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CRITICAL CASE FOR THE VISCOUS CAHN-HILLIARD
EQUATION

LE TRONG THANH BUI, ANH NGUYEN DAO, JESÚS ILDEFONSO DÍAZ

Abstract. We prove the existence of solutions of the viscous Cahn-Hilliard
equation in whole domain when the nonlinear term in the second order diffusion

grows as uq for the critical case when N ≥ 3. Our results improve the ones in
[9, 12].

1. Introduction

In this article, we study the initial-value problem

ut = ∆[ϕ(u)− α∆u+ βut] in RN × (0, T ) := Q,

u(x, 0) = u0 in RN × {0} ,
(1.1)

where the nonlinearity ϕ satisfies the following assumptions:
(H1) ϕ ∈W 1,∞

loc (R), ϕ(0) = 0, and ϕ(s)s ≥ 0, for any s ∈ R.
(H2) There exists K > 0 such that

|ϕ(u)| ≤ K(|u|+ |u|q), (1.2)

for some q ∈ (1,∞) if N = 1, 2; or q ∈
(
1, N+2

N−2

]
if N ≥ 3.

(H3) There exists s0 > 0 such that ϕ′(s) ≥ 0, if |s| ≥ s0.
Forward-backward parabolic equations arise in a variety of applications, such as

edge detection in image processing [25], aggregation models in population dynamics
[24], and stratified turbulent shear flow [1], theory of phase transitions [4, 5, 21],
control theory in [11], etc. A different well-known equation of this type is the
Perona-Malik equation,

wt = div
( ∇w

1 + |∇w|2
)
, (1.3)

which is parabolic if |∇w| < 1 and backward parabolic if |∇w| > 1. Similarly, the
equation

ut = ∆
( u

1 + u2

)
(1.4)

is parabolic if |u| < 1 and backward parabolic if |u| > 1. Observe that in one space
dimension the above equations are formally related setting u = wx. A different
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well-known equation of application in theory of phase transitions is

ut = ∆ϕ(u) (1.5)

where the famous choice of nonlinearity ϕ(u) = u3 − u.
Clearly, forward-backward parabolic equations lead to ill-posed problems. Often

a higher order term is added to the right-hand side to regularize the equation. Two
main classes of additional terms are encountered in the mathematical literature,
which, e.g. in case of equation (1.4), (1.5), reduce to:

(i) ε∆[ψ(u)]t, with ψ′ > 0, leading to third-order pseudo-parabolic equations
(ε > 0 being a small parameter; for example, see [2, 8, 14, 20, 23, 26, 27, 32, 33, 34]);

(ii) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations (for example,
see [3, 4, 28, 31] and references therein).

Remarkably, when ψ(u) = u either of the above regularizations can be regarded
as a particular case of the viscous Cahn-Hilliard equation,

νut = ∆[ϕ(u)− α∆u+ βut] (α, β, ν > 0) , (1.6)

choosing either α = ε or β = ε; here ϕ(u) = u3 − u or ϕ(u) = u
1+u2 for equation

(1.5), whereas in general it involves a non-monotonic function.
Equation (1.6) has been derived by several authors using different physical con-

siderations (in particular, see [16, 18, 22]). It is worth mentioning the wide litera-
ture concerning both the relationship between the viscous Cahn-Hilliard equation
and phase field models, and generalized versions of the equation suggested in [16]
(and references therein). Besides, the existence results were obtained under suit-
able nonlinearity ϕ in bounded smooth domain of RN (see [9, 10, 13]). Moreover,
in the latter reference authors give us the rigorous proof of convergence to solu-
tions of either the Cahn-Hilliard equation, or of the Allen-Cahn equation, or of the
Sobolev equation, depending on the choice of the parameter α, β. Recently, in [12]
the authors gave the analysis of equation (1.6) in RN under some assumptions on
the growth of nonlinearity ϕ satisfying (H2), but not including the critical case
q = N+2

N−2 .
In light of the above considerations, by using some sharp a priori estimates for a

suitable auxiliary approximation problem, we will prove the existence of solutions
of problem (1.1) for a class of nonlinear functions ϕ satisfying the growth condition
(H2) including the critical case q = N+2

N−2 . Thus, our existence results enhance a
part of the ones of Dlotko, et al. [12]. Our existence theorem is as follows:

Theorem 1.1. Let u0 ∈ H1(RN ), and q = N+2
N−2 . Let ϕ satisfy (H1)–(H3). Then,

there exists a weak solution of problem (1.1).

