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Abstract. In this article, we prove the existence of infinitely many solutions
for the fractional p-Laplacian equation

(−∆)s
pu + V (x)|u|p−2u = f(x, u), x ∈ RN

where s ∈ (0, 1), 2 ≤ p <∞. Based on a direct sum decomposition of a space
Es, we investigate the multiplicity of solutions for the fractional p-Laplacian

equation in RN . The potential V is allowed to be sign-changing, and the

primitive of the nonlinearity f is of super-p growth near infinity in u and
allowed to be sign-changing. Our assumptions are suitable and different from

those studied previously.

1. Introduction and statement of main results

We consider the fractional p-Laplacian equation

(−∆)spu+ V (x)|u|p−2u = f(x, u), x ∈ RN , (1.1)

where (−∆)sp denotes the fractional p-Laplacian operator, 0 < s < 1, 2 ≤ p < ∞,
f : RN ×R 7→ R, V : RN 7→ R, f and V are allowed to be sign-changing. Equation
(1.1) driven by the fractional Laplacian arises in various areas and different appli-
cations, such as phase transitions, finance, stratified materials, flame propagation,
ultra-relativistic limits of quantum mechanics, and water waves. For more detailed
introductions and applications, we refer the reader to [16, 17]. With the aid of
variational methods, the existence and multiplicity of nontrivial solutions for (1.1)
have been extensively investigated in the literature over the past several decades.
See e.g., [8, 9, 10, 11, 12, 28, 29, 32, 35] and the references quoted in them.

For p = 2, (1.1) reduces to the so-called fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u), x ∈ RN . (1.2)

Equation (1.2) arises in the study of the nonlinear fractional Schrödinger equation

i
∂ϕ

∂t
= (−∆)sϕ+W (x)ϕ− f(x, |ϕ|)ϕ, (t, x) ∈ R× RN .
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Most of the references deal with the (1.2) with the potential infx∈RN V (x) > 0, and
the others handled the case where V (x) is sign-changing. For the second case, the
classical proof is based on the following classical condition which was introduced
by Ambrosetti and Rabinowitz in [1]: (AR) there exists µ > 2 such that

0 < µF (x, t) ≤ tf(x, t), t 6= 0,

where F (x, t) =
∫ t

0
f(x, τ)dτ . In [28], the authors used the concentration com-

pactness principle to show that (1.2) (V (x) ≡ 1) has at least two nontrivial radial
solutions without the (AR) condition. In [10, 32, 35], the authors used variant
Fountain Theorems and the Z2 version of Mountain Pass Theorem to establish
some new existence theorems on infinitely many nontrivial high or small energy
solutions for (1.2).

Furthermore, there are also many classical and fantastic studies on nonlocal frac-
tional problems, see for example, [5, 6, 13, 14, 20, 21, 22, 23, 26, 27, 36, 37, 38].
In [21], the authors study the existence of multiple ground state solutions for a
class of parametric fractional Schrödinger equations. In [36], the authors obtain
the existence of infinitely many weak solutions for equations driven by nonlocal
integrodifferential operators with homogeneous Dirichlet boundary conditions. Re-
cently, some authors have been concerned about the general case (i.e., p 6= 2) of
(1.1), see for example [7, 30, 33, 34]. In [33], by using Mountain Pass Theorem
with Cerami condition, Torres established the existence of weak solutions for (1.1),
in which the nonlinearity f(x, u) is subcritical and p-superlinear, and the poten-
tial V (x) satisfies coercive condition at infinity. For general case p > 2, if V (x) is
a sign-changing potential, (1.1) is far more difficult as ((−∆)sp + V ) is no longer
a self-adjoint and so a complete description of its spectrum is not available. For
these reasons, only a few papers have treated this case so far. In [7], by applying
Mountain Pass Theorem, Cheng considered this case and established the existence
of one nontrivial solutions for (1.1).

