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ITERATIVE OSCILLATION RESULTS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH ADVANCED ARGUMENT

IRENA JADLOVSKÁ

Abstract. This article concerns the oscillation of solutions to a linear second-

order differential equation with advanced argument. Sufficient oscillation con-

ditions involving limit inferior are given which essentially improve known re-
sults. We base our technique on the iterative construction of solution estimates

and some of the recent ideas developed for first-order advanced differential

equations. We demonstrate the advantage of our results on Euler-type ad-
vanced equation. Using MATLAB software, a comparison of the effectiveness

of newly obtained criteria as well as the necessary iteration length in particular

cases are discussed.

1. Introduction

We consider the linear second-order advanced differential equation

y′′(t) + q(t)y(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where q ∈ C([t0,∞)) and σ ∈ C1([t0,∞)) are such that q(t) > 0, σ(t) ≥ t and
σ′(t) ≥ 0.

By a solution of (1.1), we understand a nontrivial function y ∈ C2([t0,∞)),
which satisfies (1.1) on [t0,∞). We restrict our attention to those solutions y of
(1.1) which satisfy sup{|y(t)| : t ≥ T} > 0, for all T ≥ t0. We recall that a solution
of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is
said to be nonoscillatory. Equation (1.1) is called oscillatory if all of its solutions
are oscillatory as well.

Differential equations with deviating argument are deemed to be adequate in
modeling of the countless processes in all areas of science. As is well known, a
distinguishing feature of delay differential equations under consideration is the de-
pendence of the evolution rate of the processes described by such equations on the
past history. This consequently results in predicting the future in a more reliable
and efficient way, explaining at the same time many qualitative phenomena such as
periodicity, oscillation or instability. The concept of the delay incorporation into
systems plays an essential role in modeling to represent time taken to complete
some hidden processes, see [8, 11].

Contrariwise, advanced differential equations can find use in many applied prob-
lems whose evolution rate depends not only on the present, but also on the future.
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Therefore, an advance could be introduced into the equation to highlight the in-
fluence of potential future actions, which are available at the presence and should
be beneficial in the process of decision making. For instance, population dynamics,
economical problems or mechanical control engineering are typical fields where such
phenomena is believed to occur (see [8] for details).

The first oscillation results for differential equations with deviating argument
were obtained in the classical paper by Fite [10] in 1921. Since then, a great deal
of the effort has been made by many researchers in order to advance the knowledge
further (for the summary of most essential contributions on the subject, see, e.g.,
monographs [1, 2, 11, 9, 18] and the references cited therein).

Most of the literature, however, has been devoted to the investigation of differen-
tial equations with delay argument, and very little is known up to now about those
with advanced arguments. In particular, two main approaches for the investigation
of (1.1) have appeared (see [2, Chapter 2], [5, 15, 16]). Taking Kusano’s and Naito’s
comparison theorem [16, Theorem 1] into account, the oscillatory behavior of (1.1)
can be treated as that of the ordinary differential equation

y′′(t) + q(t)y(t) = 0. (1.2)

It seems obvious that in such a case, all impact of the advanced argument is com-
pletely neglected. On the other hand, an another approach has been based on the
comparison with the first-order advanced differential equation

y′(t)−
(∫ ∞

t

q(s)ds
)
y(σ(t)) = 0, (1.3)

in the sense that oscillation of (1.1) is inherited from that of (1.3) (see [2, Theorem
2.1.12]). Here, the advance may generate oscillations. In particular, by applying
the famous Hille’s result [13] and the well-known oscillation criterion due to Ladas
[17] to (1.2) and (1.3), respectively, one can immediately get the following couple
of oscillation criteria for (1.1):

lim inf
t→∞

t

∫ ∞
t

q(s)ds >
1
4
, (1.4)

lim inf
t→∞

∫ σ(t)

t

∫ ∞
u

q(s)dsdu >
1
e
. (1.5)

The question naturally arises:
Is it possible to establish an effective oscillation result of Hille type
which simultaneously takes into account the presence of the advance
and the second order nature of the equation studied as well?

