
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Abstract. The Stokes problem is fundamental in the study of fluid flows. In

the case of smooth domains and data, this problem is extensively studied in

the literature. But there are only a few results for non-smooth boundary data.
In [13], there are some promising results in the 2 dimensional case. The aim of

this work is to extend those results to a polyhedron domain with non-regular

data.

1. Introduction

Let Ω be a convex polyhedron of R3 with boundary Γ. The steady, creeping flow
of an incompressible fluid is governed by Stokes system

− div(2ηd(u)− pδ) = f in Ω,
div u = 0 in Ω,
u = g on Γ.

(1.1)

Where u the velocity field and p the pressure are the unknowns of the problem.
f and g are given functions respectively defined on Ω and its boundary Γ, and
respectively representing the inertia forces and boundary data. Finally, d(u) =
(∇u +∇tu)/2 is the strain rate tensor, δ the identity tensor and η the viscosity of
the fluid, supposed to be constant (Newtonian fluid).

In the bi-dimensional framework, the authors obtained in previous work [13],
some promising results on the existence and regularity of the solution to the system
(1.1). More precisely, the boundary Γ is supposed to be a set of segments Γi =
]Si, Si+1[, i = 1, . . . , N and the data g|Γi

∈ (Hs(Γi))2 with −1/2 < s < +1/2.
This work represents a generalization of the results obtained in [13]. It concerns

the existence and regularity results of solutions to non-homogeneous Stokes system
in a polyhedron with non enough regular data g on the boundary. More precisely,
we assume that Ω is a convex polyhedron and it is supposed that its boundary Γ
is composed of surfaces Fi, i = 1, . . . , N :

Γ = ∪Ni=1Fi, Γi = ∂Fi = ∪Ni
j=1Γij .
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For j = 1, . . . , Ni, Γij stands for the edges of the ith face Fi see Figure 1.
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Figure 1. Boundary of the domain

For each face Fi, we define a local direct basis (ni, τ i1, τ
i
2), ni being the outward

unit normal to Fi and (τ i1, τ
i
2) a basis of the tangent plan containing the face Fi.

Note that for a Newtonian fluid, the viscosity is constant. Then, dividing by
η > 0, the first equation of (1.1) becomes

−∆u +∇p = f , in Ω.

To simplify, it is assumed that f = 0 in Ω. Given a family of distributions
gi = (gi1, g

i
2, g

i
3) defined on Fi. Our purpose is to show existence, uniqueness and

regularity results for (u, p) solution to the Stokes problem

−∆u +∇p = 0, in Ω, (1.2)

div u = 0, in Ω, (1.3)

u = gi, on Fi, i = 1, . . . , N, (1.4)

where (1.2) and (1.3) are verified in the distribution sense and (1.4) is verified in
generalized sense of traces.

Let Hs(·) denote the product space (Hs(·))3, where Hs(·) denotes the usual
Sobolev space (See e.g. [9]).

Remark 1.1. Let g = (g1,g2, . . . ,gN ). We then have the classical result:
If g ∈

∏
i=1,N H1/2(Fi) and g is the trace of a function of H1(Ω) then the

previous Stokes problem has a unique solution in H1(Ω) × L2
0(Ω). Here L2

0(Ω) is
the sub-space of L2-functions with zero mean.

2. Existence and uniqueness result

We consider the case where the data satisfy

gi ∈ Hs(Fi), for i = 1, . . . , N with |s| < 1
2
.
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Let H = (Hi)Ni=1 such that Hi = gi ·ni on the face Fi. We will assume that the Hi

functions satisfy
N∑
i=1

〈Hi, 1〉 = 0. (2.1)

Note that (2.1) is a compatibility condition which is necessary for the existence of
solutions to the Stokes problem (1.2)–(1.4).

Let us also define the tangential part of gi on Γi by

G = (Gi)Ni=1 where Gi = (gi)t = gi − (gi · ni)ni. (2.2)

In this case, the solution of the system (1.2)–(1.4) is not regular enough and then it
can not be variational. We then use the transposition technique as in the search for
very weak solutions. This contains, in particular, the interesting case with regular
data on each face Fi of the boundary but without connection or compatibility at
the edges Γij of Γ.

The approach developed here may be extended, in natural way, to the case where
Ω is a non convex polyhedron of R3 and also to the case where the data belong
to W s,p spaces. This could be done by using the results of Dauge [6], Maz’ya-
Plamenevskǐi [10] and Grisvard [8]. The main result of this work is the following
theorem.