In a recent paper [2], Vincenzo ambrosio used a variant of the Fountain Theorem
to prove the existence of infinitely many nontrivial weak solutions for (1.1), where
the following the assumptions on V and f are introduced:

(A1) V ∈ C(RN ,R) and infx∈RN V (x) > −∞;
(A2) there exists a constant d0 > 0 such that

lim
|y|→+∞

meas{x ∈ RN : |x− y| ≤ d0, V (x) ≤M} = 0, ∀M > 0,

where meas(·) denotes the Lebesgue measure in RN ;
(A3) f ∈ C(RN ,R), and there exist constant c1, c2 > 0 and q ∈ (p, p∗s) such that

|f(x, t)| ≤ c1|t|p−1 + c2|t|q−1, ∀(x, t) ∈ RN × R,

where p∗s = ∞ if N ≤ sp and p∗s = Np
N−sp if N > sp, p∗s is the fractional

critical exponent;
(A4) there exists σ ≥ 1 such that

σF(x, t) ≥ F(x, τt), ∀(x, t) ∈ RN × R, τ ∈ [0, 1],

where F(x, t) := 1
pf(x, t)t− F (x, t) and F (x, t) :=

∫ t
0
f(x, τ)dτ ;

(A5) F (x, 0) ≡ 0, F (x, t) ≥ 0 for all (x, t) ∈ RN × R and

lim
|t|→+∞

F (x, t)
|t|p

= +∞ uniformly in x ∈ RN ; .
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(A6) f(x,−t) = −f(x, t), for all (x, t) ∈ RN × R.
Specifically, the author established the following theorem in [2].

Theorem 1.1 ([2, Theorem 1]). Assume that (A1)–(A6) are satisfied. Then (1.1)
has infinitely many nontrivial weak solutions.

We note that the usual condition f(x, u)/u → 0 as u → 0 is not needed in
Theorem 1.1. This is the highlights in [2]. Conditions like (A1) and (A2) have been
given by Bartsch, Wang and Willem [4]. Condition (A4) is due to Jeanjean [15].
This condition is also used together with a Cerami type argument in singularly
perturbed elliptic problems in RN with autonomous nonlinearity. Moreover, there
are many functions (e.g. f(x, t) = a|t|p−2t ln(1+ |t|), a > 0) which satisfy (A4), but
do not satisfy the following classical condition:

(AR) there exists µ > p such that

0 < µF (x, t) ≤ tf(x, t), t 6= 0.

However, condition (AR) does not imply condition (A4); see the example in [31].
Motivated by the above works, we shall further study the infinitely many non-

trivial solutions of (1.1) with sign-changing potential and subcritical p-superlinear
nonlinearity. Moreover, we are interested in the case where the potential V and
the primitive of f are both sign-changing, which is called a double sign-changing
case and prevents us from applying a standard variational argument directly. For
the above reasons, just a few papers dealt with such a double sign-changing case as
regards (1.1) until now. We will give a direct sum decomposition of the fractional
Sobolev space and establish some new theorems on the infinitely many nontriv-
ial solutions of (1.1) with mild assumptions deeply different from those studied in
previous related works. For any η > 0, the Sobolev embedding theorem implies
Es(Bη) ↪→ L2(Bη), where Bη = {x ∈ RN : |x| < η}. Based on the above fact,
we can construct a direct sum decomposition of Es(Bη). As far as we know, there
were no such multiplicity results in this situation.

To state our results, we introduce the following assumptions:

(A5’) lim|t|→+∞
F (x,t)
|t|p = +∞, a.e. x ∈ RN , and there exists r0 ≥ 0 such that

F (x, t) ≥ 0, ∀(x, t) ∈ RN × R, |t| ≥ r0;

(A7) F(x, t) := 1
pf(x, t)t−F (x, t) ≥ 0, and there exist c0 > 0 and κ > max{1, Nps}

such that

|F (x, t)|κ ≤ c0|t|pκF(x, t), ∀(x, t) ∈ RN × R, |t| ≥ r0;

(A8) there exist µ > p and % > 0 such that

µF (x, t) ≤ tf(x, t) + %|t|p, ∀(x, t) ∈ RN × R;

(A9) there exist µ > p and r1 > 0 such that

µF (x, t) ≤ tf(x, t), ∀(x, t) ∈ RN × R, |t| ≥ r1;

(A10) f(x, t) = o(|t|p−1), as |t| → 0, uniformly in x ∈ RN .
It is easy to check that (A3) and (A9) imply (A8). Now we are ready to state the
main results of this paper.

