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EVEN-ORDER SELF-ADJOINT BOUNDARY VALUE PROBLEMS
FOR PROPORTIONAL DERIVATIVES
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ABSTRACT. In this study, even order self-adjoint differential equations incorpo-
rating recently introduced proportional derivatives, and their associated self-
adjoint boundary conditions, are discussed. Using quasi derivatives, a La-
grange bracket and bilinear functional are used to obtain a Lagrange identity
and Green’s formula; this also leads to the classification of self-adjoint bound-
ary conditions. Next we connect the self-adjoint differential equations with
the theory of Hamiltonian systems and (n,n)-disconjugacy. Specific formulas
of Green’s functions for two and four iterated proportional derivatives are also
derived.

1. INTRODUCTION

We study the 2nth order differential expression

n

Ly(t) = >_ (=D*) [p; (D*) y] (t)

Jj=0

= (=D%)" [pp (D*)" y) (t) + - - = (D*)* [p3 (D*)* y] (1)
+(D%)? [p2 (D*)* y] () — D™ [p1D*y] (t) + po(t)y(t),

for continuous functions p; with p,, # 0, and show that it is formally self adjoint
with respect to the inner product

b
<y>Z>=/ y(®)z(t)e2 (b, t)dot, dat =

that is, the identity

(Ly,z) = (y, Lz)
holds provided that y and z satisfy some appropriate self-adjoint boundary condi-
tions at a and b. Here D® is a proportional derivative operator [2, [3] [B] modeled
after a proportional-derivative controller (PD controller) [9]. This proportional de-
rivative D® of order « € [0,1], where D° is the identity operator, and D! is the
classical differential operator, will be used to explore corresponding higher-order
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linear self-adjoint equations of the form (1.1]). We will refer to an equation with 2n
iterations of D as 2nth-order equations.

Remark 1.1. [2 B]In control theory, a PD controller for controller output u at
time t with two tuning parameters has the algorithm
d
u(t) = kpE(t) + ka—

SE(),

where k), is the proportional gain, k4 is the derivative gain, and E the is input
deviation, or the error between the state variable and the process variable; see [9],
for example. This is the impetus for the next definition.

Definition 1.2 (A Class of Proportional Derivatives [2, B]). Let a € [0,1], Z C R,
and let the functions kg, k1 : [0, 1] x T — [0,00) be continuous such that

11%1 k1(a,t) =1, liIBl+ ko(la,t) =0, VtelZ,
hn{l_ k1(a,t) = linll_ kolat) =1, VteZ, (1.2)
[0,

ki(a,t) #0,a € ) ko(a,t) #0,a € (0,1], Vtel.

Define the proportional differential operator D via
Df(t) = k1(a, ) f(t) + ro(e, t) f(t), tE€T (1.3)
provided the right-hand side exists at ¢, where f’:= 4 d £

Remark 1.3 (|2, B]). For the operator given in , K1 is a type of proportional
gain rp, Ko is a type of derivative gain kg, f is the error, and u = D®f is the con-
troller output. To illustrate, one could take k1 = cos (an/2) and kg = sin (an/2),
or k1 = (1 — a)w® and kg = aw! @ for any w € (0,00); or, k1 = (1 — a)[t|* and
ko = alt|'~® on Z = R\{0}, so that

DEf(t) = (1= a)[t|*f(t) + alt|'~*f'(1).
If k1 and ko are constant with respect to the independent variable, then D?D* =
D*D# but DPD* # D*DP for a, 3 € [0,1] in general; see also [15]. By (T.2) and

.3,

lim D®f =D =f and lim D®f=D'f=f.
a—0t a—1—

Throughout the discussion to follow we will need a vital definition [3] Definition
1.6], which establishes a type of exponential function for derivative (1.3)).

Definition 1.4 (Proportional Exponential Function [2 B]). Let a € (0,1], the
points s,t € R with s < ¢, and let the function p : [s,f] — R be continuous.
Let rg,k1 : [0,1] x R — [0,00) be continuous and satisfy (L.2)), with p/ko and
k1/ko Riemann integrable on [s,t]. Then the conformable exponential function
with respect to D in is defined to be

¢ p(r)—rq(ar) ¢ k1)
ep(t,s) == els Tetam ety s) = — s I (1.4)
and satisfies
D%ey(t,s) = p(t)ep(t,s), D%p(t,s) =0. (1.5)

The following fundamental theorem, given in [2, Theorem 2.4] and [3, Lemma
1.9 (ii)], relates the proportional derivative and the proportional integral using the
above proportional exponential function.
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Theorem 1.5 (Fundamental Theorem of Integral Calculus). Let o € (0,1]. Sup-
pose f: [a,b] — R is differentiable on [a,b] and [’ is integrable on [a,b]. Then

b
| DU 0lealt et = 1(0) = F(aeatr0)
where dot = dt/ko(t).
Remark 1.6. As in [5], consider (L.3)) with k; = (1 — «) and kg = «, so that

Df(t) = (L= a)f(t) + af'(2).

