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Abstract. In this article, we study the approximate controllability and home-

genization results of a semi-linear elliptic problem with Robin boundary con-

dition in a periodically perforated domain. We prove the existence of minimal
norm control using Lions constructive approach, which is based on Fenchel-

Rockafeller duality theory, and by means of Zuazua’s fixed point arguments.

Then, as the homogenization parameter goes to zero, we link the limit of the
optimal controls (the limit of fixed point of the controllability problems) with

the optimal control of the corresponding homogenized problem.

1. Introduction

Periodic homogenization (without holes) has been studied during late 1960’s,
we refer to the reader the classical works of Spagnolo [24], Bensoussan et al. [1]
and Sánchez-Palencia [23]. For the further developments concerning the perforated
domains and periodic structures, we refer to Lions [19], Cioranescu and Saint Jean
Paulin [5]. Let us now describe the setting of the problem.

Let Ω be a bounded, connected open set in RN , with smooth boundary ∂Ω. From
the geometrical point of view, we shall consider the periodic structures obtained by
removing periodically from Ω, with period εY (where Y is a given hyperrectangle
in RN ). The reference hole T which has been appropriately rescaled and is strictly
included in Y . Precisely, let Y = (0, l1) × · · · × (0, lN ) be the reference cell, with
l1, . . . , lN > 0. The reference hole T is an open set such that T b Y . We denote
by ε a positive parameter taking its values in a decreasing positive sequence which
tends to zero. Set

τ(εT ) = {ε(k(l) + T ), k ∈ ZN , k(l) = (k1l1, . . . , kN lN )}.
Assume that for any ε there exists a subset Kε of ZN such that

Tε = Ω ∩ τ(εT ) = ∪k∈Kε

(
ε(k(l) + T )

)
.

Then for any ε > 0, we define the perforated domain Ωε by

Ωε = Ω \ τ(εT )
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and thus we obtain
∂Ωε = ∂Ω ∪ ∂Tε.

Hence, Ωε is a periodic domain with periodically distributed holes of the size of the
same order as the period. We introduce two nonempty sub-domains of Ω, which
are the control region ω and the observable region S, where the error between the
obtained and the desired state has to be minimized, respectively.

We let ω and S to be two open subsets of Ω, with S compactly contained in ω
and set

ωε = ω ∩ Ωε, Sε = S ∩ Ωε.
For the constants 0 < αm ≤ αM , let A(y) = (aij(y))1≤i,j≤N be N × N matrix
valued function lying in the space M(αm, αM ,Ω), which is defined as:

M(αm, αM ,Ω)

:=


A ∈ L∞(Ω)N×N , a.e. on Ω,
A is Y -periodic,(
A(x)λ, λ

)
≥ αm(|λ|2) and |A(x)λ| ≤ αM |λ|, ∀λ ∈ RN .

(1.1)

Let us denote, for any ε > 0,

Aε(x) = A
(x
ε

)
a.e. in Ω.

Then for each ε > 0, we consider the state equation

−div(Aε∇yε(vε)) + f(yε(vε)) = χωεvε in Ωε,

(Aε∇yε(vε)) · nε + hεyε(vε) = εgε on ∂T ε,

yε(vε) = 0 on ∂Ω,
(1.2)

where f is real valued continuous function for which we assume that

f(0) = 0 and ∃γ > 0, 0 ≤ f(s)
s
≤ γ, ∀s ∈ R \ {0} (1.3)

and h is a real, positive number, gε(x) = g(xε ), where g is Y -periodic function in
L2(∂T ), vε is the control supported in ωε and yε(vε) is the associated state. Let us
now consider the control problem to be addressed.

Control Problem. Given ε > 0, α > 0, y1ε ∈ L2(Sε), find a control vε with
support in ωε such that

‖yε(vε)|Sε
− y1ε‖0,Sε

≤ α, (1.4)
where yε(vε)|Sε

is just the restriction of yε(vε) to Sε.
By the approximate controllability (1.4), we mean that the L2-distance between

the obtained state observed on Sε
(
yε(vε)|Sε

)
and the desired state (y1ε) will be

approximated by the given prescribed precision α.
A real life application of the above control problem (in a fixed domain) is the

following: consider a polluted sand filter occupying some domain Ω (with a fixed
flow rate of pollutant). In Ω there is thus a granular / porous medium where,
once the situation is idealized, the parameter ε represents both the characteristic
pore length and the distance between adjacent grains. We add a suitable chemical
reactant with concentration v (a control), to the control region ω ⊆ Ω of the filter.
Let y(v) be the resulting concentration of the pollutant (which satisfies some elliptic
boundary value problem in Ω). The problem is to find the optimal concentration
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of reagent to control the contaminant (altering its chemical state) throughout the
region Ω.

In this article, we first study for each ε > 0, the approximate internal control-
lability of the ε-problem (1.2) with the Robin boundary condition, in a periodi-
cally perforated domain. Among these controls, we obtain the optimal one, which
minimizes the given cost-functional, see for instance [20, 21]. We refer [10] for
the similar result in a fixed domain and, [8] in a perforated domain respectively.
The existence of the optimal control is established by means of a combination of
Fenchel-Rockefellar duality theory [22] and the Zuazua’s fixed point argument [27],
introduced in the context of wave equation. Later this technique has been adapted
in Fabre et al. [14] to deal with the semilinear heat equation.

Our second main result consists of proving the convergence of the optimal con-
trols associated to the linearized ε-problem of (1.2). In the process, we pass to the
limit in the cost-functional, homogenize the state and the adjoint equation. We
end with identifying the weak limit v0 of the optimal controls v∗ε with the optimal
element of the homogenized problem, which minimizes the limit cost-functional.
Using the techniques by Zuazua [28], we observe that the minimizers of the cost-
functionals are uniformly bounded. Thus we were able to apply the results of
Donato and Näbil [11] to obtain the weak convergence of the minimizers. This
allows us to pass to the limit in the cost-functional. The homogenization results
using the periodic unfolding method, for the equations of the form (1.2) are given
by Cioranescu and Donato [3, Section 6]. However, here we use the classical en-
ergy method introduced by Tartar [25, 26] for the homogenization. It consists of
constructing the suitable test functions that are used in the variational problems.
Such test-functions were also used in [6], where the authors have studied the ho-
mogenization of certain nonlinear models involving chemical reactive flows.

Approximate internal control problems were introduced by Lions [16, 17], also
see [28]. The approximate controllability and homogenization results for the para-
bolic equations has been studied by Donato and Näbil [11, 12] for the periodically
perforated domain. Later, Conca et al. studied the L2-approximate controllability
and homogenization of an elliptic boundary value problem in [9] for a fixed domain
and, in [8] for a perforated domain with Neumann conditions on the boundary of
holes. Then it was natural to look at the same problem in a periodically perforated
domain. We have considered this problem with Robin boundary conditions on the
boundary of holes, which is even more general condition. Thus our paper generalizes
these results for the elliptic equations in a periodically perforated domain.

The organization of this paper is as follows: In Section 2, we introduce certain
notations, a functional space, recall extension operators and some convergence re-
sults of the solutions in a periodically perforated domain. In subsection 2.1, we
linearize the problem (1.2) and introduce the adjoint problem of the linearized one.
In subsection 2.2, using Fenchel-Rockafellar’s duality theory we obtain an expres-
sion for optimal control, in terms of dual variable. In Section 3, we state two main
results of the paper. In Section 4, we prove our first main result Theorem 3.1 and
the second main result, Theorem 3.3 is proved in Section 5.

2. Preliminaries

In this section, we recall some definitions, lemmas and other preparatory results
to be used in the sequel. First we mention certain notation:
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• Y ∗ = Y \ T .
• |E| is the Lebesgue measure of the measurable set E.
• θ = |Y ∗|/|Y | the proportion of the material.
• MY (v) = the mean value of v over the measurable set Y .
• χE is the characteristic function of the set E.
• δE is the Dirac mass concentrated on the set E.
• ũ is the extension by zero on E of any function u defined on Eε = E ∩Ωε.
• (nε) = (niε)

N
i=1 the unit external normal vector with respect to Y \T or Ωε.