Theorem 1.2. Assume that (A1)–(A3), (A5’), (A6), (A7) are satisfied. Then (1.1)
possesses infinitely many nontrivial solutions
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Theorem 1.3. Assume that (A1)–(A3), (A5’), (A6), (A8) are satisfied. Then (1.1)
possesses infinitely many nontrivial solutions.

Corollary 1.4. Assume that (A1)-(A3), (A5’), (A6), (A9) are satisfied. Then (1.1)
possesses infinitely many nontrivial solutions.

Remark 1.5. It is easy to see that (A5’) and (A7) are weaker than (A5) and
(AR), respectively. In particular, we remove the usual condition (A10), and F (x, t)
is allowed to be sign-changing in Theorems 1.2, 1.3 and Corollary 1.4. The role of
(AR) is to ensure the boundedness of the Palais-Smale (PS) sequences of the energy
functional, it is also significant to construct the variational framework. This is very
crucial in applying the critical point theory. However, there are many functions
which are superlinear at infinity, but do not satisfy the condition (AR) for any
µ > p. For example, the superlinear function f(x, t) for the case p = 2:

f(x, t) = a(x)t ln(1 + |t|), (1.3)

where 0 < infx∈RN a(x) ≤ supx∈RN a(x) < +∞. Indeed, (AR) implies that
f(x, u) ≥ C|u|µ for some C > 0, and so (1.3) not satisfies (AR). It is easy to
check function f(x, t) = b|t|p−2t ln(1 + |t|) with b > 0 satisfies (A3), (A4), (A5),
(A7) and (A10). However, the function

f(x, t) = 3t|t|
∫ t

0

|τ |1+sin ττdτ + |t|4+sin tt, (1.4)

satisfies (A7) not (A4) for p = 2, see [31, Section 3]. In addition, the function

f(x, t) = d(x)|t|p−1t[(p+ 3)t2 − 2(p+ 2)t+ p+ 1] (1.5)

satisfies (A3), (A5’), (A6), (A9) and (A10), where

0 < inf
x∈RN

d(x) ≤ sup
x∈RN

d(x) < +∞.

One can see that (1.5) satisfies neither (AR) nor (A4), see [27, Section 1].

On the existence of ground state solutions we have the following result.

Theorem 1.6. Assume (A1)–(A3), (A5’), (A6), (A7) and (A10) are satisfied. Then
(1.1) has a ground state solution u0 such that J(u0) = infu∈M J(u), where M =
{u 6= 0, J ′(u) = 0}.

2. Variational setting and proofs the main results

Throughout this section, we make the following assumption instead of (A1):
(A1’) V ∈ C(RN ,R) and infx∈RN V (x) > 0.

Firstly, we give some notation related to the fractional Sobolev space W s,p(RN ).
For 0 < s < 1 and p ≥ 2, define the so-called Gagliardo seminorm by

[u]s,p :=
(∫

RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

,

where u : RN 7→ R is a measurable function. Then the fraction Sobolev space
W s,p(RN ) is given by

W s,p(RN ) := {u ∈ Lp(RN ) : u is measurable [u] <∞},
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which can be equipped with the norm

‖u‖W s,p(RN ) =
(

[u]ps,p + ‖u‖pLp
)1/p

,

where ‖u‖pLp =
∫

RN |u(x)|pdx. By condition (A1’), we define the fractional Sobolev
space with potential V (x) by

Es :=
{
u ∈W s,p(RN ) :

∫
RN

V (x)|u|pdx <∞
}

equipped with the norm

‖u‖Es = ([u]ps,p + ‖V
1
pu‖pLp)

1
p .

Lemma 2.1 ([24, Theorem 6.5]). Under assumption (A1’), for any r ∈ [p, p∗s], the
embedding

Es ↪→W s,p(RN ) ↪→ Lr(RN )
is continuous. In particular, there exist constants ρr > 0 and γr > 0 such that

‖u‖Lr ≤ ρr‖u‖W s,p ≤ γr‖u‖Es , ∀u ∈ Es. (2.1)

Lemma 2.2 ([2, Lemma 1]). Under assumptions (A1’) and (A2), the embedding
Es ↪→ Lr(RN ) is compact for any r ∈ [p, p∗s).