Theorem 2.1. Let gi = (g1
i , g

2
i , g

3
i ) given in Hs(Fi) for i = 1, . . . , N and −1/2 <

s < 1/2. Then, there exists a unique u ∈ ∩σ<s+ 1
2
Hσ(Ω) and a unique (up to an

additive constant distribution) p ∈ Hs− 1
2 (Ω), solution to (1.2)–(1.4).

The proof of the Theorem 2.1 is done in two steps. First, we recall some results on
the traces of functions in Hs(Ω) and establish some useful lemma for the rest of the
presentation. We will then use the result of Dauge [6] and transposition techniques
to show that the problem (1.2)–(1.4) has a solution (u, p) ∈ (L2(Ω))3 × H−1(Ω).
And then, in section 3, we will use interpolation techniques to increase the regularity
of the solution, and establish the proof of Theorem 2.1.

Remark 2.2. We did not get the optimal regularity that one could hope, namely,
u ∈ Hs+ 1

2 (Ω). This is because of the following fact: Noting H1/2(Γ) the space of
traces of functions H1(Ω), it is difficult to characterize its dual (H1/2(Γ))′. H1/2(Γ)
is actually a dense, but non closed, sub-space of

∏N
j=1H

1/2(Fj).

2.1. Theorem of traces. Let us first recall some brief results on vector fields. For
more details, we refer to Girault-Raviart [7]. For any v = (v1, v2, v3) ∈ (D′(Ω))3,
curl v is defined by

curl v =
( ∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

It is then easy to see that

curl(curl v) = −∆v +∇(div v). (2.3)

As on Figure 1, {n, τ 1, τ 2} denote the local coordinates and vt = v−(v ·n)n the
tangential part of the vector v. In the sequel, (·, ·) denotes the usual inner product
on (L2(Ω))3 and 〈·, ·〉 the duality pairing. Let

H(curl,Ω) = {v ∈ (L2(Ω))3; curl v ∈ (L2(Ω))3}.
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We recall in the following theorem the tangential trace and a Green’s formula that
we use later

Theorem 2.3 (Girault-Raviart [7, Prop. 1.2]). The mapping γt : v → γtv =
(v× n)Γ defined on [D(Ω̄)]3 extends by continuity to a linear continuous mapping,
still denoted γt, from H(curl,Ω) to H−1/2(Γ). Moreover,∫

Ω

curl v ·ϕ =
∫

Ω

v · curlϕ+ 〈γtv,ϕ〉Γ, ∀v ∈ H(curl,Ω) and ∀ϕ ∈ H1(Ω). (2.4)

Now, by definition of the domain Ω, see Figure 1, each face Fi of Γ = ∂Ω is a
convex polygon, the boundary Γi = ∂Fi is Lipschitz-continuous. For x ∈ Fi, ρi(x)
denotes the distance of x to Γi. We then may construct the following sub-space
(see Grisvard [8]):

H1/2
0,0 (Fi) = {v ∈ H1/2(Fi) :

v
√
ρi
∈ L2(Fi)}.

Equipped with the norm

‖|v‖| =
{
‖v‖21/2,Fi

+ ‖ v
√
ρi
‖20,Fi

}1/2
,

where H1/2
0,0 (Fi) is a Hilbert space.

Introducing the space
W = H3(Ω) ∩H2

0(Ω),
we first give a result on the tangential trace of the Laplacian operator.

Theorem 2.4. The mapping T1 : ϕ→ (γt∆ϕ|Fi
)Ni=1 from W on

∏N
j=1(H1/2

0,0 (Fj))2

is linear, continuous, onto and has a linear continuous right inverse.

Proof. let us first show that for any ϕ ∈W,(
γt∆ϕ|Fi

)N
i=1
∈

N∏
j=1

(H1/2
0,0 (Fj))2.

Let ϕ ∈ W, by definition of the tangential trace γt, we have γt∆ϕ = ∆ϕ × n
and then γt∆ϕ belongs to the tangential plan. Therefore, it is sufficient to verify
that ∆ϕ|Fj

∈ (H1/2
0,0 (Fj))2,∀j = 1, . . . , N . To do so, we will first show that for

any ψ ∈ (C2(Ω))3 ∩ H2
0(Ω), we have ∆ψ = 0 on Γij , where Γij is an edge of the

boundary Γ.
Without loss of generality, one may suppose that the boundary Γ admits a face

F1 belonging to the plan xoy and another face F2 adjacent to F1 having an angle
ω < π with the plan xoy, see 1.

