EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SUBLEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Communicated by Zhaosheng Feng

Abstract. In this article we study radial solutions of \(\Delta u + K(r)f(u) = 0 \)
on the exterior of the ball of radius \(R > 0 \), \(B_R \), centered at the origin in \(\mathbb{R}^N \)with \(u = 0 \) on \(\partial B_R \) where \(f \) is odd with \(f < 0 \) on \((0, \beta)\), \(f > 0 \) on \((\beta, \infty)\),\(f(u) \sim u^p \) with \(0 < p < 1 \) for large \(u \) and \(K(r) \sim r^{-\alpha} \) for large \(r \). We prove that if \(N > 2 \) and \(K(r) \sim r^{-\alpha} \) with \(2 < \alpha < 2(N-1) \) then there are no solutions with \(\lim_{r \to \infty} u(r) = 0 \) for sufficiently large \(R > 0 \). On the otherhand, if \(2 < N - p(N-2) < \alpha < 2(N-1) \) and \(k, n \) are nonnegative integers with \(0 \leq k \leq n \) then there exist solutions, \(u_k \), with \(k \) zeros on \((R, \infty)\) and \(\lim_{r \to \infty} u_k(r) = 0 \) if \(R > 0 \) is sufficiently small.

1. Introduction

In this article we study radial solutions of
\[\Delta u + K(r)f(u) = 0 \quad \text{in} \quad \mathbb{R}^N \setminus B_R, \]
\[u = 0 \quad \text{on} \quad \partial B_R, \]
\[u \to 0 \quad \text{as} \quad |x| \to \infty \]
where \(B_R \) is the ball of radius \(R > 0 \) centered at the origin in \(\mathbb{R}^N \) and \(K(r) > 0 \).We assume:

(H1) \(f \) is odd and locally Lipschitz, \(f < 0 \) on \((0, \beta)\), \(f > 0 \) on \((\beta, \infty)\), and \(f'(0) < 0 \).

(H2) There exists \(p \) with \(0 < p < 1 \) such that \(f(u) = |u|^{p-1}u + g(u) \) where\(\lim_{u \to \infty} \frac{g(u)}{|u|^p} = 0 \).

We let \(F(u) = \int_0^u f(s) \, ds \). Since \(f \) is odd it follows that \(F \) is even and from (H1) itfollows that \(F \) is bounded below by \(-F_0 < 0 \), \(F \) has a unique positive zero, \(\gamma \), with \(0 < \beta < \gamma \), and

(H3) \(-F_0 < F < 0 \) on \((0, \gamma)\), \(F > 0 \) on \((\gamma, \infty)\).

When \(f \) grows superlinearly at infinity - i.e. \(\lim_{u \to \infty} \frac{f(u)}{u} = \infty \), \(\Omega = \mathbb{R}^N \),and \(K(r) \equiv 1 \) then the problem (1.1), (1.3) has been extensively studied \([1, 3, 10, 12, 14]\).
Interest in the topic for this paper comes from recent papers [5, 11, 13] about solutions of differential equations on exterior domains. In [7-9] we studied (1.1)-(1.3) with \(K(r) \sim r^{-\alpha} \), \(f \) superlinear, and \(\Omega = \mathbb{R}^N \setminus B_R \) with various values for \(\alpha \). In those papers we proved existence of an infinite number of solutions - one with exactly \(n \) zeros for each nonnegative integer \(n \) such that \(u \to 0 \) as \(|x| \to \infty \) for all \(R > 0 \). In [6] we studied (1.1)-(1.3) with \(K(r) \sim r^{-\alpha} \), \(f \) bounded, and \(\Omega = \mathbb{R}^N \setminus B_R \). In this paper we consider the case where \(f \) grows sublinearly at infinity - i.e. \(\lim_{u \to \infty} \frac{f(u)}{u^p} = c_0 > 0 \) with \(0 < p < 1 \).

Since we are interested in radial solutions of (1.1)-(1.3) we assume that we use \(u(\alpha) = u(r) \) where \(x \in \mathbb{R}^N \) and \(r = |x| = \sqrt{x_1^2 + \cdots + x_N^2} \), so that \(u \) solves
\[
\nu''(r) + \frac{N-1}{r}\nu'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R, \infty) \text{ where } R > 0, \\
u(R) = 0, \nu'(R) = b \in \mathbb{R}.
\]

We will also assume that

(H4) there exist constants \(k_1 > 0, k_2 > 0 \), and \(\alpha \) with \(0 < \alpha < 2(N-1) \) such that
\[
k_1 r^{-\alpha} \leq K(r) \leq k_2 r^{-\alpha} \quad \text{on } [R, \infty).
\]

(H5) \(K \) is differentiable, on \([R, \infty)\), \(\lim_{r \to \infty} \frac{rK'}{K} = -\alpha \), and \(\frac{K'}{K} + 2(N-1) > 0 \). Note that (H5) implies \(r^{2(N-1)} K(r) \) is increasing. In this article we prove the following result.