Remark 1.2. Note that we do not assume the boundedness on ϕ′, see [9, (1.1)].
Thus, our results also improve the ones of Bui, et al. [9].

Before proving Theorem 1.1, we give a definition of weak solutions of (1.1).

Definition 1.3. Let α, β > 0, and let u0 ∈ H1(RN ). By a weak solution of problem
(1.1) we mean any function u ∈ C([0, T ];H2(RN )) ∩ C1([0, T ];L2(RN )) such that
ϕ(u) ∈ C([0, T ];L2(RN )), and

ut = ∆v in Q

u = u0 in RN × {0}
(1.7)
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in the sense of distribution. Here v ∈ C([0, T ];H2(RN ) ∩ H1(RN )) and for every
t ∈ [0, T ] the function v(·, t) is the unique solution of the elliptic problem

−β∆v(·, t) + v(·, t) = ϕ(u)(·, t)− α∆u(·, t) in RN ,
lim
|x|→∞

v(x, t) = 0. (1.8)

The function v is called a chemical potential.

2. Proof of Theorem 1.1

We first mention the description of our method. We start by considering the
existence of weak solutions of the viscous Cahn-Hilliard problem with Dirichlet
boundary conditions in the ball Bn, which has center at the origin and radius
n ≥ 1:

ut = ∆[ϕn(u)− α∆u+ βut] in Bn × (0, T ) =: Qn
u = ∆u = 0 on ∂Bn × (0, T )

u = u0n = u0φn in Bn × {0} ,
(2.1)

where φn(x) = φ(x/n), and φ ∈ C∞(RN ) such that φ(x) = 1 if |x| < 1/2, and
φ(x) = 0 if |x| > 1. And ϕn is just a truncated function of ϕ as in [9]:

ϕn(u) =


ϕ(u), if |u| ≤ n,
ϕ(n) + (u− n), if u > n,

ϕ(−n) + (u+ n), if u < n.

Secondly, we establish a priori estimates for those solutions of problem (2.1) being
independent of n. Finally, we shall pass to the limit as n→∞ (in a suitable way)
to get a desired result.

It is not difficult to verify that ϕn is a globally Lipschitz function, and ϕn(u)u ≥
0. A well-posed result for problem (2.1) is proved in [9, Theorem 2.1]. Thus, there
exists a unique weak solution un of problem (2.1) in Bn × (0, T ). Remind that

vn = ϕn(un)− α∆un + βunt.

Then, multiplying both sides of this equation with ∂tun and integrating over Bn ×
(0, t) yields∫

Bn

Φn(un)(x, t) dx+
α

2

∫
Bn

|∇un|2(x, t) dx+ β

∫ t

0

∫
Bn

u2
nt dx ds

=
∫ t

0

∫
Bn

vn∂tun dx ds+
∫
Bn

Φn(u0n)(x) dx+
α

2

∫
Bn

|∇u0n|2 dx, for t ∈ (0, T ),

with Φn(u) =
∫ u

0
ϕn(s)ds. Note that ∆vn = unt. Then, we obtain∫

Ω

Φn(un)(x, t) dx+
α

2

∫
Ω

|∇un|2(x, t) dx+ β

∫ t

0

∫
Ω

u2
nt dx ds

+
∫ t

0

∫
Ω

|∇vn|2 dx ds

=
∫

Ω

Φn(u0n)(x) dx+
α

2

∫
Ω

|∇u0n|2 dx

(2.2)
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Since ϕn(s)s ≥ 0 and assumption (H2), we have