Then using the FTC, Theorem as motivation and simplifying e (¢, 7) via (1.4)),
define this special case of the proportional integral of f as

t
JTIOf(t) = é / Fr)e = =gy, (1.6)

In two recent papers [0, [7], Caputo and Fabrizio introduce a new fractional time
derivative of the form

1
11—«

28 f(t) =

t
[ rmee=tar,

with related fractional time integral

I o
SN = [ Fne
« a
Note that we then have the relationships
ZVf () = TS (@) and o FEF () = TP (D)

using (|1.6)); further research needs to be done on connecting the results of [0 [7]
with those to follow.

2. SELF-ADJOINT PROPORTIONAL EQUATIONS

For the theory of higher order differential equations refer to [8 10, 12} 13} [14].
Consider the 2nth-order proportional differential expression (1.1]), in which the
coefficient functions p; : Z — R are continuous for 0 < j < n and p,(t) # 0 for all
tel.

Definition 2.1. Let D be the linear set of all functions y : Z — R such that the
function

(DY [p; (D*) y]
is defined on Z and is continuous for 0 < j < n.

For each y € D the expression Ly is defined and presents a continuous function
on Z.

Definition 2.2 (Quasi-Derivatives). As in the traditional case when o = 1 (see
[13, pp. 49]), we introduce the functions yV!, 0 < j < 2n, as the quasi-derivatives
of y related to the expression Ly. Given y € D, set

gl = (DY y, 0<j<n—1, yl=(D"0y=y, (2.1)
y = p, (D*)"y, (2.2)
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yltil = p, (D) y — D[y HY] 1<j<n—1

:i(_Da)j*i [ i (Da)’nfiy}7 OSJ <n-— 17 (23)
=0
y[2n] = poy D [y[Qn—l]]
=> (=D [p; (D*) y] = Ly 24
j=0

Definition 2.3 (Lagrange Bracket). Assume y,z € D and ¢ € Z. The Lagrange
bracket of y and z is given by

2= {yufuz[znfﬂ _ y[znfﬂzufl]} (t). (2.5)

j=1

Definition 2.4 (Bilinear Functional). Assume y,z € D and ¢t € Z. The bilinear
(in y and z) functional F' is given by

F(y,zt) :i( =1 [2"—j]) (t). (2.6)

Jj=1
Note that by combining (2.5)) and (2.6, we have the Lagrange bracket in terms
of the bilinear functional, namely
{y.2}(t) = F(y, 2,t) — F(z,y,1).
Using (2.1) and (2.3)) we get that

n—1 J

Fly,z,t) =Y (=1 (D*)" 77 y(t) Y (=1)" (D) ™" [pa—s (D*)" " 2] (). (2.7)

3=0 =0

Lemma 2.5. The bilinear functional F in (2.6) satisfies

F(yazv'

eo(t,a)D° | ol a))}(t) — (w2 +§n:pj (D) y (D) 2) (1)
, =

fort,ael.

Proof. Differentiating both sides of , employing the quotient rule for a-deriva-
tives, and taking into account the formulas and (2.4]), we get

eo(t,a)D™ {eiy(fzc;).)} (t) = D*F(y, z,t) + k1 (t)F(y, 2, 1)

M:

<y[3 U per[z2n=il] 4 zl2n=il po [y[j—lJD (t)

j=1

- <y[0]Da [2Bn=1] 4 37 b=t pe [zl2n—]]

=2

n—1
A peyln-1] 4 37 zndl pe [y[j—l]D(t)

Jj=1
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n
= (y(pOZ - LZ) =+ Z y[jfl]Doz [Z[Qn,j]jl

Jj=2

4 pn (D) y (D) 2 4+ 3 22n=i1] pe w[jﬂ]])(t)_

j=2
Further, by we have
D« [y[j_Q]](t) =9y for2<j<n, tel,
and from for z, replacing the j by n — j + 1, we find
Z2n—itl] Pj—1 (D“)j_1 z — D¢ [2[2"7]‘]] for 2 < j <n.
Consequently we obtain the desired result. ([

Theorem 2.6 (Lagrange Identity). If y,z € D, then for t,a € T we have
)2
(zLy — yLz) (t) = ep(t,a) D [@] (1), (2.8)
60('7 a)
where {y, z} is the Lagrange bracket of y and z defined by (2.5)).