Now we define a functional J on Es by
J(u)

=
1
p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy +

1
p

∫
RN

V (x)|u|pdx−
∫

RN
F (x, u)dx

=
1
p
‖u‖pEs − Φ(u),

(2.2)

where Φ(u) =
∫

RN F (x, u)dx, for all u ∈ Es. We say that u ∈ Es is a weak solution
for (1.1) if ∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(h(x)− h(y))
|x− y|N+ps

dx dy

+
∫

RN
V (x)|u|p−2uhdx−

∫
RN

f(x, u)hdx = 0, ∀h ∈ Es.

Note that critical points of J correspond to weak solutions of equation (1.1).

Lemma 2.3 ([7]). Under assumptions (A1’), (A3). The functional Φ ∈ C1(Es,R)
and 〈Φ′(u), h〉 =

∫
RN f(x, u)hdx for all u, h ∈ Es. Moreover Φ′ : Es 7→ Es∗ is

weakly continuous.

The proof of the above lemma is similar to the proof in [7], we omit the proof.
From the above facts, we know J is well defined in Es and J ∈ C1(Es,R).

Moreover,

〈J ′(u), h〉 =
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(h(x)− h(y))
|x− y|N+ps

dx dy

+
∫

RN
V (x)|u|p−2uhdx− 〈Φ′(u), h〉

(2.3)

for all u, h ∈ Es. Obviously, solutions for equation (1.1) are correspond to critical
points of the energy functional J .
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Define the nonlinear operator Υ: Es × Es 7→ R by

Υ(u, h) =
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(h(x)− h(y))
|x− y|N+ps

dx dy, ∀u, h ∈ Es.

We say that I ∈ C1(X,R) satisfies (C)c-condition if any sequence {un} ⊂ X such
that

I(un)→ c, ‖I ′(un)‖(1 + ‖un‖)→ 0 (2.4)
has a convergent subsequence.

Lemma 2.4 ([31, 3]). Let X be an infinite dimensional Banach space, X = Y ⊕Z,
where Y is finite dimensional. If I ∈ C1(X,R) satisfies the (C)c-condition for all
c > 0, and

(1) I(0) = 0, I(−u) = I(u) for all u ∈ X;
(2) there exist constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α;
(3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such

that I(u) ≤ 0 on X̃\BR. Then I possesses an unbounded sequence of critical
values.

Lemma 2.5. Under assumptions (A1’), (A2), (A3), (A5’), (A7), any sequence of
{un} ⊂ Es satisfying

J(un)→ c > 0, 〈J ′(un), un〉 → 0 (2.5)

is bounded in Es.

Proof. To achieve our goals, arguing by contradiction, suppose that ‖un‖Es →∞.
Let vn = un

‖un‖Es , then ‖vn‖Es = 1 and ‖vn‖Lr ≤ γr‖vn‖Es = γr for p ≤ r < p∗s.
Observe that for n large

c+ 1 ≥ J(un)− 1
p
〈J ′(un), un〉 =

∫
RN
F(x, un)dx, (2.6)

where F(x, un) = 1
pf(x, un)un − F (x, un) ≥ 0. By condition (A3), we obtain

|F (x, t)| ≤ c1
p
|t|p +

c2
q
|t|q. (2.7)

For 0 ≤ a < b, let

Ωn(a, b) = {x ∈ RN : a ≤ |un(x)| < b}. (2.8)

Going if necessary to a subsequence, we may assume that
vn ⇀ v in Es

vn → v in Lr(RN ), p ≤ r < p∗s

vn(x)→ v(x) a.e. on RN .
(2.9)

Now, we consider two possible cases: v = 0 or v 6= 0.
Case 1: if v = 0, then vn → v in Lr(RN ), p ≤ r < p∗s, and vn → 0 a.e. on RN .
Note that

J(un) =
1
p
‖un‖pEs −

∫
RN

F (x, un)dx.

This, together with (2.5), implies that

lim sup
n→∞

∫
RN

|F (x, un)|
‖un‖pEs

dx ≥ 1
p
. (2.10)
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On the other hand, by (2.7), one has

∫
Ωn(0,r0)

|F (x, un)|
‖un‖pEs

dx =
∫

Ωn(0,r0)

|F (x, un)|
|un|p

|un|p

‖un‖pEs
dx

=
∫

Ωn(0,r0)

|F (x, un)|
|un|p

|vn|pdx

≤
(c1
p
r0 +

c2
q
r0
q−p
)∫

Ωn(0,r0)

|vn|pdx

≤
(c1
p
r0 +

c2
q
r0
q−p
)
‖vn‖pLp → 0, as n→∞.