As, ψ ∈ H2
0(Ω), we have ∇ψ = 0 on F1 and F2. Then:

On F1, the basis of the tangent plan is (τ 1, τ 2) with τ 1 = i and τ 2 = j, then
∂

∂τ 1
(∇ψ) =

∂

∂i
(∇ψ) = ∇(∇ψ) · i =

∂

∂x
(∇ψ) = 0,

∂

∂τ 2
(∇ψ) =

∂

∂j
(∇ψ) = ∇(∇ψ) · j =

∂

∂y
(∇ψ) = 0.

Hence,

∂2ψ

∂x2
=

∂2ψ

∂x∂y
=

∂2ψ

∂x∂z
= 0 and

∂2ψ

∂y2
=

∂2ψ

∂y∂x
=

∂2ψ

∂y∂z
= 0.
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On F2, τ = αi + βk, with β 6= 0. ∂
∂τ (∇ψ) = ∇(∇ψ)τ = 0, then

α
∂2ψ

∂x∂z
+ β

∂2ψ

∂z2
= 0.

We get ∆ψ = 0 on Γ12 the common edge to both faces F1 and F2.
To show that T1 is onto, we use the trace theorem by Grisvard [8]. �

Let us now consider the space

E = {v ∈ H2(Ω) ∩H1
0(Ω) : div v ∈ H1

0 (Ω)}.
We get, as a corollary of Theorem 2.4, the following result.

Corollary 2.5. The mapping T2 : v→ (γt curl v|Fi
)Ni=1 from E on

∏N
j=1(H1/2

0,0 (Fj))2

is linear, continuous and onto.

Proof. Let v ∈ E, to show that T2(v) = (γt curl v|Fj
)Nj=1 ∈

∏N
j=1(H1/2

0,0 (Fj))2, we
use the same procedure as for the previous Theorem 2.4.

First we show that T2 is an onto mapping: let h ∈
∏N
j=1(H1/2

0,0 (Fj))2. By
Theorem 2.4, there exists ϕ ∈ W such that h = γt∆ϕ. We set v = − curlϕ, it is
easy to see that v ∈ E. On the other hand,

γt curl v = −γt(curl(curlϕ)) = γt(∆ϕ)− γt(∇(divϕ)).

As, ϕ ∈ H2
0(Ω), we obtain divϕ = 0 on Γ. Therefore γt(∇(divϕ)) = 0. Then, there

exists v in E such that h = γt curl v. Hence we obtain the expected result. �

In the sequel, we will need the Hilbert space

V = {ψ ∈ H1(Ω) : ∆2ψ ∈ L2(Ω)}.
Equipped with the inner product

((u,v))V = ((u,v))H1 + ((∆2u,∆2v))L2 .

Note that thanks to formula (2.4), one also obtains the Green’s formula: for all
ϕ ∈W and all ψ ∈ V,∫

Ω

curlψ · curl ∆ϕ = −
∫

Ω

∆ψ ·∆ϕ+ 〈γt∆ϕ, curlψ〉.

Proposition 2.6. • (D(Ω))3 is dense in V.
• The mapping γt defined on (D(Ω))3 by γtψ = ψ × n|Γ may be extended in

a linear, continuous mapping from V on
∏N
j=1

(
H−1/2(Fj)

)2.

Proof. To show that (D(Ω))3 is dense in V, one just need to show that if L is a
linear continuous form on V vanishing on (D(Ω))3 then it is identically equal to
zero.

Let L(·) be a linear continuous form on V. Then, there exists a unique u ∈ H1(Ω),
and f ∈ L2(Ω) such that

L(v) =
∫

Ω

(∇u · ∇v + u · v) dx+
∫

Ω

f ·∆2v dx ∀v ∈ V.

Suppose that L(ϕ) = 0 for all ϕ ∈ (D(Ω))3. Noting ũ, ∇̃u, and f̃ the extensions of
u, ∇v, and f by 0 to R3. Then∫

R3
(ũ ·ϕ+ ∇̃u · ∇ϕ+ f̃ ·∆2ϕ) dx = 0, ∀ϕ ∈ (D(R3))3;
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using a Green formula we obtain

∆2f̃ − div(∇̃u) + ũ = 0.

We therefore deduce that f̃ ∈ H3(R3). Since f vanishes outside of the domain Ω,
we conclude that f is in H3

0(Ω). Let, (fn)n∈N, be a sequence of (D(Ω))3 functions
which converge, in H3(Ω), to f . Using the sequence fn, we obtain

L(v) =
∫

Ω

(u · v +∇u · ∇v) dx+ lim
n→∞

∫
Ω

fn ·∆2v dx,

=
∫

Ω

(u · v +∇u · ∇v) dx− lim
n→∞

∫
Ω

∇(∆fn) · ∇v dx,

=
∫

Ω

(u · v +∇u · ∇v) dx−
∫

Ω

∇(∆f) · ∇v dx.