Proof. By (2.5) and (2.6) we have

{y7 Z}(t) = F(yv th) - F(Z7y7t)a
dividing both sides by eg(¢,a), taking the « derivative, multiplying the result by
eo(t,a) on both sides, and applying Lemma we obtain ([2.8). O

Remark 2.7 (Green’s Formula). Let the numbers a,b,t € Z with a < b. If we
multiply both sides of (2.8) by e3(b, t)d,t and integrate from a to b, then we obtain
Lagrange’s identity in integral form, also called Green’s formula,

b b
(Ly,z) = {y, Lz) = / (zLy) (£)eg (b, t)dat — / (yLz) (t)eg (b, t)dat

= {y.2}(b) — (b, a){y, 2} (a).

Let g : Z — R be a continuous function, and consider the non-homogeneous
equation

Ly(t) = g(t) fortel. (2.9)

If y € D and holds for y, we say that y is a solution of . In order

to obtain an existence and uniqueness theorem for initial value problems involving

, it is necessary to rewrite in the form of an equivalent system of first order

equations. From (2.1), (2.3)), and (2.4) we have the following system of equations
D« [y[j]] = y[jJrl]’ 0<j<n-—2,

D[y Y] = (D) y = =—,
Do [yt 1] = p, (DY) y =yl =yl g << -1,
D [y Y] = poy — Ly.
Define the following column vectors via

T
g: (y[0]7y[1]7"'5y[2n_1]> ’ g': (0,0,...,0, _g)T7



6 D. R. ANDERSON EJDE-2017/210

where T indicates transpose. In addition, define the n x n matrix functions

0100 -- 00
0010 -+ 00
o001 -- 00
Ar=-As= | ; e
0 0 0 O 1 0
0 0 0 O 0 1
0 0 0 O 0 0
0o 00 --- 00O
o o0 -~ 00O
Ay =] : : ;
0 0 0 0 0 0
L 0 0 0 0 0
Pn
0 0 0 0 0 pna
0 0 0 O Pn—2 0
Ag= | 1o : S
0 0 pp 0 - 0 0
O pp 0.0 - 0 0
% 0 0 0 -« 0 0

so that

_ (Ax(t)  Ax(t)
Alt) = (Ai(t) Ai(t))

is a (2n) x (2n) variable matrix function on Z. From this we see that the equation
(2.9) is equivalent to the first order system

Dy(t) = A(t)y+ g(t) fortel. (2.11)
We are now able to prove the following theorem.

Theorem 2.8 (Existence and Uniqueness). Fiz tg € Z and let ¢; € R, 0 < j <
2n—1, be given. Then for « € (0,1], equation (2.9) has a unique solutiony : T — R
such that

yUl(tg) =¢;, 0<j<2n—1.
Proof. Since equation (2.9) is equivalent to the system (2.11)), and (2.11) is equiv-

alent to p ) )
—y=—(A-—rl)y+—g
dty KJO( 1 )y+lfog’
the result follows from classical ODE theory. O

Consider the homogeneous equation Ly(t) = 0.

Definition 2.9 (Wronskian). Let y;, 1 < j < 2n, be solutions of Ly(t) = 0. The
Wronskian of these solutions is defined to be the determinant

S I

1 1 1

Y1 Ys T Yon

Wiyi, .- y2n) = . : . )
ygm;—l] y£27;_1] o ygznﬁ—u



EJDE-2017/210 SELF-ADJOINT BVPS FOR PROPORTIONAL DERIVATIVES 7

The proofs of the following two theorems follow in the same manner as the
differential equations case; see [I3], pp. 57-58].

Theorem 2.10. If the solutions y;, 1 < i < 2n, of the homogeneous equation
Ly = 0 are linearly dependent, then their Wronskian vanishes identically on T.
Conwversely, if the Wronskian vanishes at at least one point in I, then the solutions
Yi, 1 <1< 2n, are linearly dependent.

We can easily construct a linearly independent system of solutions y;, 1 <1i < 2n,
of a homogeneous system. We need only choose a system of solutions which satisfy
initial conditions of the form

g (o) = ayy, 1<i,j<2n,

where the determinant of the matrix [a;;] is different from zero. A linearly inde-
pendent system of solutions y;, 1 < i < 2n, is a fundamental system.

Theorem 2.11. Every solution of a homogeneous equation is a linear combination
of a fizxed, arbitrarily chosen, fundamental system.