(2.11)

Set κ′ = κ/(κ− 1), κ > max{1, N/ps}, then pκ′ ∈ [p, p∗s). Hence, from (A7), (2.6)
and (2.9), one has

∫
Ωn(r0,+∞)

|F (x, un)|
‖un‖pEs

dx

=
∫

Ωn(r0,+∞)

|F (x, un)|
|un|p

|vn|pdx

≤
[ ∫

Ωn(r0,+∞)

( |F (x, un)|
|un|p

)κ
dx
]1/κ[ ∫

Ωn(r0,+∞)

|vn|pκ
′
dx
]1/κ′

≤ c01/κ
[ ∫

Ωn(r0,+∞)

F(x, un)dx
]1/κ[ ∫

Ωn(r0,+∞)

|vn|pκ
′
dx
]1/κ′

≤ [c0(c+ 1)]1/κ
[ ∫

Ωn(r0,+∞)

|vn|pκ
′
dx
]1/κ′

≤ [c0(c+ 1)]1/κ ‖vn‖pLpκ′ → 0, as n→∞.

(2.12)

Combining (2.11) with (2.12), we have

∫
RN

|F (x, un)|
‖un‖pEs

dx

=
∫

Ωn(0,r0)

|F (x, un)|
|un|p

|vn|pdx+
∫

Ωn(r0,+∞)

|F (x, un)|
|un|p

|vn|pdx→ 0, as n→∞,

which contradicts (2.10).

Case 2: v 6= 0. Set A := {x ∈ RN : v(x) 6= 0}, then meas(A) > 0. For a.e. x ∈ A,
we have limn→∞ |un(x)| = +∞. Hence A ⊂ Ωn(r0,+∞) for large n ∈ N. It follows
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from (A3), (A5’), (2.9) and Fatou’s Lemma that

0 = lim
n→∞

c+ o(1)
‖un‖pEs

= lim
n→∞

J(un)
‖un‖pEs

= lim
n→∞

[1
p
−
∫

RN

F (x, un)
‖un‖pEs

]
≤ lim
n→∞

[1
p

+
∫

Ωn(0,r0)

|F (x, un)|
|un|p

|vn|pdx

−
∫

Ωn(r0,+∞)

|F (x, un)|
|un|p

|vn|pdx
]

≤ 1
p

+ lim sup
n→∞

∫
Ωn(0,r0)

(
c1
p

+
c2
q
|un|q−p)|vn|pdx

− lim inf
n→∞

∫
Ωn(r0,+∞)

|F (x, un)|
|un|p

|vn|pdx

≤ 1
p

+ (
c1
p

+
c2
q
r0
q−p)γpp

− lim inf
n→∞

∫
RN

|F (x, un)|
|un|p

[χΩn(r0,+∞)(x)]|vn|pdx

≤ 1
p

+ (
c1
p

+
c2
q
r0
q−p)γpp

−
∫

RN
lim inf
n→∞

|F (x, un)|
|un|p

[χΩn(r0,+∞)(x)]|vn|pdx = −∞,

(2.13)

which is a contradiction. Thus {un} is bounded in Es. �

Lemma 2.6. Under assumptions (A1’), (A2), (A3), (A5’), (A7), any (C)c-sequence
of J has a convergent subsequence in Es.

Proof. Let {un} be a (C)c-sequence of J , then

J(un)→ c, ‖J ′(un)‖(1 + ‖un‖Es)→ 0, sup
n∈N
‖un‖Es < +∞. (2.14)

Lemma 2.5 implies that {un} is bounded in Es. Going if necessary to a subsequence,
we can assume that un ⇀ u in Es. By Lemma 2.2, un → u in Lr(RN ) for p ≤ r <
p∗s. By a calculation, it follows from (2.14) that

o(1) = 〈J ′(un)− J ′(u), un − u〉
= Υ(un, un − u)−Υ(u, un − u)

+
∫

RN
V (x)(|un|p−2un − |u|p−2u)(un − u)dx

− 〈Φ′(un)− Φ′(u), un − u〉.

