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CRITICAL CASE FOR THE VISCOUS CAHN-HILLIARD
EQUATION

LE TRONG THANH BUI, ANH NGUYEN DAO, JESUS ILDEFONSO DIAZ

ABSTRACT. We prove the existence of solutions of the viscous Cahn-Hilliard
equation in whole domain when the nonlinear term in the second order diffusion
grows as uf for the critical case when N > 3. Our results improve the ones in
[, 12).

1. INTRODUCTION
In this article, we study the initial-value problem
uy = Alp(u) — alu + fuy] in RY x (0,7) :=Q,
u(z,0) =ug  in RY x {0},
where the nonlinearity ¢ satisfies the following assumptions:

(H1) ¢ € WL2(R), (0) = 0, and ¢(s)s >0, for any s € R.
(H2) There exists K > 0 such that

lp(u)] < K(Jul + [u]), (1.2)
for some ¢ € (1,00) if N =1,2;0r q € (1,%] if N > 3.

(H3) There exists sg > 0 such that ¢’(s) > 0, if |s| > so.

Forward-backward parabolic equations arise in a variety of applications, such as
edge detection in image processing [25], aggregation models in population dynamics
[24], and stratified turbulent shear flow [I], theory of phase transitions [4} [5], 2T],
control theory in [I1], etc. A different well-known equation of this type is the
Perona-Malik equation,

=av (1 )
e T Vw2 )
which is parabolic if |[Vw| < 1 and backward parabolic if |Vw| > 1. Similarly, the

equation
U
A L1
ut 1+ u? (14)

is parabolic if |u| < 1 and backward parabolic if |u| > 1. Observe that in one space
dimension the above equations are formally related setting v = w,. A different

(1.3)
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well-known equation of application in theory of phase transitions is

ur = Ap(u) (1.5)

where the famous choice of nonlinearity ¢(u) = u? — u.

Clearly, forward-backward parabolic equations lead to ill-posed problems. Often
a higher order term is added to the right-hand side to regularize the equation. Two
main classes of additional terms are encountered in the mathematical literature,
which, e.g. in case of equation , , reduce to:

(i) eAlp(u)]t, with ¢’ > 0, leading to third-order pseudo-parabolic equations
(e > 0 being a small parameter; for example, see [2] 8] 14} 20} 23 26, 27, [32] [33] [34]);

(ii) —eA%u, leading to fourth-order Cahn-Hilliard type equations (for example,
see [3 4 28] [3T] and references therein).

Remarkably, when ¢ (u) = u either of the above regularizations can be regarded
as a particular case of the viscous Cahn-Hilliard equation,

vur = Alp(u) — aAu + fuy] (o, B,v > 0), (1.6)

choosing either a = € or 3 = ¢; here p(u) = u® — u or (u) = 1457 for equation

, whereas in general it involves a non-monotonic function.

Equation has been derived by several authors using different physical con-
siderations (in particular, see [16] 18 [22]). It is worth mentioning the wide litera-
ture concerning both the relationship between the viscous Cahn-Hilliard equation
and phase field models, and generalized versions of the equation suggested in [16]
(and references therein). Besides, the existence results were obtained under suit-
able nonlinearity ¢ in bounded smooth domain of RY (see [9, [10} [13]). Moreover,
in the latter reference authors give us the rigorous proof of convergence to solu-
tions of either the Cahn-Hilliard equation, or of the Allen-Cahn equation, or of the
Sobolev equation, depending on the choice of the parameter «, 3. Recently, in [12]
the authors gave the analysis of equation in RN under some assumptions on

the growth of nonlinearity ¢ satisfying (H2), but not including the critical case
q= 55

In light of the above considerations, by using some sharp a priori estimates for a
suitable auxiliary approximation problem, we will prove the existence of solutions
of problem for a class of nonlinear functions ¢ satisfying the growth condition
(H2) including the critical case ¢ = % Thus, our existence results enhance a

part of the ones of Dlotko, et al. [I2]. Our existence theorem is as follows:

Theorem 1.1. Let ug € H'(RY), and ¢ = Y+2. Let ¢ satisfy (H1)-(H3). Then,
there exists a weak solution of problem (|1.1)).

Remark 1.2. Note that we do not assume the boundedness on ¢, see [9, (1.1)].
Thus, our results also improve the ones of Bui, et al. [9].

Before proving Theorem [1.1} we give a definition of weak solutions of (|1.1)).