3. SELF-ADJOINT BOUNDARY CONDITIONS AND GREEN’S FUNCTIONS

Let a,b € 7 with a < b. If y and z are real valued continuous functions and
bounded on [a, b], define their inner product to be

dt
Ko (t) '
Suppose for 0 < j < n—1 that p; : [a,b] — R is continuous with p,(t) # 0 on [a, b].

b
<y,Z>:/ y(O)2()e2 (b, t)dat, dat :=

Definition 3.1. Denote by D[a,b] the linear set of all continuous functions y :
[a,b] — R such that

(DY [p; (D) y]
is defined on Z and is continuous for 0 < j < n.

For y € Dla, b] let

=> (- i (DY y](t), t€[a,b]. (3.1)
0

Jj=

Then Ly is continuous and bounded on [a,b]. Together with the equation (3.1),
define the boundary conditions

Ui(y) baijy —1( +eoab25wyb Ue), 1<i<2n, (3.2)

j=1

where 71;5, Bi5, 1 < 4,7 < 2n are given real numbers.

Definition 3.2. The boundary conditions (3.2)) are self adjoint with respect to the
equation (3.1)) if and only if

(Ly, z) = (y, Lz) (3.3)
for all functions y, z € Dla, b] satisfying the boundary conditions (3.2)).
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By Green’s formula given in Remark [2.7] we have, for all y, z € D[a, b],

<Ly7z> - <y>LZ> = {:%Z}(b) - e(Q)(b> a){y7z}(a),

where the Lagrange bracket {y,z} is as defined previously in (2.5)). Therefore
boundary conditions (3.2)) are self adjoint if and only if

{y,2}(b) = €5 (b, a){y, 2} (a)
for all functions y, z € D|a, b] satisfying . For example the boundary conditions
Yl a)=0=9Vp), 0<j<n-—1,
and also the boundary conditions
eo(b, )yt (a) = eo(a, Ly (B), 0 <j<2m—1,

are self adjoint. The boundary value problem Ly(t) = 0, U;(y) =0, 1 <4 < 2n has
Green’s function G(t,s) if for any continuous and bounded function g : [a,b] — R
the nonhomogeneous boundary value problem Ly(t) = g(t), U;(y) =0, 1 < i < 2n,
has a unique solution y : [a,b] — R which is given by

b
y(t):/ G(t,8)g(s)dus.

4. SELF-ADJOINT EQUATIONS AS HAMILTONIAN SYSTEMS

One important type of differential system is a Hamiltonian system [T, [11]. Let us
show that the 2nth order self-adjoint equation Ly = 0, in which Ly is of the form
(1.1), can be written as an equivalent complex linear Hamiltonian system given by

DOE(t) = ADE() + B)a(t), Dd(t) = C(t)T(t) — A*(t)d(t), te, (4.1)

where A, BB, and C are n x n complex matrices with B and C Hermitian; A* denotes
the complex conjugate of A; Z C [a,00). In particular, we will show (1.1) can be
written in the form of (4.1)), where

. 1: ifj=i+1,1<i<n-1,
A= (aij)i<ij<n With a;; = J '
0: otherwise,
. 1 )
B = diag {0, ..., 0, IT}’ C = diag{po,p1,p2, -, Pn-1}

Recall for any function y € D the system of equations in (2.10). Then using the
substitution

gt o
n_
i=|"Y ,od=|Y , (4.2)

and the matrices A, B, and C above, we have that Ly(t) = 0, t € T is equivalent to
the linear Hamiltonian system .

Now let us present some properties of solutions to the homogeneous equation
Ly(t) = 0,t € Z. From the Lagrange identity we immediately get the following
theorem.
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Theorem 4.1. Ify and z are solutions of Ly(t) = 0 for t € T, then the Lagrange
bracket of y and z satisfies

{v,2}(t) = cei(t,a), teT,
where a € T and ¢ € R.
Lemma [2.5] yields the following result.

Theorem 4.2. Let F(y,z,t) be defined as in (2.6 (see also (2.7)), and let a € T.
If y is a solution of Ly(t) =0, t € Z, then

eo(t,ay Do [L0-4) (”" ij W), ter

eol:

In particular, if pj(t) >0 for 0 < j <n andt €Z, then F(y,y,t) satisfies
€0 (CL, t)F(ya Y, t) > 60(t7 a)F(y7 Y, CL)

along solutions of Ly(t) =0 for allt € T with t > a.