The purpose of this article is to give an affirmative answer to this quastion, i.e.,
to propose an approach for investigation the (1.1) when both above-mentioned
conditions (1.4) and (1.5) fail. The use is made of some of the recent results
developed for first-order delay/advanced differential equations which have been
based on the iterative application of the Grönwall’s inequality (see [4, 7]). This
technique enables one to obtain sufficient conditions for oscillation of (1.1) involving
lim inf, which essentially use value of the advanced argument. Our method of the
proof that is quite different from the very recent study [3] is essentially new.

Finally, we demonstrate the advantage of our results on Euler-type advanced
equations. Using MATLAB software, a comparison of the effectiveness of newly
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obtained criteria is provided as well as the necessary iteration length in particular
cases.

2. Main results

In this section, we establish a number of new oscillation criteria for (1.1).
In the sequel, all functional inequalities are assumed to hold eventually, that is,

they are satisfied for all t large enough.

Remark 2.1. As −y(t) is also a solution of (1.1), we may restrict ourselves only
to the case where y(t) is eventually positive.

Remark 2.2. In view of the well-known Leighton’s criterion [19] and the com-
parison theorem [16, Theorem 1], equation (1.1) is oscillatory if

∫∞
q(s)ds = ∞.

Therefore, we assume throughout the paper that
∫∞

q(s)ds <∞.

We define

q̃(t) = q(t)
(

1 +
∫ σ(t)

t

∫ ∞
u

q(s)dsdu
)
.

Theorem 2.3. Assume that the second-order differential equation

y′′(t) + q̃(t)y(t) = 0 (2.1)

is oscillatory. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that y is a positive solution of (1.1) on [t0,∞).
Obviously, there exists t1 ≥ t0 such that

y(t) > 0, y′(t) > 0, y′′(t) ≤ 0, for t ≥ t1. (2.2)

An integration of (1.1) from t to ∞ in view of (2.2) leads to

y′(t) ≥
∫ ∞
t

q(s)y(σ(s))ds (2.3)

≥ y(σ(t))
(∫ ∞

t

q(s)ds
)
. (2.4)

Integrating (2.4) from t to σ(t), we have

y(σ(t)) ≥ y(t) +
∫ σ(t)

t

y(σ(u))
∫ ∞
u

q(s)dsdu. (2.5)

Using that y(σ(t)) ≥ y(t) in (2.5), one obtains

y(σ(t)) ≥ y(t) + y(σ(t))
∫ σ(t)

t

∫ ∞
u

q(s)dsdu

≥ y(t)
(

1 +
∫ σ(t)

t

∫ ∞
u

q(s)dsdu
)
.

Combining the last inequality and (1.1) yields

y′′(t) + q̃(t)y(t) ≤ 0. (2.6)

Define w(t) = y′(t)/y(t) to see that w(t) satisfies the first-order Riccati inequality

w′(t)− q̃(t)− w2(t) ≤ 0,

which in turn implies (see [1, Lemma 2.2.1]) that the equation (2.1) has a positive
solution; a contradiction. The proof is complete. �
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Corollary 2.4. If

lim inf
t→∞

t

∫ ∞
t

q̃(s)ds >
1
4
, (2.7)

then (1.1) is oscillatory.

Remark 2.5. The criterion (2.7) of Hille type takes the presence of the advanced
argument into account and thus can be applied even if the corresponding known
one (1.4) fails.

The lemma below is a slight modification of [14, Lemma 1] originally given for
the first-order equation with delayed argument. For the sake of clarity, we also
include its complete proof.

Lemma 2.6. Let y(t) be an eventually positive solution of (1.1). Then

ρ := lim inf
t→∞

∫ σ(t)

t

∫ ∞
u

q(s)dsdu ≤ 1
e
, (2.8)

lim inf
t→∞

y(σ(t))
y(t)

≥ λ, (2.9)

where λ is the smaller root of the transcendental equation λ = eρλ.

Proof. Let

α = lim inf
t→∞

y(σ(t))
y(t)

.