• 〈·, ·〉E denotes the inner product 〈·, ·〉L2(E).
• ‖ · ‖0,E , ‖ · ‖1,E , represents the L2 and H1-norms defined over the set E

respectively.
The constants at the various places are denoted by C, which are independent of ε.
Let us recall that

χΩε ⇀ θ = |Y ∗|/|Y | weak∗ in L∞(Ω).

Let us now introduce the functional space

V ε = {v ∈ H1(Ωε) : v = 0 on ∂Ω},
equipped with norm ‖v‖V ε := ‖∇v‖[L2(Ωε)]N .

The weak formulation of (1.2) is: find yε ∈ Vε, such that∫
Ωε

Aε∇yε∇ϕdx+
∫

Ωε

f(yε)ϕdx+ hε

∫
∂Tε

yεϕdσ(x)

=
∫
ωε

vεϕ+ ε

∫
∂Tε

gεϕdσ(x), for all ϕ ∈ V ε.
(2.1)

In the next lemma, we introduce a linear extension operator on H1(Y ∗) and V ε.

Lemma 2.1 ([4]). For any ε > 0, we obtain
(a) There exist an extension operator P ∈ L

(
H1(Y ∗);H1(Y )

)
such that

‖∇(Pϕ)‖[L2(Y )]N ≤ C‖∇ϕ‖[L2(Y ∗)]N , for all ϕ ∈ H1(Y ∗).

(b) There exists an extension operator P ε ∈ L(V ε, H1
0 (Ω)) such that

(i) P εu = u in Ωε,
(ii) ‖P εu‖L2(Ω) ≤ C‖u‖L2(Ωε),
(iii) ‖∇P εu‖[L2(Ω)]N ≤ C‖∇u‖[L2(Ωε)]N .

Note that Lemma 2.1 provides a Poincaré inequality in V ε with a constant
independent of ε, that is

‖u‖V ε ≤ C‖∇u‖[L2(Ωε)]N .

Let us consider the elliptic boundary value problem
−div(Aε∇uε) = f in Ωε,

(Aε∇uε) · nε = 0 on ∂T ε,

uε = 0 on ∂Ω.
(2.2)

Now we recall the homogenization results for (2.2), its proof is available in [4].

Theorem 2.2. Let f ∈ L2(Ω). Under the hypotheses (1.1)-(1.3), the solution uε
of (2.2) satisfies

(i) P εuε ⇀ u weakly in H1
0 (Ω),
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(ii) ˜(Aε∇uε) ⇀ (A0∇u) weakly in [L2(Ω)]N ,
where u is the solution of the problem

−div(A0∇u) = θf in Ω,
u = 0 on ∂Ω,

and A0 is the same matrix as obtained in [4].

Remark 2.3 ([4, Theorem 2]). The homogenized operator A0 and the limit func-
tion u do not depend on the extension operators.

2.1. Linearized version and the adjoint problem. In this section we linearize
the nonlinear problem (1.2) and also introduce the adjoint problem of (1.2). It is
very useful to follow a dual approach introduced by Lions [17]. We conclude this
section by finding an expression for optimal control in terms of dual variable.

We assume that f ∈ C1(R) and define the function

p(s) :=

{
f(s)/s if s 6= 0,
f ′(0) if s = 0.

(2.3)

The assumptions on f (see (1.3)), implies that

p ∈ C0(R) and 0 ≤ p(s) ≤ γ, for all s ∈ R. (2.4)

To the function p, we associate the linearized problem

−div(Aε∇yε(z, vε)) + p(z)yε(z, vε) = χωε
vε in Ωε,

(Aε∇yε) · nε = εgε − hεyε on ∂Tε,

yε(z, vε) = 0 on ∂Ω.
(2.5)

Let us define the operators Lε and L∗ε as follows

Lε : L2(ωε)→ L2(Sε) : (vε 7→ yε(z, vε)|Sε
) (2.6)

L∗ε : L2(Sε)→ L2(ωε) : (ϕ1ε 7→ ϕε|ωε), (2.7)

where ϕε = ϕε(z, ϕ1ε) satisfies the adjoint of (2.5), which is given by

−div(tAε∇ϕε(z, ϕ1ε)) + p(z)ϕε(z, ϕ1ε) = δSε
ϕ1ε in Ωε,

(tAε∇ϕε) · nε = −hεϕε on ∂Tε,

ϕε(z, ϕ1ε) = 0 on ∂Ω.

(2.8)

Now we shall give a detailed calculation for the adjoint (2.8) of the problem
(2.5). Multiplying (2.5) by ϕε ∈ Vε and integrating by parts, we obtain

−
∫
∂Ω

(Aε∇yε) · nϕε −
∫
∂Tε

(Aε∇yε) · nεϕε

+
∫

Ωε

Aε∇yε∇ϕε +
∫

Ωε

p(z)yεϕε

=
∫
ωε

vεϕε .

(2.9)

By the very definition of the operator L∗ε we see that the right side in this identity
is nothing but the duality pairing 〈vε, L∗εϕ1ε〉ωε

. Thus, the right hand side of (2.9)
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can also be written as

〈vε, L∗εϕ1ε〉ωε
= 〈Lεvε, ϕ1ε〉Sε

=
∫
Sε

yεϕ1ε = 〈δSε
, yεϕ1ε〉Ωε

.

Since ϕε ∈ Vε, a new integration by parts in (2.9) yields:∫
∂Tε

(hεyε − εgε)ϕε +
∫

Ωε

∇yε(tA
ε∇ϕε) +

∫
Ωε

p(z)yεϕε = 〈δSε , yεϕ1ε〉Ωε ,

which can also be written as∫
∂Tε

hεϕεyε −
∫
∂Tε

εgεϕε +
∫
∂Tε

(tAε∇ϕε) · nεyε +
∫
∂Ω

(tAε∇ϕε) · nyε

−
∫

Ωε

div(tAε∇ϕε) · yε +
∫

Ωε

p(z)yεϕε

= 〈δSε
, yεϕ1ε〉Ωε

.

Comparing the coefficients of yε both sides, we obtain the adjoint problem (2.8).

2.2. Optimal control. In this section, we obtain the optimal control by using the
Fenchel-Rockafellar’s duality theory, and we also establish an interesting relation
between the optimal control and a solution of the adjoint (2.8).

We define the cost functional as follows

Iεz (vε) =

{
1
2‖vε‖

2
0,ωε

, if ‖yε(z, vε)|Sε
− y1ε‖0,Sε

≤ α,
+∞ otherwise.

(2.10)

Let us decompose Iεz (v) as

Iεz (vε) = F (vε) +G(Lεvε),

where

F (vε) =
1
2
‖vε‖20,ωε

and G(Lεvε) =

{
0 if ‖yε|Sε

− y1ε‖0,Sε
≤ α,

∞ otherwise.
(2.11)

Now we state a lemma, which gives the existence of a unique control minimizing
the above cost functional (2.10).

Lemma 2.4. For a given z ∈ L2(Ωε), let Iεz (v∗ε (z)) (defined by (2.10)), be a cost
functional associated to the linearized problem (2.5). Then by classical linear control
theory (see [18]), it is well known that there exists a unique minimal norm control
v∗ε (z), which minimizes Iεz (vε) in the sense that

Iεz (v∗ε (z)) = min
vε∈L2(ωε)

Iεz (vε) < +∞. (2.12)

Let us denote by y∗ε := yε(z, v∗ε (z)) as the corresponding solution of (2.5). We
are now in a position to define the operator Fε:

Fε : L2(Ωε)→ L2(Ωε); z 7→ yε(z, v∗ε (z)). (2.13)

Let zε be a fixed point of the map Fε. The existence of a fixed point is proved
in the Theorem 3.1. Then the limit v∗0(z0) of the optimal controls v∗ε (zε) is the
minimal norm control, among all the controls v satisfying

‖y0(z0, v)|S − y1‖0,S ≤
α√
θ
.
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The duality theory of Fenchel and Rockafellar [13, 22] shows that the minimization
problem (2.12) is equivalent to minimizing another non-quadratic functional,