0 ≤ Φn(u) =
∫ u

0

ϕn(s)ds ≤ K

2
u2 +

K(N − 2)
2N

u
2N

N−2 ,

so there is a positive constant C = C(K,N) such that∫
Bn

Φn(u0n)dx ≤ C
(∫

Bn

u2
0dx+

∫
Bn

u
2N

N−2
0 dx

)
. (2.3)

From Sobolev’s embedding theorem, we obtain

‖u0n‖
L

2N
N−2 (Bn)

≤ C(N)‖∇u0n‖L2(Bn). (2.4)

A combination of (2.4) and (2.3) implies that
∫
Bn

Φ(u0n) dx is bounded by a
constant depending only on ‖u0‖H1(RN ). Therefore, there is a positive constant
C = C(N, ‖u0‖H1(RN )) such that∫

Bn

Φn(un)(x, t) dx+
α

2

∫
Bn

|∇un|2(x, t) dx

+ β

∫ t

0

∫
Bn

u2
nt dx ds+

∫ t

0

∫
Bn

|∇vn|2 dx ds ≤ C.
(2.5)

Next, using un as a test function to the first equation of (2.1) yields

1
2

∫
Bn

u2
n(x, t) dx+

β

2

∫
Bn

|∇un|2(x, t) dx+ α

∫ t

0

∫
Bn

(∆un)2 dx ds

+
∫ t

0

∫
Bn

ϕ′n(u)|∇un|2dx ds

≤
∫
Bn

u2
0n(x, t) dx+

β

2

∫
Bn

|∇u0n|2(x, t) dx

Using (H3) yields

1
2

∫
Bn

u2
n(x, t) dx+

β

2

∫
Bn

|∇un|2(x, t) dx+ α

∫ t

0

∫
Bn

(∆un)2 dx ds

≤
∫
Bn×(0,t)∩{|un|≤s0}

−ϕ′n(u)|∇un|2dx ds+
∫
Bn

u2
0n(x, t) dx

+
β

2

∫
Bn

|∇u0n|2(x, t) dx

By (H1), there is a positive constant C0 such that |ϕ′n(s)| < C0, for any |s| ≤ s0.
Then,

1
2

∫
Bn

u2
n(x, t) dx+

β

2

∫
Bn

|∇un|2(x, t) dx+ α

∫ t

0

∫
Bn

(∆un)2 dx ds

≤ C0

∫
Bn×(0,t)∩{|un|≤s0}

|∇un|2dx ds+
∫
Bn

u2
0n(x, t) dx+

β

2

∫
Bn

|∇u0n|2(x, t) dx

By (2.5),
∫
Bn
|∇un|2dx is bounded by a constant depending only on ‖u0‖H1(RN ).

This fact and the last inequality imply that there is a positive constant, still denoted
by C = C(‖u0‖H1(RN )) such that

1
2

∫
Bn

u2
n(x, t) dx+

β

2

∫
Bn

|∇un|2(x, t) dx+ α

∫ t

0

∫
Bn

(∆un)2 dx ds ≤ C. (2.6)
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Next, we show that ‖ϕn(un)‖L2(Bn×(0,T )) is uniformly bounded for any n ≥ 1.

By (H2), it suffices to show that un ∈ L
2(N+2)

N−2 (Bn×(0, T )) is bounded by a constant
not depending on n. Indeed, from Sobolev’s embedding theorem we have for N ≥ 3,

‖un(·, t)‖
L

2N
N−2 (Bn)

≤ C1(N)‖∇un(·, t)‖L2(Bn).