Definition 1.3. Let o, 3 > 0, and let ug € H'(RY). By a weak solution of problem
(1.1) we mean any function u € C([0,T]; H*(RY)) N C1([0, T); L*(RY)) such that
¢(u) € C([0,T]; L*(RY)), and

up = Av  in Q

u=muo in RN x {0} (L.7)
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in the sense of distribution. Here v € C([0,T]; H2(RY) N H'(RY)) and for every
t € [0,T] the function v(-,t) is the unique solution of the elliptic problem
—BAV(-,t) + (-, 1) = p(u)(-,t) — aAu(-,t) in RV,
lim v(z,t) =0.

|| — o0

(1.8)
The function v is called a chemical potential.

2. PROOF OF THEOREM [L.1]

We first mention the description of our method. We start by considering the
existence of weak solutions of the viscous Cahn-Hilliard problem with Dirichlet
boundary conditions in the ball B,, which has center at the origin and radius
n>1:

ur = Afpp(u) — aAu+ Buy] in B, x (0,T) =: Qp
u=Au=0 ondB, x (0,T) (2.1)
U= Upp = UgPy in By X {0}7
where ¢,(z) = ¢(x/n), and ¢ € C°(RY) such that ¢(x) = 1 if |z| < 1/2, and
¢(x) = 01if |z| > 1. And ¢, is just a truncated function of ¢ as in [9]:
o(u), if |u| <n,
on(u) =< o(n)+ (u—mn), ifu>n,
o(—n) + (u+mn), fu<n.
Secondly, we establish a priori estimates for those solutions of problem ({2.1]) being
independent of n. Finally, we shall pass to the limit as n — oo (in a suitable way)
to get a desired result.
It is not difficult to verify that ¢, is a globally Lipschitz function, and ¢, (u)u >

0. A well-posed result for problem ([2.1)) is proved in [9, Theorem 2.1]. Thus, there
exists a unique weak solution u,, of problem (2.1) in B,, x (0,T). Remind that

Up = @n(Un) — @A, + Bup.

Then, multiplying both sides of this equation with d;u,, and integrating over B,, X
(0,1) yields

t
/ (I)n(un)(x,t)dx—i—g/ \Vun|2(x,t)dx+ﬁ// u?, dz ds
B 2 /B, 0/ B,

t
:// Unatund:cds—F/ @n(uo,L)(:c)dx—i-g/ |Vugn|*dz, fort € (0,T),
0B, B, 2 /B,

with @, (u) = fou ©n(s)ds. Note that Av, = u,;. Then, we obtain

t
/@,L(un)(x,t)dac—l—%/ |Vun|2($,t)dx—|—ﬂ// u?, dr ds
) Q 0Ja

<

¢
+// |V, |* de ds (2.2)
0/e
« 2
= [ O, (uon)(x)dz+ = | |Vug,|” dx
Q 2 Jo
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Since ¢, (s)s > 0 and assumption (H2), we have

“ K K(N —2) 2~
< (I)n = n ds < — 2 = anrr BRE)
0<d,(u) /030(5)5_2u+ SN uN-2
so there is a positive constant C' = C(K, N) such that
2N
/ D, (ugp )dr < C(/ uddx +/ ué\"de). (2.3)
B, B, B,
From Sobolev’s embedding theorem, we obtain
Ju Onum an < OV |Vatonl 25, (24

A combination of (2.4) and implies that [, ®(ugn)dz is bounded by a
constant depending only on HuoH i rvy. Therefore, there is a positive constant
C = C(N, |luo| g1 (rvy) such that

/cp( )(xt)d:ch(;/ (V|2 (x, 1) da

—|—ﬂ// untdxds—l—// |V, |* deds < C.

Next, using u,, as a test function to the first equation of . 2.1]) yields

1
5/ 2 (z,t) daz—f—ﬁ/ |V, | (z, t dﬂc—l—a// (Auy,)? dz ds
// ol (W)|Vuy,|*dx ds

§/ u%n(x,t)dx—i—g/ |Vuon|? (2, t) da

n n

Using (H3) yields

1 t
f/ ui(m,t)daz—i—@/ |Vun\2(x,t)dx+a// (Auy,)? dz ds
2B, 2 /g, 0/B,

—@;(u)|Vun|2dxds+/ ud, (x,t) dx

n

<

/an(o,t)n{lunlgs:o}
+ é/ |vu0n|2(x7t) dx
2 JB,

By (H1), there is a positive constant Cy such that |¢] (s)| < Co, for any |s| < so.
Then,

1 t
7/ ui(amt)dx—&—é/ |V, |? (x,t) d;zc—l—a// (Auy,)? dz ds
2 /B, 2 /B, 0/B,
< C'O/ |Vu,|?dz ds —|—/ ud,, (w,t) do + é/ |Vuon|?(x,t) dx
B x(0,0)0{|un|<so} B 2 /B,
By (2.5), [, |Vun[*dz is bounded by a constant depending only on [ugl| g1 ().