Jεz (ϕ1ε) =
1
2

∫
ωε

|ϕε|2dx+ α‖ϕ1ε‖0,Sε
−
∫
Sε

y1εϕ1εds. (2.14)

Thus we obtain
inf

vε∈L2(ωε)
Izε (vε) = − inf

ϕ1ε∈L2(Sε)
Jεz (ϕ1ε), (2.15)

where
Jεz (ϕ1ε) = F ∗(L∗εϕ1ε) +G∗(−ϕ1ε),

F ∗(L∗εϕ1ε) =
1
2
‖ϕε(z, ϕ1ε)‖20,ωε

,

G∗(L∗εϕ1ε) = α‖ϕ1ε‖0,Sε
+ 〈ϕ1ε, y1ε〉Sε

,

(2.16)

and F ∗, G∗ are the conjugate functions of F and G respectively. We have

Jεz (ϕ1ε) =
1
2
‖ϕε(z, ϕ1ε)‖20,ωε

+ α‖ϕ1ε‖0,Sε
− 〈ϕ1ε, y1ε〉Sε

. (2.17)

From the strict convexity of Jεz , we obtain ϕ∗1ε(z) ∈ L2(Sε) is the unique optimal
element which minimizes Jεz (ϕ1ε) over L2(Sε). Let us denote ϕ∗ε := ϕε(z, ϕ∗1ε), the
solution of (2.8)(with ϕ1ε = ϕ∗1ε). It is well known that the duality theory provides
the extremal relations, which the optimal controls satisfy, namely:

F (v∗ε (z)) + F ∗(L∗εϕ
∗
1ε(z))− 〈L∗εϕ∗1ε(z), v∗ε (z)〉ωε

= 0,

G(Lεv∗ε (z)) +G∗(−ϕ∗1ε(z)) + 〈ϕ∗1ε(z), Lεv∗ε (z)〉Sε
= 0.

(2.18)

With the help of the extremal relations satisfied by optimal controls, we derive the
desired relation:

v∗ε (z) = ϕε(z, ϕ∗1ε(z))|ωε
. (2.19)

3. Statements of main results

In the first main result, we obtain the fixed point of the operator Fε defined
by (2.13) by using the Zuazua’s fixed point argument [27]. Hence we obtain the
existence of the optimal control for our ε-problem (2.5), which minimizes the cor-
responding cost-functional (2.10). This theorem will be proved in Section 4.

Theorem 3.1. Assume that for given ε > 0, Aε ∈M(αm, αM ,Ω) (see (1.1)). Let
f ∈ C1(R) be a real valued function satisfying (1.3). Then the operator Fε, defined
by (2.13) has at least one fixed point zε ∈ L2(Ωε). Let v∗ε (zε) be the optimal control
minimizing the functional Iεzε

, given by (2.10). Then the fixed element zε, satisfies
the equation:

zε = y∗ε (zε, v∗ε (zε)),
where y∗ε (zε, v∗ε (zε)) is the state solution of the problem (1.2).

Below we state the second main result of this paper, concerning the homoge-
nization of state and adjoint state equations and the convergence of the optimal
controls, which will be proved in Section 5. In the following, we shall need certain
hypotheses:

(H1) If h = 0 and g ≡ 0, we obtain uniform (with respect to ε) Poincaré inequal-
ity in Vε.

(H2) Given the sequence {y1ε} ⊂ L2(Sε), we assume that

y1ε → y1, L2(S)-strongly. (3.1)
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(H3) For any sequence {ϕ1ε} ⊂ L2(Sε), we obtain
ϕ̃1ε

θ
⇀ ϕ1 in L2(S)-weakly.

Remark 3.2. Hypothesis (H1) is essential in order to give a-priori estimates in
H1(Ωε). However if we add a zero order term in equation (1.2), we do not need it,
also see Cioranescu et al. [3, Section 6]. The hypothesis (H2) ensures the inequality
‖ϕ∗1ε‖0,Sε

≤ C (ϕ∗1ε is the minimizer of the cost (2.14)) and the convergence of
approximate control inequality (1.4). Moreover (H2) and (H3) are needed, in order
to pass to the limit in the adjoint equation (2.8) and in the cost functional (2.14),
as ε→ 0.

Since we are interested here in studying the asymptotic behaviour of optimal
controls, it is natural to ask a question: whether the limit of the optimal controls
v∗ε , is the same as the the optimal control associated to the homogenized problem
(3.5), given below? The following theorem gives a positive answer to this question.

Theorem 3.3. Let us assume that the hypotheses of Theorem 3.1 and (H1)–(H3)
hold. Then there exists z0 ∈ L2(Ω), which is the weak limit of the fixed points {zε}
(obtained in Theorem 3.1). Moreover, there exists v0 ∈ L2(ω) which is the weak
limit of the sequence of optimal controls {v∗ε (zε)} (identified in Theorem 3.1).

Further we obtain
v0 = v∗0(z0),

and up to a subsequence

P εyε(zε, v∗ε (zε)) ⇀ y0(z0, v0) H1
0 (Ω)-weakly, as ε→ 0,

where v∗0(z0) is the minimal norm control among all the controls v satisfying

‖y0(z0, v)|S − y1‖0,S ≤
α√
θ
,

with y0(z0, v) being the solution of the homogenized system

− θ div(A0∇y0(z0, v)) + θf(y0(z0, v))

= θχωv +
|∂T |
|Y |
M∂T (g)− h |∂T |

|Y |
y0(z0, v) in Ω,

y0(z0, v) = 0 on ∂Ω.

(3.2)

The homogenized matrix is

A0 = (a0
ij) =

1
|Y |

(
aji + ajk

∂χi
∂yk

)
, θ =

|Y ∗|
|Y |

, (3.3)

and χi satisfy the equation

−div
(
tA
ε∇(χi + yi)

)
= 0 in Y ∗,(

tA
ε∇(χi + yi)

)
· nε = 0 on ∂T,

χi is Y -periodic,

MY ∗(χi) = 0.

(3.4)

Moreover the adjoint equation (2.8) can also be homogenized as

−θ div(tA0∇ϕ0) + θp(z0)ϕ0 = θδSϕ1 − h
|∂T |
|Y |

ϕ0 in Ω,

ϕ0 = 0 on ∂Ω,
(3.5)
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where (t
A0
)

=
1
|Y |

(
aij + aik

∂χ̂j
∂yk

)
, (3.6)

and χ̂j satisfy the equation

−div
(
Aε∇(χ̂j + yi)

)
= 0 in Y ∗,(

Aε∇(χ̂j + yi)
)
· nε = 0 on ∂T,

χ̂j is Y -periodic,

MY ∗(χ̂j) = 0.

(3.7)

Let ϕ∗0 := ϕ0(z0, ϕ
∗
1) be the solution of homogenized adjoint equation associated

with ϕ1 = ϕ∗1, where

ϕ∗1 = argmin
(θ

2

∫
ω

|ϕ0|2dx+ α
√
θ‖ϕ1‖0,S − θ

∫
S

y1ϕ1ds
)
.

Then the representation of the optimal control v∗0(z0) in terms of this dual variable
ϕ∗0 is v∗0 = θ(ϕ∗0)|ω.

Remark 3.4. We refer to [11, Theorem 6] for the homogenization results of the
parabolic equations.

4. Proof of Theorem 3.1

Proof. Let ϕ ∈ Vε be a test function in (2.8), the variational formulation is given
by: ∫

Ωε

(tAε∇ϕε)∇ϕ+
∫

Ωε

p(z)ϕεϕ+ hε

∫
∂Tε

ϕεϕ =
∫
Sε

ϕ1εϕ. (4.1)

Let zn → z0 in L2(Ωε), as n→∞ and denote ϕε,n = ϕε(zn). Using ϕε,n as a test
function in (2.8) (written for ϕε = ϕε,n), since h is a positive real number, using
the regularity of Aε and a property of the linearized function p, we obtain

αm‖∇ϕε‖2[L2(Ωε)]N ≤ |ϕε,n‖0,Ωε
|‖ϕ1ε‖0,Sε

. (4.2)

Again using Poincaré’s inequality on the right hand side,

αm‖ϕε,n‖21,Ωε
≤ ‖ϕε,n‖1,Ωε‖ϕ1ε‖0,Sε .