(2.15)

Firstly, to prove our results, we need recall the well-known Simion inequality

(|a|p−2a− |b|p−2b)(a− b) ≥ kp|a− b|p, kp > 0, ∀a, b ∈ R (2.16)

for p ≥ 2. By (2.16), we have

Υ(un, un − u)−Υ(u, un − u) ≥ kpΥ(un − u, un − u) = kp[un − u]ps,p, (2.17)∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)dx ≥ kp
∫

RN
V (x)|un − u|pdx. (2.18)
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Secondly, in view of (A3), by the Hölder inequality, we have∣∣∣ ∫
RN

[f(x, un)− f(x, u)] (un − u)dx
∣∣∣

≤ (c1 + c2)
∫

RN

[
|un|p−1 + |u|p−1 + |un|q−1 + |u|q−1

]
|un − u|dx

≤ (c1 + c2)[(‖un‖p−1
Lp + ‖u‖p−1

Lp )‖un − u‖Lp

+ (‖un‖q−1
Lq + ‖u‖q−1

Lq )‖un − u‖Lq ],
which implies that

〈Φ′(un)− Φ′(u), un − u〉 → 0, as n→∞. (2.19)

Finally, the combination of (2.15)-(2.19) implies

o(1) ≥ kp‖un − u‖pEs + o(1). (2.20)

Then
un → u in Es, as n→∞.

This completes the proof. �

Lemma 2.7. Under assumptions (A1’), (A2), (A3), (A5’), (A8), every (C)c-se-
quence of J has a convergent subsequence in Es.

Proof. Employing Lemma 2.6, we only prove that {un} is bounded in Es. Arguing
by contradiction, we suppose that ‖un‖Es →∞. Let vn = un

‖un‖Es , then ‖vn‖Es = 1
and ‖vn‖Lr ≤ γr‖vn‖Es = γr for p ≤ r < p∗s. Passing to a subsequence, we may
assume that vn ⇀ v in Es, by Lemma 2.2, vn → v in Lr(RN ), p ≤ r < p∗s, and
vn → v a.e. on RN . By (2.2), (2.3), (2.4) and (A8), one has

c+ 1 ≥ J(un)− 1
µ
〈J ′(un), un〉

=
µ− p
pµ
‖un‖pEs +

∫
RN

[ 1
µ
f(x, un)u− F (x, un)

]
dx

≥ µ− p
pµ
‖un‖pEs −

%

µ
‖un‖pLp ,

for large n ∈ N, which implies

1 ≤ p%

µ− p
lim sup
n→∞

‖vn‖pLp . (2.21)

Hence, it follows from (2.21) that v 6= 0. By a similar process as in (2.13), we can
conclude a contradiction. Thus, {un} is bounded in Es. The rest proof is the same
as that in Lemma 2.6. �

Lemma 2.8. Under assumptions (A1’), (A2), (A3), (A5’), for any finite dimen-
sional subspace Ẽs ⊂ Es, we have

J(u)→ −∞, as ‖u‖Es →∞, u ∈ Ẽs. (2.22)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽs with ‖un‖Es →
∞, there is M > 0 such that J(un) ≥ −M for all n ∈ N. Set vn = un

‖un‖Es , then

‖vn‖Es = 1. Passing to a subsequence, we may assume that vn ⇀ v ∈ Ẽs. Since
Ẽs is finite dimensional, then vn → v ∈ Ẽs in Es, vn → v a.e. on RN , and so
‖v‖Es = 1. Hence, we can deduce a contradiction in a similar way as (2.13). �
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Corollary 2.9. Under assumptions (A1’), (A2), (A3), (A5’), for any finite dimen-
sional subspace Ẽs ⊂ Es, there is R = R(Ẽs) > 0 such that

J(u) ≤ 0, ∀u ∈ Ẽs, ‖u‖Es ≥ R. (2.23)

Lemma 2.10. Let Ω := {(x1, x2, . . . , xN ) ∈ RN : 0 ≤ xi <
d0√
N
, i = 1, 2, . . . , N}.

Then there exists a constant a0 ≥ 0 such that(∫
Ω

|u|pλdx
)1/λ

≤ a0‖u‖pEs , (2.24)

where λ = 2 if sp < N and λ = (2N − sp)/(2N − 2sp) if sp ≤ N .