Proof. If y is a solution of Ly(t) = 0, then by Lemma we know that F(y,y,t)
satisfies

60(t,a)Da[F(y ya' ZpJ Da )

eol:
for ¢t,a € Z. Furthermore, if p;(¢) > 0 for 0 § j<mnandtée€Z, then

o F(yvy’ )
60(',(1)

and the function F(y,y,-)/eo(:,a) is a-increasing on Z. Thus,

60(t17 tQ)F(ya Y, t2)/60(t23 a) > F(y7 Y, tl)/eO(th a)a
whenever ty > tq1, t1,to € Z. The result follows if we take t; = a and t; = t. O

[(t) >0, teT,

Lemma 4.3. Assume n € D{a,b]. Then

n

F(n,n,0) = F(n,n,a)eg(b,a) = =(n, Ln) + > _(p;, [(D*)n]*). (4.3)

=0

Proof. Setting y = z = 1 in Lemma we have

eo(t,a) D™ [M] (t) = ( —nLn+ Y p; [(D“)jn]Z) (t)

60(',0/) j=0

for t,a € Z. If we multiply both sides by e2(b,t)d,t and then integrate from a to b
we get the desired result. O

Definition 4.4. The set of admissible variations is given by
S ={neDa,b]: (D*)n(a) = (D*)y(b) =0, 0<j<n-—1},

with corresponding functional

=> i (4.4)
7=0
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For an admissible variation € S, Lemma [4.3] implies that

F(n) = (n, Ln).

The functional F is positive definite on the set of admissible variations S if F(n) > 0
for all n € S, and F(n) = 0 if and only if n = 0.

Note that the bilinear functional F' in and the vector-valued functions &
and 4 given above in satisfy the dot product equation

(@ - a)(t) = F(y,y,1).
We will use this in the proof of the next theorem.

Theorem 4.5. Assume p;(t) > 0 for 0 < j < n andt € Z, and p,(t) > 0 for
t € Z. Then the functional F is positive definite on S and the linear Hamiltonian
system being considered for t € [a,b] is disconjugate on [a,b]. In particular
the self-adjoint BVP

Ly(t) =0, tE€]a,b],
(D*Yy(a) =0=(D)y(b), j=0,1,....,n—1,
has only the trivial solution.

Proof. Let t € Z. From p;(t) > 0 for 0 < j < n and (4.4), it is clear that F(n) >0
for all n € S, and that F(0) = 0. Now suppose n € S and F(n) = 0. Then

n

0="> (0, [(D*)n)*) = {pn, [(D*)"n)?),

Jj=0

and since p,(t) > 0, we have that (D*)"n(t) = 0 for ¢ € [a,b]. Because 7 is
admissible, it solves the initial value problem

(D)"n(t) =0, tE€la,b]
(D*)n(a) =0, 0<j<n-—1.

By uniqueness of solutions to initial value problems, 7 is the trivial solution in the
set of admissible functions, whence F is positive definite on that set. By (4.3)), if y
is a solution of Ly(t) =0, t € [a, b], then

(Z-@)(b) — (- ﬂ)(a)eg(b, a) = Fly,y,b] — Fly, vy, a]e%(b, a)
=y, [(D*)7y]")
j=0
= F(y).

Note that the Hamiltonian system (4.1)) is disconjugate on [a, b] if and only if for a
vector solution Z, @ of (4.1]), the following is positive definite:

b n—1
The | =T e 12 ]\ 2
/ (7C + " Bid) (t)eg (b, t)dat = > (ps, (7)) + (1/pn, (¥1™)7) = F(y).
a =0
This completes the proof. O

The point ¢ = #( is a zero of order (at least) n of y if

(D*)y(ty) =0, j=0,1,....,n—1.
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The equation Ly = 0 is (n,n) disconjugate on [a, b] provided there is no nontrivial
solution of Ly = 0 with a zero of order (at least) n in (a,b] preceded by a zero of
order (at least) n in [a, b]. These ideas lead to the next conclusion.

Theorem 4.6. If p,(t) > 0 fort € [a,b], then Ly(t) = 0 is (n,n) disconjugate on
[a, b].

Proof. Suppose y is a solution of Ly = 0, and without loss of generality assume y
has a zero of order n at a, namely (D*)?y(a) =0, j =0,1,...,n — 1. Then from
(2.7) we have F(y,y,a) =0, and F(y,y,t) > 0 for all ¢t € [a, b] by Theorem If
y has a zero at tg € (a, b] of order n, then

(D*Yy(ty) =0, j=0,1,...,n—1.

But then y is a trivial solution of Ly = 0 by the previous theorem. (]

5. SECOND-ORDER PROPORTIONAL EQUATIONS

Analogous to the classic and time scales cases [4], in this section we find Green’s
function associated to second-order proportional equations. With this in mind,
again consider (1.1]). Taking n = 1, we find that

Ly(t) = —=D* [m Dy (t) + po(t)y(t), te€Z,

and for each function y € D,

v =y, M =pD%, ¢y =poy—D*[yM].
Then
Ly =y
as expected. In addition, the equation Ly(t) = g(t) for t € T is equivalent to the
first order system

DOt

~—

= A@)y(t) +4(t), tel,

e (Z[ﬂ) j= (_Og), All) - <p00(t> p%w).