This gives
‖ϕε,n‖1,Ωε

≤ C, (4.3)
where the constant C depends on the ellipticity constant αm, on trace, Poincaré
constant, but independent of ε. Thanks to (4.3), up to a subsequence (in n), we
obtain

ϕε,n ⇀ ϕε,0 Vε -weakly,

ϕε,n ⇀ ϕε,0 L2(Ωε) -strongly.
(4.4)

To pass to the limit in the variational formulation (4.1) (as n → ∞), let ϕ ∈ Vε,
and consider the following:(∫

Ωε

p(zn)ϕε,nϕdx−
∫

Ωε

p(z0)ϕε,0ϕdx
)

+ hε
(∫

Ωε

ϕε,nϕdx−
∫

Ωε

ϕε,0ϕdx
)
.

Since ϕε,n → ϕε,0, L
2(Ωε)-strongly, as n→∞, therefore it suffices to consider the

limit of first term only.∫
Ωε

p(zn)ϕε,nϕdx−
∫

Ωε

p(z0)ϕε,0ϕdx
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=
∫

Ωε

p(zn)(ϕε,n − ϕε,0)ϕdx+
∫

Ωε

(
p(zn)− p(z0)

)
ϕε,0ϕdx.

Now p(zn) is bounded in L∞(Ωε), so we obtain

p(zn) ⇀ p(z0), L∞(Ωε) -weakly∗. (4.5)

This gives us,∫
Ωε

p(zn)ϕε,nϕdx→
∫

Ωε

p(z0)ϕε,0ϕdx, for all ϕ ∈ Vε. (4.6)

Thus (4.5) and (4.6) shows that

p(zn)ϕε,n → p(z0)ϕε,0 V ∗ε -weakly (as n→∞). (4.7)

Now we shall show that the convergence (4.7) is actually V ∗ε -strong (as n→∞).
Let ϕ ∈ Vε and consider the following:∣∣∣ ∫

Ωε

p(zn)ϕε,nϕdx− p(z0)ϕε,0ϕdx
∣∣∣

≤
∣∣∣ ∫

Ωε

p(zn)(ϕε,n − ϕε,0)ϕdx
∣∣∣+
∣∣∣ ∫

Ωε

(
p(zn)− p(z0)

)
ϕε,0ϕdx

∣∣∣. (4.8)

Let us first evaluate the norm estimate of the first term on the right hand side of
(4.8). We consider the following:∣∣∣ ∫

Ωε

p(zn)(ϕε,n − ϕε,0)ϕdx
∣∣∣ ≤ ‖p(zn)‖Lp1 (Ωε) · ‖ϕε,n − ϕε,0‖Lp2 (Ωε)‖ϕ‖Lp3 (Ωε).

Observe that ‖p(zn)‖Lp1 (Ωε) ≤ γmeas(Ωε)1/p1 . We choose p1 = N, p2 = p3 = 2N
N−1 ,

for N ≥ 2; otherwise p1 = p3 = 4 and p2 = 2. Thanks to the choice of p2, the
injection H1(Ωε) ↪→ L2(Ωε) is compact and we obtain

‖ϕε,n − ϕε,0‖Lp2 → 0, as n→∞.
Note that the injection i from Vε ↪→ Lp3(Ωε) is continuous, so

‖ϕ‖Lp3 ≤ ‖i‖L(Vε),Lp3 (Ωε) · ‖ϕ‖Vε
,

so that the first term in (4.8) goes to zero. On the other hand,∥∥ ∫
Ωε

(p(zn)− p(z0))ϕε,0ϕdx
∥∥ ≤ ‖p(zn)− p(z0)‖Lq1 (Ωε)‖ϕε,0‖Lq2 (Ωε)‖ϕ‖Lq3 ,

with q1 = N
2 , q2 = q3 = 2N

N−2 , N ≥ 3, otherwise q1 6= 2, q2 = q3 = 4. Thanks
to this choice, H1(Ωε) ↪→ Lq3(Ωε) is continuous and in a similar way as above, a
bound can be obtained. It follows by Lebesgue Dominated convergence theorem
and the bounds of p(zn) (see (2.4)) that

‖p(zn)− p(z0)‖Lq1 → 0, as n→∞.
Thus the second term on the right hand side of (4.8) also vanishes and hence we
obtain

p(zn)ϕε,n → p(z0)ϕε,0 V ∗ε -strongly, as n→∞. (4.9)
Next we show that ϕε,0 = ϕε(z0). For that we multiply adjoint (2.8) (written for
ϕε,n), by the test function ϕ ∈ Vε and integrate by parts,∫

Ωε

Aε∇ϕε,n · ∇ϕdx+
∫

Ωε

p(zn)ϕε,nϕdx =
∫
Sε

ϕ1εϕdσ. (4.10)
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Passing to the limit in (4.10) as n→∞, we obtain∫
Ωε

Aεε∇ϕε,0 · ∇ϕdx+
∫

Ωε

p(z0)ϕε,0ϕdx =
∫
Sε

ϕ1εϕdσ,

and this shows that ϕε,0 = ϕε(z0). Now we shall show that the convergence (4.4)
is Vε-strong. We take ϕε,n ∈ Vε as test function in adjoint (2.8) (written for z = zn
and ϕε = ϕε,n) and pass to the limit in the variational formulation, as n→∞. In
view of (4.4) and (4.9), we obtain

lim
n→∞

∫
Ωε

tAε∇ϕε,n∇ϕε,ndx =
∫
Sε

ϕ1εϕε,0dσ −
∫

Ωε

p(z0)ϕε,0 · ϕε,0dx. (4.11)

Now, taking ϕε,0 as a test function in the adjoint equation (with ϕε = ϕε,0), we
obtain the following:∫

Ωε

tA
ε∇ϕε,0 · ∇ϕε,0dx =

∫
Sε

ϕ1εϕε,0dσ −
∫

Ωε

p(z0)ϕε,0 · ϕε,0dx. (4.12)

Comparing (4.11) and (4.12), we get

lim
n→∞

∫
Ωε

tA
ε∇ϕε,n · ∇ϕε,ndx =

∫
Ωε

tAε∇ϕε,0 · ∇ϕε,0dx.

We conclude that ϕε,n → ϕε,0, Vε -strongly (energy convergence), as n→∞, since
we know that (

∫
Ωε

tA
ε∇v ·∇vdx)1/2 is equivalent to the standard H1-norm defined

over Vε. Now using the coercivity property of the functional, we show the following

‖ϕ∗1ε‖0,Sε
≤ C, (4.13)

where C independent of n and ε. For if (4.13) holds, then it follows by Banach-
Alaoglu-Bourbaki theorem, that there exists ξε such that ϕ∗1ε(zn) ⇀ ξε, L2(Sε)-
weakly, which would then imply for another subsequence (in n)

ϕε(zn, ϕ∗1ε(zn))→ ϕε(z0, ξ
ε), Vε -strongly. (4.14)

The inequality (4.13) will be proved by contradiction. We assume on contrary that

‖ϕ∗1ε(zn)‖0,Sε
→ +∞, as n→∞.

Since ϕ∗1ε(zn) is the minimizer of Jεzn
, for each n, we obtain

Jεzn
(ϕ∗1ε(zn)) ≤ Jεzn

(ϕ1ε), for all ϕ1ε ∈ L2(Sε). (4.15)

On the other hand, thanks to the convergence ϕε,n → ϕε,0 (Vε-strong), we see that

Jεzn
(ϕ1ε) =

1
2

∫
ωε

|ϕε(zn)|2dx+ α‖ϕ1ε‖0,Sε
−
∫
Sε

y1εϕ1εdσ,

converges to

Jεz0(ϕ1ε) =
1
2

∫
ωε

|ϕε(z0)|2dx+ α‖ϕ1ε‖0,Sε
−
∫
Sε

y1εϕ1εdσ.

Therefore from (4.15), for fixed ϕ1ε,

Jεzn
(ϕ∗1ε(zn)) ≤ C, C is independent of n and ε.