The proof of the above lemma, follows from Lemma 2.1; it is easy to see that
(2.24) holds.

Lemma 2.11. Under assumptions (A1’) and (A2), for any r > 0 and M > 0,∫
|x|>r

|u|pdx ≤
{

1
M

+ a0[εr(M)](λ−1)/λ

}
‖u‖pEs , ∀u ∈ Es, (2.25)

where
εr(M) := sup

|y|≥r
meas{x ∈ RN : |x− y| ≤ d0, V (x) ≤M}.

Proof. Let Ω := {(x1, x2, . . . , xN ) ∈ RN : 0 ≤ xi <
d0√
N
, i = 1, 2, . . . , N}. Then

Ω ⊂ Bd0 . Take a sequence {zi}i∈N ⊂ RN such that

RN = ∪i∈N(zi + Ω), (zi + Ω) ∩ (zj + Ω) = ∅, ∀i 6= j. (2.26)

Let Λi = zi + Ω. For any r > 0 and M > 0, let

A(r,M) := {x ∈ RN : |x| > r, V (x) > M},
B(r,M) := {x ∈ RN : |x| > r, V (x) ≤M}.

Then ∫
A(r,M)

|u|pdx ≤ 1
M

∫
A(r,M)

V (x)|u|pdx

≤ 1
M

∫
RN

V (x)|u|pdx ≤ 1
M
‖u‖pEs .

(2.27)

On the other hand, from (2.24), (2.26) and the Hölder inequality, one has∫
B(r,M)

|u|pdx =
∑
i∈N

∫
B(r,M)∩Λi

|u|pdx

≤
∑
i∈N

[meas(B(r,M) ∩ Λi)]
(λ−1)/λ

(∫
B(r,M)∩Λi

|u|pλdx
)1/λ

≤ [εr(M)](λ−1)/λ
∑
i∈N

(∫
B(r,M)∩Λi

|u|pλdx
)1/λ

≤ a0[εr(M)](λ−1)/λ‖u‖pEs .

(2.28)

Both (2.26) and (2.27) imply that (2.25) holds. �
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Since εr(M)→ 0 as r →∞, by Lemma 2.11, we can choose η0 > 0 such that∫
|x|>η0

|u|pdx ≤ 1
2pc1

‖u‖pEs , ∀u ∈ Es. (2.29)

Let {ej} be a total orthonormal basis of L2(Bη0) and define Xj = Rej , j ∈ N,

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , K ∈ N. (2.30)

Lemma 2.12. Under assumptions (A1’) and (A2), for p ≤ r < p∗s,

βsk := sup
u∈Zk,‖u‖Es(Bηo )=1

‖u‖Lr(Bη0 ) → 0, as k →∞. (2.31)

Proof. Note that Es(Bη0) ↪→ Lr(Bη0) for 1 ≤ r < p∗s. It is clear that 0 < βsk+1

≤ βsk, and so that βsk → βs ≥ 0, k → ∞. For every k ≥ 0, there exists uk ∈ Zk
such that ‖uk‖Es(Bη0 ) = 1 and ‖uk‖Lr(Bη0 ) > βsk/2. By definition of Zk, uk ⇀ 0 in
L2(Bη0), and so uk ⇀ 0 in Es(Bη0). Lemma 2.2 implies that uk → 0 in Lr(Bη0).
Thus we have proved that βs = 0. �

By Lemmas 2.1 and 2.12, for all u ∈ Zm ∩W s,p(Bη0), we can take an integer
m ≥ 1 such that∫

|x|≤η0
|u|pdx

≤ 1
2pc1

[ ∫
|x|≤η0

∫
|x|≤η0

|u(x)− u(y)|p

|x− y|N+ps
dx dy +

∫
|x|≤η0

V (x)|u|pdx
] (2.32)

Let ζ(x) = 0 if |x| ≤ η0 and ζ(x) = 1 if |x| > η0. Define

Y = {(1− ζ)u : u ∈ Es, (1− ζ)u ∈ Ym}, (2.33)

Z = {(1− ζ)u : u ∈ Es, (1− ζ)u ∈ Zm}+ {ζv : v ∈ Es}. (2.34)

Then Y and Z are subspaces of Es, and Es = Y ⊕ Z.