The Wronskian of two solutions y, z, is

Ol
Wit = [Yly) g =m0 D%~ D) (0 = (230

the Lagrange bracket (2.5) of y and z, giving rise to the following theorem.

where

Theorem 5.1. The Wronskian of any two solutions y,z of Ly(t) = 0 satisfies
Wiy, 2) = ea(t,a)Wa(y, 2).
The following theorem presents a variation of constants formula for the nonho-
mogeneous equation Ly(t) = g(t).

Theorem 5.2 (Variation of Constants). Suppose that yi,y2 form a fundamental
system of solutions of the homogeneous equation Ly(t) = 0. Then the general
solution of the nonhomogeneous equation Ly(t) = g(t) is given by

y(t) = c1y1 (t) + caya(t) + /t L (t)yQVEZ)(y_l y;2(;)y2(t)

where tg € Z and c1,co are real constants.

g(8)dys,
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Proof. 1t suffices to show that the function
t
t — t
Z(t) _ / yl( )yQ(s) yl(s)yQ( )g(s)das
to WS (yla y?)

is a particular solution of the nonhomogeneous equation Ly(t) = g(t). Differenti-
ating both sides yields

o [Fy2(5)DY(t) — y1(s) Dya(t)
Dealt) = /to W (y1,92)

g(8)dys.

Hence
Y2 (1)p1 (1) Dy1(t) — y1(¢)p1(t) Dy2(t)

D [plDaZ] (t) = Wt(yl y2) g(t)
" 2(s) D [p1 Dy (1) — a1 (s) D [p1 Dy (1)
v, W.lor ) o(8)des
= —g(t) + po(t)2(1),
that is z satisfies Ly(t) = g(t). O

For y € Dla, b] let
Ly(t) = =D [ D%y] (t) + po(t)y(t), t € [a,b],
together with the boundary conditions
neo(b, a)y(a) + maeo(b,a)y! (a) + Bireo(a, b)y(b) + Bizeo(a, by (b) =0,
na1eo(b, a)y(a) + nazeo(b, a)y™M(a) + Bareo(a, b)y(b) + Bazeo(a, by (b) = 0
where 7,5, 3;; are given real numbers, i,j = 1,2. Set
N = (7)11 me P /312> )

ne1 Moz P21 P22
We will assume that the matrix N has rank 2. This means that the two bound-
ary conditions are linearly independent. As before, we call the boundary
conditions self adjoint with respect to the expression Ly if
<Ly7 Z> - <ya LZ> = {yv Z}(b) - eg(b, a’){yv Z}(a’)
for all functions y, z € D|a, b] satistying the boundary conditions . Recall that
by Green’s formula, the boundary conditions are self adjoint if and only if

eo(a, b){y, 2}(b) = eo(b, a){y, z}(a).

1 e 11 P2
N, = , No= .
! (7]21 7722) ? (521 ﬂzz)
Theorem 5.3. If det Ny = det Ny, then the boundary conditions (5.1) are self

adjoint.

Proof. Let y,z € Da,b], be functions which satisfy boundary conditions (5.1)).
Then we have

a z(a —y(b —2(b
v (A i) =eotwo (S10) i)

Z[ a

Set

Passing to determinants we have
(det N1)eo(b, a){y, z}(a) = (det Na)eo(a,b){y, z}(b).
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If det N3 = det Ny # 0, then
€0 (b7 a){y7 Z}(a) = €0 (aa b) {ya Z}(b)

Suppose det N7 = det No = 0. Since N has rank 2, it is clear that the boundary
conditions (5.1 are equivalent to separated boundary conditions of the form

my(a) +noyM(a) =0, |m|+ |n2| #0,
Bury(b) + Boy(b) =0, [Bu] + 82| # 0,

where 1;, 3;, ¢ = 1,2 are real numbers. It can easily be verified that for any functions
Y,z € D[a, b] satisfying boundary conditions (5.1) we have

{y, z}(a) = 0 = {y, 2 }(b),

completing the proof. O

(5.2)

Remark 5.4. As was noted above, the separated boundary conditions (5.2)), in
particular the boundary conditions y(a) = y(b) = 0 are self adjoint. The “periodic”
boundary conditions

eo(b, a)y(a) = eo(a,b)y(b), eo(b,a)y!")(a) = eo(a, by (b)

which are non-separated, are also self adjoint.
We will now construct Green’s function for the self-adjoint (separated) BVP
=D [p1 D] (t) + po(D)y(t) = g(t) (5:3)
ny(a) = ByM(a) =0, yy(b) +dy!" (b) =0, (54)
where 7, 3,7, d are real numbers such that |n| + |3| # 0, |y| + |6] # 0.