This contradicts the coercivity of the functional Jεzn
, since

lim inf
‖ϕ∗1ε(zn)‖0,Sε→∞

Jεzn
(ϕ∗1ε(zn))

‖ϕ∗1ε(zn)‖0,Sε

≥ α > 0.
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Next, arguing as we as we did in (4.3), we obtain

‖ϕε(zn, ϕ∗1ε(zn))‖Vε
≤ C(ϕ∗1). (4.16)

In view of (4.13) (thanks to Banach-Alaoglu-Bourbaki theorem) we obtain

ϕ∗1ε(zn) ⇀ ξε L2(Sε)-weakly, as n→∞. (4.17)

It remains to identify the limit: ξε = ϕ∗1ε(z0). For that, we show that ξε is the
minimizer of Jεz0 , that is to show

Jεz0(ξε) ≤ Jεz0(ϕ1ε), for all ϕ1ε ∈ L2(Sε). (4.18)

Since we know that ϕ∗1ε is optimal element for Jεzn
, we obtain

Jεzn
(ϕ∗1ε(zn)) ≤ Jεzn

(ϕ1ε), for all ϕ1ε ∈ L2(Sε),

hence

lim inf
n

Jεzn
(ϕ∗1ε(zn)) ≤ lim inf

n
Jεzn

(ϕ1ε) = Jεz0(ϕ1ε), for all ϕ1ε ∈ L2(Sε).

Therefore in order to prove (4.18), it remains to prove that

Jεz0(ξε) ≤ lim inf
n

Jεzn
(ϕ∗1ε(zn)). (4.19)

Let us recall that

Jεzn
(ϕ∗1ε(zn)) =

1
2

∫
ωε

|ϕε(zn, ϕ∗1ε(zn))|2dx+ α‖ϕ∗1ε(zn)‖0,Sε −
∫
Sε

y1εϕ
∗
1ε(zn)dσ.

From (4.17) we obtain

lim inf
n

α‖ϕ∗1ε(zn)‖0,Sε −
∫
Sε

y1εϕ
∗
1ε(zn)dσ ≥ lim inf

n
α‖ξε‖0,Sε −

∫
Sε

y1εξ
εdσ.

Also from (4.14) and Fatou’s lemma, we obtain

lim inf
n

∫
ωε

|ϕε(zn, ϕ∗1ε(zn))|2dx ≥
∫
ωε

|ϕε(z0, ξ
ε)|2dx.

Thus we obtained (4.19) and hence (4.18). In other words we proved that

ξε = ϕ∗1ε(z0).

Together with this relation, convergence (4.14) holds for the whole sequence, that
is,

ϕε(zn, ϕ∗1ε(zn))→ ϕε(z0, ϕ
∗
1ε(z0)) Vε - strongly. (4.20)

In view of the relation (2.19), we know that

v∗ε (zn) = ϕε(zn, ϕ∗1ε(zn))|ωε

v∗ε (z0) = ϕε(z0, ϕ
∗
1ε(z0))|ωε

It follows by (4.20) that v∗ε (zn) → v∗ε (z0) strongly in H1(ωε). Using this conver-
gence in state equation (2.5), and an analogous proof to obtain (4.20) from adjoint
problem (2.8), we get the following:

yε(zn, v∗ε (zn))→ yε(z0, v
∗
ε (z0)) Vε -strongly.

Hence Fε is continuous for fixed ε > 0.
Next we show that Fε is compact (uniformly in ε). Since we obtain (2.4), for

given z ∈ L2(Ωε), it follows by [11, Theorem 6] that under the hypothesis (H2), the
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sequence of minimizers {ϕ∗1ε} are uniformly bounded in L2(S) (also see [28, Lemma
2]) and thus satisfy

1
θ
ϕ̃∗1ε ⇀ ϕ∗1 L2(S)-weakly, (4.21)

where ϕ∗1 minimizes the functional

J(ϕ∗1) =
1
2
θ

∫
ω

|ϕ0|2dx+ α
√
θ‖ϕ∗1‖0,S − θ

∫
S

y1ϕ
∗
1dx.

By (4.2) and (4.21), we obtain

‖ϕε(z, ϕ∗1ε)‖1,Ωε
≤ C‖ϕ∗1‖0,S , (4.22)

where C is independent of z and ε. This implies that

Jεz (ϕ∗1ε(z)) ≤ C(ϕ∗1).

Again using coercivity of Jεz , we see that ‖ϕ∗1ε‖0,S and hence ‖ϕε(z, ϕ∗1ε)‖1,Ωε is
bounded by a constant independent of z and ε. Consequently by (2.19) and (4.22)
we obtain

‖v∗ε (z)‖0,ωε
≤ C. (4.23)

Using (2.4) and (4.23) in the variational formulation formulation (2.1), it is easy to
see that yε(z, v∗ε (z)) is bounded. Hence by Schauder’s fixed point theorem, Fε has
at least one fixed point in L2(Ωε). �

5. Proof of Theorem 3.3

This proof is completed using several steps.

Proof. Let zε be a fixed point of the operator Fε. Let v∗ε = v∗ε (zε) be the optimal
controls satisfying (1.2)-(1.4). Note that (4.23) holds true for every z, in particular
for z = zε. This implies that there exists v0 ∈ L2(ω), such that up to a subsequence
we obtain

ṽ∗ε (zε) ⇀ θv0 L2(ω)-weakly,

˜χωεv
∗
ε (zε)→ θχωv0 H−1(Ω)-strongly.

(5.1)

Step 1. Let us consider the variational formulation (2.1) (for vε = v∗ε := v∗ε (zε))
and take the test function ϕ = yε(= yε(v∗ε )) ∈ V ε, to obtain∫

Ωε

Aε∇yε∇yεdx+ hε

∫
∂Tε

yεyεdσ(x)

=
∫
ωε

v∗εyε + ε

∫
∂Tε

gεyεdσ(x)−
∫

Ωε

f(yε)yεdx.
(5.2)

Using (1.1), the assumption on (Aε(x)), we get that the left hand side of the
equation (5.2) is at least αm‖∇yε‖2[L2(Ωε)]N +hε‖yε‖2∂Tε

. Taking the norm estimates
on both the sides of the (5.2), using (4.23), the uniform Poincaré inequality (H1)
and [3, Corollary 5.4], we derive that

αm‖yε‖2H1(Ωε) ≤ αm‖∇yε‖
2
[L2(Ωε)]N + hε‖yε‖2∂Tε

≤ C
(
‖v∗ε‖0,ωε + |M∂T (g)|+ ‖f‖[L2(Ωε)]N

)
‖∇yε‖[L2(Ωε)]N

≤ C ′‖yε‖H1(Ωε).

Hence ‖yε‖H1(Ωε) ≤ C̃, for some constant C̃ independent of ε.
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By [4, Lemma 1], there exists a linear continuous extension operator P ε ∈
L2(Ωε, L2(Ω)) ∩ L(V ε, H1

0 (Ω)) such that

‖P εyε‖1,Ω ≤ C‖yε‖1,Ωε ≤ CC̃. (5.3)

Thus there exists y0(v0) ∈ H1(Ω) such that up to a subsequence,

P εyε ⇀ y0(v0) H1
0 (Ω)-weakly. (5.4)

Hereafter we denote by y0 := y0(v0).
Step 2. Now we want to identify the limit equation satisfied by y0. To get that,
we want to pass to the limit in Equation (5.2), as ε→ 0. For that we first define a
linear form µεh on W 1,s

0 (Ω), for any h ∈ Lp′(∂Tε), 1 ≤ p′ ≤ ∞, as follows:

< µεh, ϕ >:= ε

∫
∂Tε

h
(x
ε

)
ϕdσ(x), for all ϕ ∈W 1,s

0 (Ω).

It follows from [2], [7] that

µεh → µh strongly in W 1,s
0 (Ω)′, (5.5)

where, < µh, ϕ >= µh
∫

Ω
ϕdx, and µh = 1

|Y |
∫
∂T
h(y) dσ(y). In particular, when

h ∈ L∞(∂T ), we obtain

µεh → µh strongly in W−1,∞(Ω).

For h ≡ 1, µh becomes µ1 = |∂T |
|Y | and

lim
ε→0

< µε, ϕhyε >= lim
ε→0

ε

∫
∂T

ϕhyε dσ(x), for all ϕ ∈W 1,s
0 (Ω).