This fact and the last inequality imply that there is a positive constant, still denoted
by C = C(||luo|| g1 (m~y) such that

1 ¢
= / u? (v, t) do + 5 / |V, |?(z,t) de + o // (Aup)?drds < C.  (2.6)
2 Bn 2 Bn 0 Bn

n
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Next, we show that |¢n (un)|lz2(B, x(0,7)) is uniformly bounded for any n > 1.

By (H2), it suffices to show that w,, € L (Bn%x(0,7)) is bounded by a constant
not depending on n. Indeed, from Sobolev’s embedding theorem we have for N > 3,

l[un ()| o < CLN)[Vun (- D) L2(8,)-

I #2% 5,,
From (2.6) or (2.5)), there is a positive constant C' = C (||uo || zr1m~)) such that
[ ()| 2n <C. (2.7)

I ) <
Thanks to Gagliardo-Nirenberg inequality, we obtain

. < . : . .
fun o), 2, ) S CoONTun 0N, g, ) B g, o (28)
Combining (2.7) and (2.8)) yields
!
a0, 4, 4y ) < NIV Dl g, (29)

Using Sobolev’s embedding theorem again yields

2
”vu"("t)HLNZ%(B,,) < C3(N)[|D%un (- 1) L2(B,)-

By the boundary condition, we can use the integration by parts formula to get
D2 (s )|, = 1 80n (-, 1) 2555, Thus,

IIVun(‘»t)lli%(Bn) < G3(N)|Aun (- 1)1 72(5,)- (2.10)
By (2.10) and (2.9)), there exists a constant C' > 0 not depending on n such that
2 2
Jun DI g, < Ol O s, (211)

Now, it follows from the interpolation theorem that

) < e Cy1—6
[ (5 2qvs2 By S [[un( »t)IIL%(Bn)HUn( O e, 5.
with 0 = %—;g
By (2.7), from the last inequality, we obtain
2(N+2) )
N—2
||Un(,t)| L2(]{]v_+22) < C||Un(-,t)HLA$J_V4 (B.) (2.12)

n

A combination of (2.12)), (2.11)), and (2.6]) yields
T 2(N+2) T
/ Hun(ﬂt)l IZ(?V2+2) dt < C/ HAUTL('vt)H%%B )dt < C(T7 N,UO). (2'13)
0 L™N=2 (B,) 0 "

Therefore, we obtain the above claim.
It remains to pass to the limit as n — oo in the equation satisfied by u,. Thanks

to the uniform estimates in (2.2)), (2.5), (2.6]), and (2.13)), we can mimic the proof
of [9, Theorem 2.4] to get

u, —u in L=((0,T); HY(RY)),
Upt — uy  in L2(Q),
Au,, — Au  in L*(Q),
Uy, — u a.e. in Q,

up to a subsequence.
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Next, we prove that o, (u,) converges weakly to ¢(u) in L?(Q). In fact, we
observe that ¢, (u,) — ¢(u) asn — oo a.e. in @ by (2.17). Moreover, the sequence
{on () n>1 is uniformly bounded in L?(B,, x (0,T)) for any n > 1. Thus, there is
a subsequence (still denoted by {¢y, (un)}n>1) such that ¢, (u,) converges weakly
to p(u) in L?(Q), see [I7, Theorem 13.44].

Now, it suffices to show that u is a weak solution of (L.1). We write the equation
satisfied by wu,, in the weak sense:

For any v € C*([0,T]); C3(RY)) such that ¥(.,T) = 0, we have

/ —upty drds — / Uon (2)(x,0) dx
Q) supp ()

= / (o(un)AY — aAu, A + Bun, Athy) dx ds,
Q)

for any n > 1 such that supp(¢) C By, and Q(¢)) = supp(¥)) x (0,T). Passing to
the limit as n — oo in the above equation yields

/ —upy drds — / uo(x)Y(z,0)de = / (p(u)Atp — aAulAy) + Sulip:) dx ds.
QW) supp (%) Q)

Or, u is a weak solution of problem (|1.1)). This completes the proof.
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