L is then a linear continuous form on V for the H1(Ω)-norm. Finally, as L
vanishes on (D(Ω))3 which is dense in H1(Ω), it vanishes everywhere. This ends
the proof of the first point.

The second statement in the proposition is a consequence of the denseness of
D(Ω))3 in V and the trace theorem 2.4. �

3. Proof of theorem 2.1

We first introduce some additional functional spaces and some auxiliary prob-
lems. Let Z be a subspace of H1 with a zero-mean functions given by

Z = {z ∈ H1(Ω) :
∫

Ω

z = 0}. (3.1)

Let gi be the boundary data of our initial problem (1.2)–(1.4), and consider the
variational problem

z ∈ Z,∫
Ω

∇z · ∇v =
N∑
i=1

〈gi · ni, γ0v〉, ∀v ∈ Z.
(3.2)

The auxiliary problem (3.2) admits a unique solution z ∈ Z. Moreover, z is the
solution of the boundary-value problem

∆z = 0,
∇z · n = H,∫

Ω

z = 0.

Let us now define the vector
u1 = ∇z.

It is easy to check that u1 satisfy the following properties

∆u1 = 0, curl u1 = 0, div(u1) = 0.

Therefore,
u1 ∈ H(div, curl,Ω) =⇒ (u1 · n)|Γ ∈ H−1/2(Γ).

Where

H(div, curl,Ω) =
{
v ∈ L2(Ω)3; div(v) ∈ L2(Ω) and curl(v) ∈ L2(Ω)3

}
.
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Now, using the result in Jerison-Kenig [11, Theorem 2] and the interpolation result,
one gets

(u1 · n)|Γ ∈ H−s
′
(Γ), s < s′ <

1
2
.

Let p1 = 0, then it is easy to see that the couple (u1, p1) is a solution to the
Stokes problem

−∆u1 +∇p1 = 0, in Ω,
div u1 = 0, in Ω,
u1 · n = H, on Γ.

(3.3)

We also consider the auxiliary Stokes problem

−∆w +∇p0 = 0, in Ω,
div w = 0, in Ω,
w · n = 0, on Γ,

w × n = G− u1 × n = G′, on Γ.

(3.4)

To show the main result of this paper, given in Theorem 2.1, in addition to the
space Z previously introduced (3.1), we will need also the use of the space

Z0 =
{
g ∈ H1

0 (Ω);
∫

Ω

g = 0
}
.

Following Dauge [6], the Stokes operator

S(v, q) = (−∆v +∇q,div v)

is an isomorphism from E× Z to L2(Ω)× Z0. Indeed this gives, by transposition,
the following result.

Proposition 3.1. For any linear continuous form L(·, ·) on E× Z, there exists a
unique (u, p), element of L2(Ω)×H−1(Ω)/R satisfying∫

Ω

u ·
(
−∆v +∇q

)
dx−

〈
p,div v

〉
H−1(Ω),H1

0 (Ω)
= L(v, q), ∀(v, q) ∈ E× Z.

Remark 3.2. Note that any p in Z′0, the dual space of Z0, may be written as
p = p0 + c where p0 ∈ H−1(Ω) and c is some constant.

Taking into account the previous remark, concerning Z′0 the dual space of Z0,
one may give an equivalent formulation of the proposition 3.1 as follows: If L is a
linear continuous form on E×Z, then there exists a unique u in L2(Ω) and unique
(up to a constant) p0 ∈ H−1(Ω) such that∫

Ω

u · (−∆v +∇q)− 〈p0,div v〉H−1(Ω),H1
0 (Ω) = L(v, q), ∀(v, q) ∈ E× Z. (3.5)

We now have all the ingredients to prove theorem 2.1.

Proof of Theorem 2.1. Let s ∈ R satisfying −1/2 < s < 1/2. Then, there exists
ε ∈]0, 1[, such that s = − 1

2 +ε. Consider now g belonging to
∏N
j=1 H− 1

2 +ε(Fj). For
all i = 1, . . . , N , we set gi = g|Fi

and recall the tangential part Gi of functions of
gi on Fi, previously defined in (2.2). Since gi ∈ H− 1

2 +ε(Fi), we obtain

Gi ∈ H−
1
2 +ε(Fi).
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Let us now define the linear form L on the space E× Z:

L(v, q) =
N∑
i=1

〈G′i, γt curl v|Fi
〉, (3.6)

where G′ is given by G′ = G− u1 × n, see the last equation of (3.4).