From (5.5), with h = 1, we obtain

lim
ε→0

ε

∫
∂Tε

ϕhyε =
|∂T |
|Y |

∫
Ω

ϕhy0dx, for all ϕ ∈ D(Ω). (5.6)

Let ξε = Aε∇yε in Ωε and let ξ̃ε be its extension by zero to the whole of Ω. By
the property of Aε and the boundedness of yε (see (5.3)), we obtain ξ̃ε is bounded
in (L2(Ω))N . Hence there exists ξ ∈ [L2(Ω)]N such that

ξ̃ε ⇀ ξ [L2(Ω)]N -weakly. (5.7)

To obtain the equation satisfied by ξ, take ϕ ∈ D(Ω) as the test function in the
variational formulation (5.2), we get∫

Ωε

ξε∇ϕdx+
∫

Ωε

f(yε)ϕdx+hε
∫
∂Tε

yεϕdσ(x) =
∫
ωε

v∗εϕ+ε
∫
∂Tε

gεϕdσ(x). (5.8)

It follows by (5.7),

lim
ε→0

∫
Ω

ξ̃ε∇ϕ =
∫

Ω

ξ∇ϕdx, (5.9)

and since f is uniformly Lipschitz and P εyε → y0, we get f(P εyε) → f(y0). By
[15, Lemma 3.1], (also see [8, Theorem 3.5]), we get

lim
ε→0

∫
Ω

χΩεf(P εyε)ϕdx =
|Y ∗|
|Y |

∫
Ω

f(y0) dx strongly in L2(Ω). (5.10)
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Using (5.1), (5.6), (5.9), (5.10) and [3, corollary 5.4], we pass to the limit in (5.8)
(as ε→ 0), and obtain the following:∫

Ω

ξ∇ϕdx+
|Y ∗|
|Y |

∫
Ω

f(y0)ϕdx+ h
|∂T |
|Y |

∫
Ω

y0ϕdx

=
|Y ∗|
|Y |

∫
ω

χωv0 ϕ+M∂T (g)
|∂T |
|Y |

∫
Ω

ϕdx.

(5.11)

Hence ξ satisfies

− div(ξ) +
|Y ∗|
|Y |

f(y0) + h
|∂T |
|Y |

y0 =
|Y ∗|
|Y |

χωv0 +M∂T (g)
|∂T |
|Y |

, in Ω. (5.12)

It remains to identify the limit ξ.
Step 3. In this step, we identify the limit equation satisfied by ξ. The idea is to
make use of solutions of the cell problems (3.4). For i = 1, . . . , n, let us define

Φiε = ε
(
χi

(x
ε

)
+ yi

)
, for all ξ ∈ Ωε,

where y = x
ε . By Y -periodicity of Φiε we obtain,

P εΦiε ⇀ xi weakly in H1(Ω). (5.13)

Let us define ηεi := ∇Φiε in Ωε. Then(
t̃Aεηεi

)
j

=
∂

∂xj

(
tA
εΦiε

)
=

1
|Y |

(
ajk

∂χi
∂yk

+ ajkδki

)
=
|Y ∗|
|Y |

qij ,

where

qij =
1
|Y |

(
ajk

∂χi
∂yk

+ aji

)
.

Hence (
t̃Aεηεi

)
j
⇀
|Y ∗|
|Y |

qij weakly in L2(Ω), (5.14)

and we observe that ηεi satisfies

−div(tAεηεi ) = 0 in Ωε,

(tAεηεi ) · ν = 0 on ∂Tε.
(5.15)

Let ϕ ∈ D(Ω), multiplying (5.15) by ϕyε, and integrating by parts, we obtain∫
Ωε

(tAεηεi )∇ϕyεdx+
∫

Ωε

(tAεηεi )∇yεϕdx = 0,

which implies that∫
Ωε

(tAεηεi )∇yεϕdx = −
∫

Ω

(t̃Aεηεi )∇ϕP
εyεdx. (5.16)

Now, we take ϕΦiε as test function in (5.2), we get∫
Ωε

Aε∇yε∇(ϕΦiε)dx+
∫

Ωε

f(yε)ϕΦiεdx+ hε

∫
∂Tε

yεϕΦiεdσ(x)

=
∫
ωε

v∗εϕΦiεdx+ ε

∫
∂Tε

gεϕΦiεdσ(x).
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Expressing the integrals over Ω and using the definition of ξ̃ε, we obtain∫
Ω

ξ̃ε · ∇ϕP εΦiεdx+
∫

Ωε

Aε∇yε · ηεiϕdx+ hε

∫
∂Tε

yεϕΦiεdσ(x)

+
∫

Ω

χΩε
f(yε)ϕP εΦiεdx

=
∫

Ω

χωεv
∗
εϕP

εΦiε + ε

∫
∂Tε

gεϕΦiεdσ(x),

which can also be written as∫
Ω

ξ̃ε · ∇ϕP εΦiεdx+
∫

Ωε

Aε∇yε · ηεiϕdx+ hε

∫
∂Tε

yεϕΦiεdσ(x)

+
∫

Ω

χΩε
f(yε)ϕP εΦiεdx

=
∫

Ω

χωε
v∗εϕP

εΦiε + ε

∫
∂Tε

gεϕΦiεdσ(x).

Using the relation (5.16), we obtain∫
Ω

ξ̃ε · ∇ϕP εΦiεdx−
∫

Ω

(t̃Aεηεi )∇ϕP
εyεdx+ hε

∫
∂Tε

yεϕΦiεdσ(x)

+
∫

Ω

χΩεf(yε)ϕP εΦiεdx

=
∫

Ω

χωε
v∗εϕP

εΦiε + ε

∫
∂Tε

gεϕΦiεdσ(x).

(5.17)

By (5.7) and (5.13), we obtain

lim
ε→0

∫
Ω

ξ̃ε∇ϕP εΦiεdx =
∫

Ω

ξ∇ϕxidx (5.18)

and using (2.7) and (5.14), we get

lim
ε→0

∫
Ω

(t̃Aεηεi )∇ϕP
εyεdx =

|Y ∗|
|Y |

∫
Ω

qi · ∇ϕy0dx, (5.19)

where
(qi)j =

1
|Y ∗|

∫
Y

(
aji + ajk

∂χi
∂yk

)
dy.

Analogously as we get (5.6), we obtain the following using (5.13),

lim
ε→0

hε

∫
∂Tε

yεϕΦiεdσ(x) = h
|∂T |
|Y |

∫
Ω

y0ϕxidx. (5.20)

The same arguments used for (5.10), and the convergence (5.13), will give us

lim
ε→0

∫
Ω

χΩε
f(yε)ϕP εΦiεdx =

|Y ∗|
|Y |

∫
Ω

f(y0)ϕxidx. (5.21)

Passing to the limit in (5.17) as ε→ 0, by means of (5.1), (5.13), (5.18), (5.19),
(5.20), (5.21) and [3, corollary 5.4], we obtain∫

Ω

ξ · ∇ϕxidx−
|Y ∗|
|Y |

∫
Ω

qi∇ϕy0dx+ h
|∂T |
|Y |

∫
Ω

y0ϕxidx+
|Y ∗|
|Y |

∫
Ω

f(y0)ϕxidx

=
|Y ∗|
|Y |

∫
Ω

χωv0ϕxidx+
|∂T |
|Y |
M∂T (g)

∫
Ω

ϕxidx.
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Integrating by parts, using Green’s formula and (5.12) we obtain,

−
∫

Ω

ξ · ∇xiϕdx+
|Y ∗|
|Y |

∫
Ω

qi · ∇y0ϕdx = 0 in Ω.

Since this is true for any ϕ ∈ D(Ω), we have

− ξ · ∇xi +
|Y ∗|
|Y |

qi · ∇y0 = 0 in Ω. (5.22)

Let us write (5.22) component-wise, differentiating with respect to xi, summing
over i, then using (5.12) we conclude that

|Y ∗|
|Y |

n∑
i,j=1

qij
∂2y0

∂xixj
= div(ξ) =

|Y ∗|
|Y |

f(y0)− |Y
∗|
|Y |

χωv0 −
|∂T |
|Y |
M∂T (g) + h

|∂T |
|Y |

y0.