Remark 5.5. The minus sign on the left hand side of ([5.3)), as well as in the first
boundary condition of (5.4)), is taken so that the positivity of Green’s function can
be formulated in terms of p;(¢) > 0, po(t) > 0, for n,8,v,5 > 0.

Denote by ¢ and v the solutions of the corresponding homogeneous equation
= D [p1 D] (t) + po(t)y(t) =0, t € [a,b], (5.5)
under the initial conditions
o(a) =B, ¢a)=n, (5.6)
v(b) =46, wH(b) =, (5.7)

so that ¢ and ¢ satisfy the first and second boundary conditions in (5.4)), respec-
tively. From Theorem we have that the Wronskian of ¢ and v satisfies

Wi, 9) = ()M (t) = oM (0)9(1) = €5 (t, a)Wal(o, ¥);
evaluating this expression at t = a, t = b, and using the boundary conditions (|5.6)),
(5.7) yields

Wa(e,v) = Bl (a) — mib(a) = —W(bg(; 5?[%)_
60 ,a

Additionally, W, (¢, %) # 0 if and only if the homogeneous equation (5.5) has only
the trivial solution satisfying the boundary conditions (5.4)).
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Theorem 5.6. If W,(¢,v) # 0, then the nonhomogeneous BVP (5.3)), (5.4)), has
a unique solution y for which the formula

b
P = / Gt 5)g(s)dus, t € [a,b]

holds, where the function G(t, s) is given by
-1 P(t)Y(s): a<t
G - -
9= W0 {as(sw(t): a<s

and this G(t, s) is Green’s function of the BVP (5.3)), (5.4). Furthermore the Green
function satisfies the property eo(s,t)G(t,s) = eo(t, s)G(s,t) for all t,s € [a,].

b,
b,

I/\ I/\

<s
<t

Proof. Since W, (¢,v) # 0, the solutions ¢ and ¢ of the homogeneous equation
(5.5) are linearly independent. Thus the general solution of the nonhomogeneous
equation ([5.3]) has the variation of constants form

y(t) = cr6(t) / o(t) ))w(t)g(s)das, (5.8)

where ¢; and ¢y are real constants. We now construct ¢; and ¢ so that the function
y satisfies the boundary conditions (5.1]). Using (5.8]) we have

E O (0)(s) — ls)pll)
(1) = crol () + el (1) + / 0 (WI(/V) (ﬂ;))w ()

g(8)dys. (5.9)
Consequently,
y(a) = c1g(a) + c2p(a) = 18 + c29(a),
(@) = 19 (a) + e (a) = ern + 2y M(a).
Substituting these values of y(a) and y*(a) into the first condition of (5.4) we have
2 (ita) - Bu(@)) = o0.
On the other hand, using the definition of W, (¢, ),

mp(a) — Byl (a) = =Wa(¢,v) # 0.
Consequently ¢; = 0, and (5.8)), (5.9), take the form

) = c10(t) / o(t) )W(t)g(s)da&
[t
W0 = s+ [ dffp())w D g(s)ds.
respectively. Hence
b
) = ) + [ L) OO0,
[y
y!(b) = el / ik (;Si)p())d) ( )g(s)dus.
Substituting these values into the second condition of yields
b (yop(b) + 5 (b
a (W(b) +5¢[”(b)) + / (W’(M)/T J fp)( ) )g(5)dus = 0.
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Again using the definition of W, (¢, 1),
v(b) + 661 (b) = —€f (b, a)Wa(¢,9) # 0

Hence
b
U(s)
— — " —g(s)das
[ wie e
Thus y has the desired form, and G(t,s) satisfies €3(s,a)G(t,s) = €3(t,a)G(s,t);
this is equivalent to eo(s,t)G(t, s) = eo(t, s)G(s,t), completing the proof. |

Corollary 5.7 (Green’s Function for the Two-Point Problem). If

b
daT
d:=ﬁ7+n5+n7/ # 0,
a pl(T)

then the nonhomogeneous BVP (5.3)), (5.4) with pg = 0 has a unique solution y for

which the formula
/ G(t,s)g s, te€a,b]

holds, where the function G(t, s) is given by

eo(t, ) [5+77 Cfp”)][éﬂfb ot ] g<t<s<bh

G(t,s) = p ' d bP;(T)

This G(t,s) is Green’s function of the BVP (5.3)), (5.4) with po = 0.