From (2.6) or (2.5), there is a positive constant C = C
(
‖u0‖H1(RN )

)
such that

‖un(·, t)‖
L

2N
N−2 (Bn)

≤ C. (2.7)

Thanks to Gagliardo-Nirenberg inequality, we obtain

‖un(·, t)‖
L

2N
N−4 (Bn)

≤ C2(N)‖∇un(·, t)‖
L

2N
N−2 (Bn)

‖un(·, t)‖
L

2N
N−2 (Bn)

. (2.8)

Combining (2.7) and (2.8) yields

‖un(·, t)‖
L

2N
N−4 (Bn)

≤ C ′2(N)‖∇un(·, t)‖
L

2N
N−2 (Bn)

. (2.9)

Using Sobolev’s embedding theorem again yields

‖∇un(·, t)‖
L

2N
N−2 (Bn)

≤ C3(N)‖D2un(·, t)‖L2(Bn).

By the boundary condition, we can use the integration by parts formula to get
‖D2un(·, t)‖2L2(Bn) = ‖∆un(·, t)‖2L2(Bn). Thus,

‖∇un(·, t)‖2
L

2N
N−2 (Bn)

≤ C3(N)‖∆un(·, t)‖2L2(Bn). (2.10)

By (2.10) and (2.9), there exists a constant C > 0 not depending on n such that

‖un(·, t)‖2
L

2N
N−4 (Bn)

≤ C‖∆un(·, t)‖2L2(Bn). (2.11)

Now, it follows from the interpolation theorem that

‖un(·, t)‖
L

2(N+2)
N−2 (Bn)

≤ ‖un(·, t)‖θ
L

2N
N−4 (Bn)

‖un(·, t)‖1−θ
L

2N
N−2 (Bn)

,

with θ = N−2
N+2 .

By (2.7), from the last inequality, we obtain

‖un(·, t)‖
2(N+2)

N−2

L
2(N+2)

N−2 (Bn)

≤ C‖un(·, t)‖2
L

2N
N−4 (Bn)

(2.12)

A combination of (2.12), (2.11), and (2.6) yields∫ T

0

‖un(·, t)‖
2(N+2)

N−2

L
2(N+2)

N−2 (Bn)

dt ≤ C
∫ T

0

‖∆un(·, t)‖2L2(Bn)dt ≤ C(T,N, u0). (2.13)

Therefore, we obtain the above claim.
It remains to pass to the limit as n→∞ in the equation satisfied by un. Thanks

to the uniform estimates in (2.2), (2.5), (2.6), and (2.13), we can mimic the proof
of [9, Theorem 2.4] to get

un
∗
⇀ u in L∞((0, T );H1(RN )) , (2.14)

unt ⇀ ut in L2(Q) , (2.15)

∆un ⇀ ∆u in L2(Q), (2.16)

un → u a.e. in Q, (2.17)

up to a subsequence.
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Next, we prove that ϕn(un) converges weakly to ϕ(u) in L2(Q). In fact, we
observe that ϕn(un)→ ϕ(u) as n→∞ a.e. in Q by (2.17). Moreover, the sequence
{ϕn(un)}n≥1 is uniformly bounded in L2(Bn× (0, T )) for any n ≥ 1. Thus, there is
a subsequence (still denoted by {ϕn(un)}n≥1) such that ϕn(un) converges weakly
to ϕ(u) in L2(Q), see [17, Theorem 13.44].

Now, it suffices to show that u is a weak solution of (1.1). We write the equation
satisfied by un in the weak sense:

For any ψ ∈ C1([0, T ]; C2
c (RN )) such that ψ(., T ) = 0, we have∫

Q(ψ)

−unψt dx ds−
∫

supp(ψ)

u0n(x)ψ(x, 0) dx

=
∫
Q(ψ)

(ϕ(un)∆ψ − α∆un∆ψ + βun∆ψt) dx ds,

for any n ≥ 1 such that supp(ψ) ⊂ Bn, and Q(ψ) = supp(ψ) × (0, T ). Passing to
the limit as n→∞ in the above equation yields∫
Q(ψ)

−uψt dx ds−
∫

supp(ψ)

u0(x)ψ(x, 0)dx =
∫
Q(ψ)

(ϕ(u)∆ψ − α∆u∆ψ + βu∆ψt) dx ds.

Or, u is a weak solution of problem (1.1). This completes the proof.
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