Lemma 2.13. Under assumptions (A1’), (A2), (A3), there exist constants ρ, α > 0
such that J |∂Bρ∩Z ≥ α.

Proof. By (2.29), (2.32) and (2.34), we have

‖u‖pLp =
∫
|x|≤η0

|u|pdx+
∫
|x|>η0

|u|pdx

≤ 1
2pc1

[ ∫
|x|≤η0

∫
|x|≤η0

|u(x)− u(y)|p

|x− y|N+ps
dx dy

+
∫
|x|≤η0

|V (x)1/pu|pdx
]

+
1

2pc1
‖u‖pEs

≤ 1
2pc1

‖u‖pEs +
1

2pc1
‖u‖pEs

≤ 1
pc1
‖u‖pEs , ∀u ∈ Z.

(2.35)

Hence, it follows from (A3), (2.1), (2.2) and (2.35) that

J(u) =
1
p
‖u‖pEs − Φ(u)
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≥ 1
p
‖u‖pEs −

c1
p
‖u‖pLp −

c2
q
‖u‖qLq

≥ 1
p
‖u‖pEs −

1
p2
‖u‖pEs −

c2
q
γqq‖u‖

q
Es

≥ p− 1
p2
‖u‖pEs −

c2
q
γqq‖u‖

q
Es .

Since p < q, the assertion follows. �

By (A1), there exists a constant V0 > 0 such that

Ṽ (x) = V (x) + V0 ≥ 1, ∀x ∈ RN .
Let

f̃(x, u) = f(x, u) + V0|u|p−2u.

Then, it is easy to verify the following lemma.

Lemma 2.14. Equation (1.1) is equivalent to the problem

(−∆)spu+ Ṽ (x)|u|p−2u = f̃(x, u), forallx ∈ RN . (2.36)

Proof of Theorem 1.2. Let X = Es, Y and Z be defined by (2.33) and (2.34),
clearly, f̃ satisfies (A3), (A5’), (A6) and (A7), Lemmas 2.5, 2.6 and 2.13 and
Corollary 2.9 imply that J satisfies all conditions of Lemma 2.4. Thus, (2.36)
possesses infinitely many nontrivial solutions. By Lemma 2.14, Equation (1.1) also
possesses infinitely many nontrivial solutions. �

Proof of Theorem 1.3. Let X = Es, Y and Z be defined by (2.33) and (2.34),
clearly, f̃ satisfies (A3), (A5’), (A6) and (A8), Lemmas 2.7 and 2.13 and corollary
2.9 imply that J satisfies all conditions of Lemma 2.4. Thus, (2.36) possesses
infinitely many nontrivial solutions. By Lemma 2.14, (1.1) also possesses infinitely
many nontrivial solutions. �

Proof of Theorem 1.6. By (2.2), (2.3), and (A7), we have

J(u) =
1
p
‖u‖pEs −

∫
RN

F (x, u)dx

=
∫

RN

[
1
p
f(x, u)u− F (x, u)

]
dx ≥ 0,

and so m = infu∈M J(u) ≥ 0. We choose a sequence {ui} ⊂ M such that J(ui)→
m, as i→∞, and ‖J ′(ui)‖(1 + ‖ui‖) = 0. Hence, {ui} is a Cerami sequence, there
exists u0 ∈ Es such that ui → u0. Since J ∈ C1(Es,R), one has

J(u0) = lim
i→∞

J(ui) = m, J ′(u0) = lim
i→∞

J ′(ui).

Hence, we obtain that u0 is also a critical point of J and J(u0) = infu∈M J(u).
Furthermore, under assumptions (A10) and (A3), we have

|f(x, ui)| ≤ ε|ui|p−1 + Cε|ui|q−1, ∀ε > 0 (2.37)

for 2 ≤ p < q < p∗s. By (2.37) and Lemma 2.1, we have

‖ui‖pEs =
∫

RN
f(x, ui)uidx

≤ ε‖ui‖pLp + Cε‖ui‖qLq
≤ εγp‖ui‖pEs + Cεγq‖ui‖qEs .

(2.38)
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For sufficiently small ε > 0, (2.38) implies that there exists a constant ω > 0 such
that

‖u0‖Es = lim
i→∞

‖ui‖Es ≥ ω > 0.

Thus, u0 6= 0. �
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