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REMARKS ON THE PRECEDING PAPER BY CRESPO,
IVORRA AND RAMOS ON THE STABILITY OF

BIOREACTOR PROCESSES

JESÚS ILDEFONSO DÍAZ

Abstract. In this short note we indicate some improvement of an article

published in this journal by Crespo, Ivorra and Ramos [6]. The techniques
used are connected with several smoothing effects associated with linear partial

differential operators which give rise to some accretive operators in L1(Ω), as

well as with some H2(Ω) estimates independent on time.

1. Introduction and results

In the previous article in this journal Crespo, Ivorra and Ramos [6] obtained an
interesting theorem on the stability of bioreactor processes under suitable condi-
tions. The main goal of this short note is to present some improvement of their
main result by using quite different techniques of proof.

Let us consider the non-dimensional form of the system considered in [6],
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(1.1)

jointly with by the initial conditions

S(·, ·, 0) = Sinit and B(·, ·, 0) = Binit in Ω, (1.2)
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where Ω = (0, 1)× (0, 1) is the nondimensional domain, Γin = (0, 1)× {1}, Γout =
(0, 1) × {0}, Γwall = {1} × (0, 1) and Γsym = {0} × (0, 1) are the non-dimensional
boundary edges. This system can be more conceptually written as a special case of
the system

ut − L1u− f(u, v) = 0 in Ω× (0, T ),

vt − L2v + f(u, v) = 0 in Ω× (0, T ),
∂u

∂n
+ b1(x)u = g(x) on ∂Ω× (0, T ),

∂v

∂n
+ b2(x)v = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) on Ω

v(x, 0) = v0(x) on Ω,

(1.3)

with obvious choices of the data. Which is relevant in our approach is that Ω is a
convex bounded open set of R3 with piece-wise smooth boundary and the elliptic
operators are coercive and can be expressed, for k = 1, 2, in terms of
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with smooth coefficients akij , a
k
i ∈ C1(Ω). We also may assume that bk(x) are

smooth coefficients on each part of ∂Ω and

f(u, v) = µ(u)v, (1.4)

with µ(·) satisfying the assumptions in [6]: i.e. µ ∈ C[0,+∞), µ(0) = 0,

0 < µ(z) ≤ µz + µ for any z > 0, (1.5)

and such that one of the following properties hold:

µ is increasing and concave, (1.6)

or

there exists s > 0 such that µ is increasing on (0, s) and decreasing on (s,+∞).
(1.7)

The L1-framework associated to this system allows to get an improvement alter-
native to the main existence and uniqueness result of [5] (we do not try to get the
more general assumptions on the data but only the ones which are relevant to our
purposes).

Theorem 1.1. Assume nonnegative the data u0, v0 ∈ L1(Ω), g ∈ L∞(∂Ω). Then
system (1.3) admits a weak solution u, v ∈ C([0, T ] : L1(Ω))2 with u, v being non-
negative functions. Moreover:

(i) ut(·, t), vt(·, t) ∈ L∞(Ω) for t ∈ (0, T ] and u, v ∈ L2(δ, T : H2(Ω)) for any
δ > 0,

(ii) there exists a constant C(T ) > 0 such that for t ∈ (0, T ] we have

‖u(·, t)‖L∞(Ω) ≤ max(t−3/2‖u0‖L1(Ω), ‖g‖L∞(∂Ω))

‖v(·, t)‖L∞(Ω) ≤ C(T )t−3/2‖v0‖L1(Ω)e
µt,

(iii) if, in addition, µ(·) is Lipschitz continuous then the weak solution is unique.
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As a consequence of the above result, in order to define the notion of asymptot-
ically stable solution (see [6, Definition 3.1]) the boundedness requirement on the
perturbation of the stationary solution is not any important restriction since for
any t > 0 the solution becomes bounded (even if the initial data are unbounded).

As a second remark, concerning the paper [6], we point out that in the special
case of the constant (washout) stationary solution (S∗1 , B

∗
1) = (1, 0) the convergence,

as t→ +∞, proved in [6, Theorem 3.6], holds in sharper functional spaces (besides
to hold in L2(Ω)).