Dividing (2.4) by y(t) and integrating from t to σ(t), we have

ln
(y(σ(t))

y(t)

)
≥
∫ σ(t)

t

y(σ(u))
y(u)

∫ ∞
u

q(s)dsdu,

or
y(σ(t))
y(t)

≥ exp
(∫ σ(t)

t

y(σ(u))
y(u)

∫ ∞
u

q(s)dsdu
)
,

which clearly implies
α ≥ eρα. (2.10)

Note that (2.10) is impossible when ρ > 1/e, since λ < exp ρλ for all λ > 0 and
so (1.1) has no positive solutions. If ρ ≤ 1/e, then the equation λ = exp ρλ has
roots λ ≤ λ̃, with λ = λ̃ = e if and only if ρ = 1/e and (2.10) holds if and only if
λ ≤ α ≤ λ̃. �

As an immediate consequence of Lemma 2.9, we have the following result, which
applies when (1.5) fails.

Theorem 2.7. Let (2.8) hold and λ be as in Lemma 2.6. Assume that the second-
order differential equation

y′′(t) + kλq(t)y(t) = 0 (2.11)

is oscillatory for some k ∈ (0, 1). Then (1.1) is oscillatory.

Proof. Suppose to the contrary that y is a positive solution of (1.1) on [t0,∞).
Then it follows from Lemma 2.6 that there exists t1 ∈ [t0,∞) such that, for every
k ∈ (0, 1),

y(σ(t))
y(t)

≥ kλ on [t1,∞). (2.12)
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Using (2.12) in (1.1), it is easy to see that y is a positive solution of the inequality

y′′(t) + kλy(t) ≤ 0.

The same as in the proof of Theorem 2.3, we can conclude that the corresponding
equation (2.11) also has a positive solution, a contradiction. The proof is complete.

�

Corollary 2.8. Let (2.8) hold and λ be as in Lemma 2.6. If

lim inf
t→∞

t

∫ ∞
t

q(s)ds >
1

4λ
, (2.13)

then (1.1) is oscillatory.

In the next lemma, we derive some useful estimates which are based on the
iterative application of the Grönwall inequality and permit us to improve all the
previous results.

Lemma 2.9. Let y(t) be an eventually positive solution of (1.1). Define

a1(s, t) = exp
(∫ s

t

∫ ∞
u

q(x)dxdu
)
,

an+1(s, t) = exp
(∫ s

t

∫ ∞
u

q(x)an(σ(x), u)dxdu
)
, n ∈ N.

Then
y(s) ≥ y(t)an(s, t), s ≥ t, (2.14)

for t large enough.

Proof. We will prove Lemma 2.9 by mathematical induction. Since y is an even-
tually positive solution of (1.1), there exists t1 ≥ t0 such that y satisfies (2.2) on
[t1,∞). Thus y(σ(t)) ≥ y(t) and by virtue of (2.4), we have

y′(t) ≥ y(t)
∫ ∞
t

q(s)ds.

Applying the Grönwall inequality, we obtain

y(s) ≥ y(t) exp
(∫ s

t

∫ ∞
u

q(x)dxdu
)
, s ≥ t ≥ t1, (2.15)

that is, the estimate (2.14) is valid for n = 1.
Next, we assume that (2.14) holds for some n > 1. Then

y(σ(s)) ≥ y(t)an(σ(s), t), σ(s) ≥ t. (2.16)

Substituting (2.16) into (2.3) yields

y′(t) ≥
∫ ∞
t

q(s)y(σ(s))ds ≥ y(t)
∫ ∞
t

q(s)an(σ(s), t)ds.

Again, applying the Grönwall inequality, we have

y(s) ≥ y(t) exp
(∫ s

t

∫ ∞
u

q(x)an(σ(x), u)dxdu
)
, (2.17)

i.e.,
y(s) ≥ y(t)an+1(s, t).