Proof. Assume

b
daT
d:=ﬁ7+n5+n7/

a pl(T) 7& 0

Note that
t b
o) = neattea) [ BT et (o) = ealth) [T

satisfy (5.5) with py = 0, along with conditions (5.6) and (5.7). The result then
follows from Theorem [5.6l ([

+ 660 (t, b)

Corollary 5.8 (Green’s Function for the Conjugate Problem). Green’s function
for the conjugate boundary value problem

= D*[pD%y](t) =0, y(a)=y(b) =0 (5.10)
is given by

€o(t8) fap('rdesp(l‘rdT IGStSSSb,
fb L d,r f;pT)detpldT a<s<t<hb.

a p(T)

G(t,s) =

Proof. By Theorem the BVP (5.10) has only the trivial solution. Due to the
boundary conditions y(a) = y(b) =0, we see that n =y =1and § =9 = 0 in (5.6)
and (5.7). The result then follows from Corollary (]
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Corollary 5.9 (Green’s Function for the Focal Problem). Green’s function for the
focal boundary value problem

— DDy (1) =0, y(a) = Dy(b) = 0 (5.11)

is given by
t 1 d .
[ =5dat a <

G(t,s) = eg(t, s) a (1)

< b
f:ﬁﬂdoﬂ' a<s<t<hb.

Proof. The boundary conditions imply n =96 =1 and 8 =+ = 0in (5.6) and (5.7)).
The result again follows from Corollary O

6. FOURTH-ORDER PROPORTIONAL EQUATIONS
In equation (L.1)) let n = 2, and consider the fourth order expression
Ly(t) = (D*)? [p2(D*)?y] (t) — D* [p1Dy] (t) + po(t)y(t)- (6.1)
For y € D we have by definition
v =y, Yy =D, Yy =py(D)y,

y?¥ =p1 D% — D[y, ! = poy — D[]

It follows that
Ly =y

In this case, for y, z € D the Lagrange bracket of y and z is

{y, 2} (t) = y(0)2B(t) — yB(0)2(t) + yM (1) (1) — ¥ (1)1 (1),
and the Lagrange identity

)2
(=Ly — yL2) (t) = eo(t, a)D* [ 27 )1y
60(~, a)
holds. Using the same techniques as in previous sections, for each function y € D
we have the following system of relations at ¢t € Z,
2
D2 [y[O]} =yl D° [y[ll] — ﬂ’
b2

D [yP) = pryt™ =B D [yFI] = poy — Ly.

Thus the equation Ly(t) = g(t) for ¢t € Z where g : 7 — R is a continuous function
is equivalent to the first order system

Dey(t) = A@y(t) +g(t), tel,

where
y[O] 0 0O 1 0 0
(1] 0 0 0o L o0
S Y ~
= — A = P2
Y Y2 [ 9 0| 0 pp 0 -1
y[d] —g p 0 0 0

Together with the expression (6.1]), take boundary conditions of the form

4 4
colb,a) 3 migyt (@) +eoa,b) Y By U () =0, 1<i<d (62)
j=1 j=1
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These boundary conditions are self adjoint if and only if
0 = eola, ){u(8)2(6) — 5 (B)2(b) + (B2 (8) — 4 (5)211 1) |

— eob,){y(@)= (@) + ) (@)2(a) — g (a) 22 (@) + 4 ()210(@) }

for all y, 2 € D, . As is the case when o = 1, it follows that by joining any one of
the four types of conditions

(i) y(a) = yM(a) = 0

(it) y"(a) = H()
(i) y(a) = yP(a) =
(iv) y*)(a) = H() o

with any one of the four types of conditions
(i) y(b) =y (b) =

(it) y(b) = ”(b) 0,
(iii) y(b) =yPI(b) =
(iv) y®(b) = ”(b) 0,

yields the sixteen types of self-adjoint boundary conditions. The “periodic” bound-
ary conditions

eo(b, a)y(a) = eo(a,b)y(b), eo(b, a)y")(a) = eo(a, by (b),
co(b, @)y (a) = eo(a, by (b),  eo(b,a)yP(a) = eo(a, b)y™(b),
are also self adjoint.
Example 6.1. The Green function G(t,s) for
(D) [p(D*)?)(t), t € [a,b],

with the boundary conditions

y(a) = yM(a) =y (b) =y (b) = 0

is given by
Glts) = (t.8) [y (J "5@dad)dar ca<t<s<b,
7 eoltos) [ (J7 20 dar s <t

where hy(v,€) = fg) 1daw.
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