Proposition 3.3. Let L be the linear form given in (3.6). There exists w ∈ L2(Ω)
unique, and p0 ∈ H−1(Ω) unique up to a constant, satisfying∫

Ω

w · (−∆v +∇q)− 〈p0,div v〉H−1(Ω),H1
0 (Ω) = L(v, q), ∀(v, q) ∈ E× Z. (3.7)

Moreover, (w, p0) is a solution to the Stokes problem (3.4).

Proof. On one hand, it is quite easy to see that the form L given by (3.6) is linear
and continuous on E × Z. On the other hand, following the remark 3.2 and the
Proposition 3.1, there exists (w, p0) ∈ L2(Ω)×H−1(Ω) satisfying the equality (3.7).

Let us show now that the above pair (w, p0), obtained in the previous proposi-
tion, verify the Stokes equations (3.4). Let wj , j = 1, 2, 3 denote the components
of w.

(1) Choosing v = (v1, 0, 0) ∈ (D(Ω))3 and q = 0, we obtain the following equation

−∆w1 +
∂p0

∂x1
= 0, in the distribution sense.

and, in a same way, for vj , j = 2, 3, in D(Ω), vk = 0, k = 1, 2, 3 with k 6= j and
q = 0, one gets

−∆wj +
∂p0

∂xj
= 0, j = 1, 2, in the distribution sense.

Then −∆w +∇p0 = 0, which is precisely the first equation of (3.4).
(2) Now, let q0 be any element of D(Ω), choosing v = 0 and q = q0 − 1

|Ω|
∫

Ω
q0.

Using (3.7) and (2.1), one gets the incompressibility condition div w = 0.
Finally,

w ∈ L2(Ω)
div w = 0

implies that w · n is well defined as an element of the dual [H1/2(Γ)]′. Moreover,
since q is an element of H1(Ω), we have∫

Ω

q div w +
∫

Ω

∇q ·w = 〈w · n, γ0q〉.

Thus, noting that γ0(H1(Ω)) = γ0Z, it follows that

w · n = 0 and then w · ni = 0. (3.8)

(3) It remains to show that

wt = G′i on Fi, for i = 1, . . . , N.

On the one hand, as w ∈ L2(Ω) satisfying div w = 0, there exists ψ ∈ H1(Ω) such
that

w = curlψ and divψ = 0 since w · n = 0.
Consequently, ψ ∈ V.
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On the other hand, w satisfies the first equation of the Stokes equation −∆w +
∇p0 = 0. Thus, applying the curl operator to the Stokes equation and using (2.3),
we obtain

−∆(curl(curlψ)) + curl(∇p0) = ∆2ψ −∇(divψ) = ∆2ψ = 0.

Therefore,
ψ ∈ H1(Ω) and ∆2ψ = 0.

Then ψ ∈ V. Furthermore, we already saw that

ϕ ∈W =⇒ v = − curlϕ ∈ E.

Consequently, let v ∈ E such that div v = 0; thanks to equality (3.7) one obtains∫
Ω

w ·∆v =
∫

Ω

w · ∇q +
∑
i

〈G′i, γt curl v|Fi
〉.

And then, thanks to (3.8), we have∫
Ω

w ·∆v =
N∑
i=1

〈G′i, γt curl v|Fi
〉 = 〈wt, γt curl v〉.

Therefore, using the surjectivity obtained at Corollary 2.5, we obtain

wt = G′i on Fi, ∀i = 1, . . . , N

and then wt = G′ on Γ. It is therefore deduced that (u, p0) = (u1 + w, p0) is a
solution of our initial problem. This completes the proof. �

In summary, we have the following results:
(i) considering the proposition 3.3: Let ε > 0, for all (g1, g2, g3) ∈ H− 1

2 +ε(Γ),
there exists u ∈ L2(Ω) unique and p in H−1(Ω) unique (up to an additive
constant) such that

−∆u +∇p = 0
div u = 0

u = (g1, g2, g3) on Γ.

(ii) For (g1, g2, g3) ∈ H1/2(Γ), there exists (see Temam [14]) (u, p) unique in
H1(Ω)× L2

0(Ω) solution of the Stokes system (3.7)–(2.1).
Then Theorem 2.1 follows then by interpolation.
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Laboratoire d’Analyse Non Linéaire et Histoire des Maths, E.N.S, B.P. 92 Vieux Kouba
16050 Algiers, Algeria

E-mail address: houria.adjal@yahoo.com

Mohand Moussaoui
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