This established the induction step and completes the proof. �



6 IRENA JADLOVSKÁ EJDE-2017/162

Theorem 2.10. Let an(t, s) be as in Lemma 2.9. Assume that the first-order
advanced differential equation

y′(t)−
(∫ ∞

t

q(s)an(σ(s), σ(t))ds
)
y(σ(t)) = 0 (2.18)

is oscillatory for some n ∈ N. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that y is a positive solution of (1.1) on [t0,∞).
Then there exists t1 ≥ t0 such that y satisfies (2.2) on [t1,∞). It follows from
Lemma 2.9 that

y(σ(s)) ≥ y(σ(t))an(σ(s), σ(t)), s ≥ t, (2.19)

for some n ∈ N and t large enough. Integrating (1.1) from t to ∞ and using (2.19),
we are led to

y′(t) ≥
∫ ∞
t

q(s)y(σ(s))ds ≥ y(σ(t))
∫ ∞
t

q(s)an(σ(s), σ(t))ds, (2.20)

which means that y is a positive solution of the first-order advanced differential
inequality

y′(t)−
(∫ ∞

t

q(s)an(σ(s), σ(t))ds
)
y(σ(t)) ≥ 0.

In view of [20, Theorem 1], the equation (2.18) also has a positive solution, a
contradiction. The proof is complete. �

Corollary 2.11. Let an(t, s) be as in Lemma 2.9. If

lim inf
t→∞

∫ σ(t)

t

∫ ∞
u

q(s)an(σ(s), σ(u))dsdu >
1
e
, (2.21)

for some n ∈ N, then (1.1) is oscillatory.

Remark 2.12. The above theorem permits us to deduce oscillation of (1.1) from
that of the first-order advanced differential equation (2.18). One can see that, even
for n = 1, the criterion (2.21) is sharper than (1.5) and thus provides a better
result.

Theorem 2.13. Assume that the second-order differential equation

y′′(t) + q(t)an(σ(t), t)y(t) = 0 (2.22)

is oscillatory for some n ∈ N . Then (1.1) is oscillatory.

Proof. Suppose to the contrary that y is a positive solution of (1.1) on [t0,∞).
Then there exists t1 ≥ t0 such that y satisfies (2.2) on [t1,∞). It follows from
Lemma 2.9 that

y(σ(t)) ≥ y(t)an(σ(t), t) (2.23)

for some n ∈ N and t large enough. Using (2.23) in (1.1), we see that y is a positive
solution of

y′′(t) + q(t)an(σ(t), t)y(t) ≤ 0.

As in the proof of Theorem 2.3, we can see that the corresponding equation (2.22)
also has a positive solution, a contradiction. The proof is complete. �
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Corollary 2.14. If

lim inf
t→∞

t

∫ ∞
t

q(s)an(σ(s), s)ds >
1
4

(2.24)

for some n ∈ N, then (1.1) is oscillatory.

We define

q̃n(t) = q(t)
(

1 +
∫ σ(t)

t

∫ ∞
u

q(s)an(σ(s), t)dsdu
)
, n ∈ N,

where an(s, t) is as in Lemma 2.9.

Theorem 2.15. Assume that the second-order differential equation

y′′(t) + q̃n(t)y(t) = 0 (2.25)

is oscillatory for some n ∈ N. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that y is a positive solution of (1.1) on [t0,∞).
Then there exists t1 ≥ t0 such that y satisfies (2.2) on [t1,∞). As in the proof of
Theorem 2.10, we obtain (2.20), that is,

y′(t) ≥ y(σ(t))
∫ ∞
t

q(s)an(σ(s), σ(t))ds. (2.26)

Integrating (2.26) from t to σ(t) and using (2.14), i.e.,

y(σ(u)) ≥ y(t)an(σ(u), t), σ(u) ≥ t,
we obtain

y(σ(t)) ≥ y(t) +
∫ σ(t)

t

y(σ(u))
∫ ∞
u

q(s)an(σ(s), σ(u))dsdu

≥ y(t)
(

1 +
∫ σ(t)

t

an(σ(u), t)
∫ ∞
u

q(s)an(σ(s), σ(u))dsdu
)
.

The rest of the proof is similar to that of Theorem 2.3 and so we omit it. �

Corollary 2.16. If

lim inf
t→∞

t

∫ ∞
t

q̃n(s)ds >
1
4

(2.27)

for some n ∈ N, then (1.1) is oscillatory.