Theorem 1.2. Assume (as in [6, Theorem 3.6]) that

µ(1) <
ThB

(2Da)2
+

(β1(Da,ThB))2

ThB
, (1.8)

with β1(Da,ThB) given in [6, Theorem 3.6]. Assume ‖u0 − 1‖L1(Ω) and ‖v0‖L1(Ω)

small enough. Then (u(·, t), v(·, t)) converges to (1, 0), strongly in H1(Ω) ∩ L∞(Ω)
and weakly in H2(Ω), as t→ +∞.

Outline of the proof of Theorem 1.1. As in [5] the results hold by application of a
fixed point argument. So, the qualitative properties mentioned in the statement
follow from the correspondent properties established for the uncoupled systems

ut − L1u = F (x, t) in Ω× (0, T ),
∂u

∂n
+ b1(x)u = g(x) on ∂Ω× (0, T ),

u(x, 0) = u0(x) on Ω,

(1.9)

and
vt − L2v + a(x, t)v = 0 in Ω× (0, T ),
∂v

∂n
+ b2(x)v = 0 on ∂Ω× (0, T ),

v(x, 0) = v0(x) on Ω.

(1.10)

The existence, uniqueness and the regularity mentioned in (ii) for solutions of the
uncoupled problem is a consequence of the Semigroup Theory in Banach Spaces
applied to the space L1(Ω). The smoothing effect mentioned in ii) was proved
in [14] for the case of Dirichlet boundary conditions by using some properties of
the associated Green function obtained in [16]. The adaptation to the case of
Robin boundary conditions is a routine matter after the pioneering work by Brezis-
Strauss [3] in which more general boundary conditions were considered (see also the
treatment made in [1], [9], [2]). Notice that the convexity assumption on Ω allows
the application of the H2(Ω)-regularity techniques (see, e.g. [13]). This assumption
could be relaxed but we do not enter into details here.

The application of the Schauder Fixed Point Theorem is a mimetic application
of the proof given in [5] for L2(Ω) initial data (a L1(Ω)-compactness argument can
be also applied as in [12]). The regularity F ∈W 1,1(0, T : L∞(Ω)) assumed in [14]
can be obtained, for the regularity proof of the fixed point, by means of a previous
Steklov average regularization process following passing to the limit as in [11].

The uniqueness of weak solution under the Lipschitz continuity condition on µ(·)
is an easy task which can be obtained, for instance, by a simple modification of the
proof given in [5]. As a matter of fact the uniqueness of solution can be obtained
(as in [9]) when µ(·) is merely assumed to be Hölder continuous and increasing.
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The non-negativeness (and even the existence) of solutions for the coupled system
can be also obtained as in [5] (see also [8], [9], [15], [7] and [4] for some related
works). �

Outline of the proof of Theorem 1.2. Once we know the L2(Ω) convergence ([6, The-
orem 3.6]), we get that, for any ε > 0,

max
(∫ t

ε

d

dτ
‖u(τ)‖2L2(Ω)dτ,

∫ t

ε

‖∇u(τ)‖2L2(Ω)dτ
)
≤ C,

for some C > 0 independent of t (see [6, formula (26)]). Then u ∈ W 1,1(ε,+∞ :
L2(Ω)) ∩ L2(ε,+∞ : H1(Ω)). Moreover, by multiplying by ∂

∂τ u(τ), it is possible
to show that u ∈ W 1,∞(ε,+∞ : L2(Ω)) ∩ L∞(ε,+∞ : H1(Ω)), as in [10, Theorem
6]. The coercivity of the linear operator L1u allows to show that in fact u(t) → 1
in H1(Ω), as t → +∞ (see [10, Theorem 2]). Notice that since the ω-limit set
for the system is formed by a discrete set of stationary solutions then we have
the convergence when t → +∞ and not only for a subsequence (see [10, Remark
2]). Finally, since the regularity obtained in Theorem 1 and the L2(Ω) convergence
lead the universal estimate ‖u‖L2(δ,+∞:H2(Ω)) ≤ C, for some C > 0 (here δ > 0
is fixed), we get that u(t) ⇀ 1 in H2(Ω), as t → +∞, and since the inclusion
H2(Ω) ↪→ L∞(Ω) is compact (remember the three-dimensional formulation of the
problem) we get that u(t)→ 1 in L∞(Ω) as t→ +∞. The proof of the convergence
v(·, t)→ 0, strongly in H1(Ω)∩L∞(Ω) and weakly in H2(Ω), as t→ +∞, is entirely
similar. �
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