This implies that y0 satisfies the equation

−θ
n∑

i,j=1

qij
∂2y0

∂xixj
+ θf(y0) = θχωv0 +

|∂T |
|Y |
M∂T (g)− h |∂T |

|Y |
y0,

which can also be written as

−θ div(A0∇y0(v0)) + θf(y0(v0)) = θχωv0 +
|∂T |
|Y |
M∂T (g)− h |∂T |

|Y |
y0(v0) in Ω,

where A0 = (a0
ij) = (qij), is given by (3.3).

It follows by (H2) and the convergence

ỹε(v∗ε )|Sε
⇀ θy0(v0)|S ,

that v0 satisfies the approximate controllability inequality

‖y0(v0)|S − y1‖0,S ≤
α√
θ
. (5.23)

Step 4. Existence of optimal control. In this step, we identify the limit v0 of the
optimal controls v∗ε (zε) appeared in (5.1). A natural question arises: whether v0 is
an optimal solution? Here we answer affirmatively to this question.

We start by writing the fixed point identity

zε = yε(zε, v∗ε (zε)) = y∗ε .

By (2.7), there exists z0, such that (up to a subsequence) we obtain

P εzε ⇀ z0 H1
0 (Ω)-weakly,

P εzε → z0 L2(Ω)-strongly,
(5.24)

as ε → 0. For a fixed control v, let y0(z0, v) be the solution of the homogenized
linearized problem:

− θ div(A0∇y0(z0, v)) + θp(z0)y0(z0, v)

= θχωv +
|∂T |
|Y |
M∂T (g)− h |∂T |

|Y |
y0(v) in Ω

y0(z0, v) = 0 on ∂Ω.

(5.25)
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With this state equation we associate the cost functional

I0
z0(v) =

1
2
‖v‖20,ω +

{
0 if ‖y0(z0, v)|S − y1‖0,S ≤ α√

θ
,

+∞ otherwise.
(5.26)

By classical linear control theory, there exists a unique optimal control v∗0(z0) such
that

I0
z0(v∗0(z0)) = min

v∈L2(ω)
I0
z0(v) <∞.

Let y∗0 = y0(z0, v
∗
0(z0)) be the corresponding state. Again Fenchel-Rockafellar du-

ality gives the minimum v∗0(z0) as the solution of the adjoint problem, the charac-
terization of which is given as follows:

Given ϕ1 ∈ L2(S) (which is the limit of ϕ1ε), we introduce ϕ0(z0, ϕ1) as the
solution of the dual problem associated to (5.25), that is

− θ div(tA0∇ϕ0(z0, ϕ1)) + θp(z0)ϕ0(z0, ϕ1)

= θδSϕ1 − h
|∂T |
|Y |

ϕ0(z0, ϕ1) in Ω,

ϕ0(z0, ϕ1) = 0 on ∂Ω.

(5.27)

Let us now define the dual functional of I0
z0(v) (defined by (5.26)), as follows:

J0
z0(ϕ1) =

θ

2

∫
ω

|ϕ0|2dx+ α
√
θ‖ϕ1‖0,S − θ

∫
S

y1ϕ1ds. (5.28)

Since J0
z0 is convex, coercive and lower semicontinuous, by the direct method of

calculus of variations, there exists a unique optimal element ϕ∗1 minimizing the cost
functional J0

z0 in L2(S). Let ϕ∗0 = ϕ0(z0, ϕ
∗
1) be the solution of (5.27) associated

with ϕ∗1. Then Fenchel’s duality theory gives us

v∗0(z0) = θ(ϕ∗0)|ω. (5.29)

Step 5. Passage to the limit in the adjoint equation. Let ϕ ∈ Vε as a test function
in the adjoint equation (2.8) (written for z = zε) and integrate by parts, we obtain∫

Ωε

(tAε∇ϕε)∇ϕdx+
∫

Ωε

p(zε)ϕεϕdx+ hε

∫
∂Tε

ϕεϕdσ(x) =
∫
Sε

ϕ1εϕ. (5.30)

Using ellipticity of Aε, property of linearized function p and the fact that h is a
real positive constant, evaluating the norm estimate on both the sides of (5.30),

αm‖ϕε‖1,Ωε
≤ ‖ϕ1ε‖0,Sε

,

hence we obtain
‖P εϕε‖1,Ω ≤ C.

This will imply that there exists ϕ̄0 such that up to a subsequence,

P εϕε ⇀ ϕ̄0, H1
0 (Ω) weakly. (5.31)

Let us take ζε = (tAε∇ϕε) in Ωε and ζ̃ε be its extension by zero on all of Ω. Then
ζ̃ε is bounded in L2(Ω)N . This implies that there exists ζ such that

ζ̃ε ⇀ ζ weakly in L2(Ω). (5.32)



EJDE-2017/186 APPROXIMATE CONTROLLABILITY OF ELLIPTIC PROBLEMS 19

To see the equation satisfied by ζ, let us take ϕ ∈ D(Ω) as a test function in the
variational formulation (5.30), we obtain∫

Ωε

ζε∇ϕdx+
∫

Ωε

p(zε)ϕεϕdx+ hε

∫
∂Tε

ϕεϕdσ(x) =
∫
Sε

ϕ1εϕ. (5.33)

Expressing the integrals over Ω,∫
Ω

ζ̃ε∇ϕdx+
∫

Ω

p(P εzε)P εϕεϕdx+ hε

∫
∂Tε

P εϕεϕdσ(x) =
∫

Ω

δSε
ϕ̃1εϕ (5.34)

Using (5.24), (5.31), (5.32) and (H3), we pass to the limit in (5.33) (as ε → 0), to
obtain∫

Ω

ζ∇ϕdx+
|Y ∗|
|Y |

∫
Ω

p(z0)ϕ̄0ϕdx+ h
|∂T |
|Y |

∫
Ω

ϕ̄0ϕdx =
|Y ∗|
|Y |

∫
Ω

δSϕ1ϕdx. (5.35)

Hence ζ satisfies

− div(ζ) +
|Y ∗|
|Y |

p(z0)ϕ̄0 + h
|∂T |
|Y |

ϕ̄0 =
|Y ∗|
|Y |

δSϕ1 in Ω. (5.36)

Now, to identify the limit equation satisfied by ζ, we shall use the cell problems
(3.7). Let us define for i = 1, 2, . . . the functions

Ψiε := ε
(
χ̂i(

x

ε
) + yi

)
, for all x ∈ Ωε, (5.37)

where y = x
ε and by Y -periodicity of Ψiε we obtain

P εΨiε ⇀ xi weakly in H1(Ω). (5.38)

Let us define µεi := ∇Ψiε in Ωε. Then

(Ãεµεi )j =
∂

∂xj
(AεΨiε) =

1
|Y |

(
aik

∂χj
∂yk

+ aikδkj

)
=
|Y ∗|
|Y |

(tqij),

where

(tqij) =
1
|Y |

(
aik

∂χj
∂yk

+ aij

)
.

Hence (
Ãεµεi

)
j
⇀
|Y ∗|
|Y |

(tqij) weakly in L2(Ω), (5.39)

and in view of (3.7), we observe that µεi satisfies

−div(Aεµεi ) = 0 in Ωε,

(Aεµεi ) · ν = 0 on ∂Tε.
(5.40)

Let ϕ ∈ D(Ω), multiplying (5.40) by ϕϕε and integrate by parts,∫
Ωε

(Aεµεi )∇ϕϕεdx+
∫

Ωε

(Aεµεi )∇ϕεϕdx = 0,

which in turn implies that∫
Ωε

(Aεµεi )∇ϕεϕdx = −
∫

Ω

(Ãεµεi )∇ϕP
εϕεdx. (5.41)

Now, taking ϕΨiε as test function in (5.30),∫
Ωε

(tAε∇ϕε)∇(ϕΨiε)dx+ hε

∫
∂Tε

ϕεϕΨiεdσ(x) +
∫

Ωε

p(zε)ϕεϕΨiεdx
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=
∫

Ω

δεϕ1εϕΨiεdx.