Lemma 2.17. Let y(t) be an eventually positive solution of (1.1). Then

ρn := lim inf
t→∞

∫ σ(t)

t

∫ ∞
u

q(s)an(σ(s), σ(u))dsdu ≤ 1
e
, (2.28)

and

lim inf
t→∞

y(σ(t))
y(t)

≥ λn,

where an(t, s) is as in Lemma 2.9 and λn is the smaller root of the equation

λn = eρnλn .

Proof. We proceed as in the proof of Theorem 2.10 to obtain that y satisfies (2.20).
The next arguments are the same as in the proof of Lemma 2.6 so we can omit
them. �
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Theorem 2.18. Let (2.28) hold and λn be as in Lemma 2.17. Assume that the
second-order differential equation

y′′(t) + kλnq(t)y(t) = 0 (2.29)

is oscillatory for some n ∈ N and k ∈ (0, 1). Then (1.1) is oscillatory.

Corollary 2.19. Let (2.28) hold and λn be as in Lemma 2.17. If

lim inf
t→∞

t

∫ ∞
t

q(s)ds >
1

4λn
, (2.30)

for some n ∈ N, then (1.1) is oscillatory.

Finally, we discuss the efficiency of newly obtained criteria on Euler-type differ-
ential equations.

Example 2.20. Consider the second-order advanced Euler differential equation

y′′(t) +
a

t2
y(ct) = 0, c ≥ 1, a > 0, t ≥ 1. (2.31)

Known oscillation criteria (1.4) and (1.5) give

a >
1
4

(2.32)

and
a ln c >

1
e
, (2.33)

respectively.
The recent result [3, Corollary 1] gives

a
(cβ − 1

β
+

1
1− a

+
cβ

1− β

)
> 1, (2.34)

where β = 1−
√

1−4a
2 and a ≤ 1/4. From Corollary 2.4, we have that (2.31) is

oscillatory if

a(1 + a ln c) >
1
4
. (2.35)

To apply Corollary 2.8, we set ρ := a ln c ≤ 1/e. Then the smaller root of the
equation λ = eρλ is

λ = −W (− ln eρ)
ln eρ

= −W (−ρ)
ρ

,

where W (·) denotes the principal branch of the Lambert function, see [6] for details.
Consequently, the oscillation criterion (2.13) becomes

−aW (−ρ)
ρ

>
1
4
,

that is,

− W (−a ln c)
ln c

>
1
4
. (2.36)

Now, we set n = 1. After simple calculations, the following conditions for oscil-
lation of (2.31), i.e.,

a

1− a
ln c >

1
e
, (2.37)

aca >
1
4
, (2.38)
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a
(

1 +
ca(ca − 1)

1− a

)
>

1
4
, (2.39)

(a− 1)W ( a
a−1 ln c)

ln c
>

1
4
, where

a

a− 1
ln c ≤ 1/e, (2.40)

result from Corollaries 2.11, 2.14, 2.16 and 2.19, respectively. A comparison of the
effectiveness of the above-mentioned criteria in terms of the required value c for a
given coefficient a = 0.23 is shown in the Table 1.

Table 1. Comparison of the strength of criteria (2.32)–(2.40) for
a given a = 0.23

criterion required c
(2.32) inapplicable
(2.33) 4.950436
(2.34) 2.274700
(2.35) 1.459467
(2.36) 1.395881
(2.37) 3.426695
(2.38) 1.436966
(2.39) 1.304194
(2.40) 1.292806

On the other hand, if we set a = 0.19 and c = 2 in (2.31), then it is easy to
verify that all criteria (2.33)−(2.40) fail. In such a case, it is interesting to compare
the length of the iteration process in particular cases corresponding to Corollaries
2.11-2.19. As can be seen from Table 2, 13 iteration steps are necessary when
applying Corollary 2.11, Corollary 2.14 requires 7 steps, while Corollaries 2.16 and
2.19 ensure the oscillation of (2.31) after the same number of iterations (6 steps).

Acknowledgements. This research was supported by the internal grant project
no. FEI-2015-22.
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