Expressing the integrals over Ω and using the definition of ζ̃ε, we obtain∫
Ω

ζ̃ε · ∇ϕP εΨiεdx+
∫

Ωε

tA
ε∇ϕε · µεiϕdx+ hε

∫
∂Tε

ϕεϕΨiεdσ(x)

+
∫

Ω

χΩεp(P
εzε)P εϕεϕP εΨiεdx

=
∫

Ω

δSε
ϕ̃1εϕP

εΨiε,

which can also be written as∫
Ω

ζ̃ε · ∇ϕP εΨiεdx+
∫

Ωε

(tAε∇ϕε) · µεiϕdx+ hε

∫
∂Tε

ϕεϕΨiεdσ(x)

+
∫

Ω

χΩεp(P
εzε)P εϕεϕP εΨiεdx

=
∫

Ω

δSε
ϕ̃1εϕP

εΨiε.

Using the relation (5.41), we obtain∫
Ω

ζ̃ε · ∇ϕP εΨiεdx−
∫

Ω

(Ãεµεi )∇ϕP
εϕεdx+ hε

∫
∂Tε

ϕεϕΨiεdσ(x)

+
∫

Ω

χΩεp(P
εzε)P εϕεϕP εΨiεdx

=
∫

Ωε

δSε
ϕ̃1εϕP

εΨiε.

(5.42)

In a similar way as we get (5.6); using (5.31) and (5.38) we obtain

lim
ε→0

hε

∫
∂Tε

ϕεϕΨiεdσ(x) = h
|∂T |
|Y |

∫
Ω

ϕ̄0ϕxidx. (5.43)

Using the property of p (see (2.4)), convergences (5.24), (5.31), (5.38) and adapting
the same lines of calculations to get [8, eq. (84)], we obtain

lim
ε→0

∫
Ω

χΩε
p(P εzε)P εϕεϕP εΨiεdx =

|Y ∗|
|Y |

∫
Ω

p(z0)ϕ̄0ϕxidx. (5.44)

Passing to the limit in (5.42) as ε → 0, using (5.31), (5.39), (5.43), (5.44) we
have ∫

Ω

ζ · ∇ϕxidx−
|Y ∗|
|Y |

∫
Ω

(tqi)∇ϕϕ̄0dx+ h
|∂T |
|Y |

∫
Ω

ϕ̄0ϕxidx

+
|Y ∗|
|Y |

∫
Ω

p(z0)ϕ̄0ϕxidx

=
|Y ∗|
|Y |

∫
Ω

δSϕ1ϕxidx.

Integrating by parts, using Green’s formula and (5.36) we have

−
∫

Ω

ζ · ∇xiϕdx+
|Y ∗|
|Y |

∫
Ω

(tqi) · ∇ϕ̄0ϕdx = 0, in Ω.
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Since this is true for any ϕ ∈ D(Ω), we have

− ζ · ∇xi +
|Y ∗|
|Y |

(tqi) · ∇ϕ̄0 = 0, in Ω. (5.45)

Let us write (5.45) component-wise, differentiating with respect to xi, summing
over i, using (5.36), we conclude that

|Y ∗|
|Y |

n∑
i,j=1

(tqij)
∂2ϕ̄0

∂ζixj
= div(ζ) =

|Y ∗|
|Y |

p(z0)ϕ̄0 −
|Y ∗|
|Y |

δSϕ1 + h
|∂T |
|Y |

ϕ̄0.

This implies that ϕ̄0 satisfies

−θ
n∑

i,j=1

(tqij)
∂2ϕ̄0

∂xixj
+ θp(z0)ϕ̄0 = θδSϕ1 − h

|∂T |
|Y |

ϕ̄0,

which can also be written as

− θ div(tA0∇ϕ̄0) + θp(z0)ϕ̄0 = θδSϕ1 − h
|∂T |
|Y |

ϕ̄0 in Ω. (5.46)

Comparing (5.27) and (5.46), we get that

ϕ̄0 = ϕ0(z0, ϕ1). (5.47)

Now, we pass to the limit in the cost functional Jεzε
, using (H2), (H3), (5.31)

and (5.47), we have
lim
ε→0

Jεzε
(ϕ1ε) = J0

z0(ϕ1), (5.48)

where

J0
z0(ϕ1) =

θ

2

∫
ω

|ϕ0|2dx+ α
√
θ‖ϕ1‖0,S − θ

∫
S

y1ϕ1ds.

Step 6. Convergence of the optimal controls of the state equation. By using the
similar techniques as in [28, Lemma 2] one can prove that the minimizers {ϕ∗1ε} of
the functional Jεzε

(ϕ1ε) (defined by (2.17)), are uniformly bounded, that is

‖ϕ∗1ε‖0,Sε
≤ C.

This implies that up to a subsequence (also see [11, Theorem 6]), there exists an
element ξ∗ ∈ L2(S) such that

ϕ̃∗1ε ⇀ θξ∗ weakly in L2(S). (5.49)

Thus up to another subsequence, we have

ϕ̃ε(zε, ϕ∗1ε(zε)) ⇀ θϕ0(z0, ξ
∗) weakly in H1

0 (Ω),

ϕ̃ε(zε, ϕ∗1ε(zε))→ θϕ0(z0, ξ
∗) strongly in L2(Ω).

(5.50)

Next our aim is to show that
ξ∗ = ϕ∗1, (5.51)

where ϕ∗1 is the minimizer of J0
z0(ϕ1) defined by (5.28). To show (5.51), it suffices

to show that
J0
z0(ξ∗) ≤ J0

z0(ϕ1), ∀ϕ1 ∈ L2(S). (5.52)
Thanks to (5.48), we deduce that

lim inf
ε→0

Jεzε
(ϕ∗1ε(zε)) ≤ lim

ε→0
Jεzε

(ϕ1ε) = J0
z0(ϕ1).
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Therefore it suffices to show that

J0
z0(ξ∗) ≤ lim inf

ε→0
Jεzε

(ϕ∗1ε(zε)). (5.53)

Recall the definition of Jεzε
,

Jεzε
(ϕ∗1ε(zε)) =

1
2
‖ϕε(zε, ϕ∗1ε(zε))‖20,ωε

+ α‖ϕ∗1ε‖0,Sε
− 〈ϕ∗1ε, y1ε〉L2(Sε);

then we obtain

lim inf
ε→0

(
α‖ϕ∗1ε‖0,Sε

− 〈ϕ∗1ε, y1ε〉L2(Sε)

)
≥ α
√
θ‖ξ∗‖0,S − θ〈ξ∗, y1〉L2(S).

Thus we have
lim inf
ε→0

Jεzε
(ϕ∗1ε(zε))

≥ lim
ε→0

(1
2
‖ϕε(zε, ϕ∗1ε(zε))‖20,ωε

)
+ α
√
θ‖ξ∗‖0,S − θ〈ξ∗, y1〉L2(S).

(5.54)

By means of (5.50), the right hand side of (5.54) is J0
z0(ξ∗), hence (5.53) is proved

which in turn implies that (5.51) is proved.

Remark 5.1. Since the minimizer of the functional J0
z0(ϕ1) is unique, the conver-

gence (5.49) holds for the whole sequence.

We have the following convergence

ϕ∗1ε(zε) ⇀ θϕ∗1(z0) weakly in L2(S),

ϕ̃ε(zε, ϕ∗1ε(zε)) ⇀ θϕ0(z0, ϕ
∗
1(z0)) weakly in H1

0 (Ω).

Hence,

lim
ε→0

Jεzε
(ϕ∗1ε) =

θ

2

∫
ω

|ϕ0|2dx+ α
√
θ‖ϕ∗1‖0,S − θ

∫
S

y1ϕ
∗
1ds.

Finally we write (2.19) for z = zε,

v∗ε (zε) = ϕ̃ε(zε, ϕ∗1ε(zε))|ωε
= ϕε(zε, ϕ∗1ε(zε))|ωε

.

Now we have
v0 = θ

(
ϕ0(z0, ϕ

∗
1(z0))

)
|ω = v∗0(z0). (5.55)

This completes the proof of the theorem. �
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