Theorem 1.1. Let \(N > 2, 0 < p < 1 \), and \(2 < N - p(N-2) < \alpha < 2(N-1) \). Assuming (H1)-(H5) then given nonnegative integers \(k, n \) with \(0 \leq k \leq n \) then there exist solutions, \(u_k \), of (1.4)-(1.5) with \(k \) zeros on \((R, \infty)\) and \(\lim_{r \to \infty} u_k(r) = 0 \) if \(R > 0 \) is sufficiently small.

In addition we also prove:

Theorem 1.2. Let \(N > 2, 0 < p < 1 \) and \(2 < \alpha < 2(N-1) \). Assuming (H1)-(H5), there are no solutions of (1.4)-(1.5) such that \(\lim_{r \to \infty} u(r) = 0 \) if \(R > 0 \) is sufficiently large.

Note that for the superlinear problems studied in [7-9] we were able to prove existence for any \(R > 0 \) whereas in the sublinear case and in [6] we only get solutions if \(R \) is sufficiently small.

2. Preliminaries and proof of Theorem 1.2

From the standard existence-uniqueness theorem for ordinary differential equations [4] it follows there is a unique solution of (1.4)-(1.5) on \([R, R + \epsilon]\) for some \(\epsilon > 0 \). We then define
\[
E = \frac{1}{2} \nu'^2 + F(u).
\]
Using (H5) we see that
\[
E'' = -\frac{\nu'^2}{2rK} \left(2(N-1) + \frac{rK'}{K} \right) \leq 0 \quad \text{for } 0 < \alpha < 2(N-1).
\]
Thus \(E \) is nonincreasing. Hence it follows that
\[
\frac{1}{2} \frac{\nu'^2}{K} + F(u) = E(r) \leq E(R) = \frac{1}{2} \frac{b^2}{K(R)} \quad \text{for } r \geq R
\]
and so we see from (H2)–(H4) that \(u \) and \(u' \) are uniformly bounded wherever they are defined from which it follows that the solution of (1.4)–(1.5) is defined on \([R, \infty)\).

Lemma 2.1. Let \(N > 2 \), \(0 < p < 1 \), and \(0 < \alpha < 2(N-1) \). Assume (H1)–(H5) and suppose \(u \) satisfies (1.4)–(1.5) with \(b > 0 \). If \(u \) has a zero, \(z_b \), with \(u > 0 \) on \((R, z_b)\) or if \(u > 0 \) for \(r > R \) and \(\lim_{r \to \infty} u = 0 \) then \(u \) has a local maximum, \(M_b \), with \(R < M_b \), \(u' > 0 \) on \((R, M_b)\), \(M_b \to \infty \) as \(b \to \infty \), and \(u(M_b) \to \infty \) as \(b \to \infty \).

Proof. Since \(u(R) = 0 \) and \(u'(R) = b > 0 \) we see that \(u \) gets positive for \(r > R \) and if \(u \) has a zero, \(z_b \), or if \(u > 0 \) and \(\lim_{r \to \infty} u(r) = 0 \) then \(u \) has a critical point, \(M_b \), such that \(u' > 0 \) on \((R, M_b)\). Then \(u'(M_b) = 0 \) and \(u''(M_b) \leq 0 \). By uniqueness of solutions of initial value problems it follows that \(u''(M_b) < 0 \) and thus \(M_b \) is a local maximum. Next suppose there exists \(M_0 > R \) such that \(M_b \leq M_0 \) for all \(b > 0 \). Letting \(v_b(r) = \frac{u(r)}{b} \) then from (1.5) we have \(v_b(R) = 0 \), \(v'_b(R) = 1 \) and

\[
v''_b(r) + \frac{N-1}{r} v'_b(r) + K(r) \frac{f(bv_b(r))}{b} = 0 \quad \text{for } r \geq R. \tag{2.4}
\]

It follows from (2.1)–(2.2) that

\[
\left(\frac{1}{2} \frac{v''_b}{K} + \frac{F(bv_b)}{b^2} \right)' \leq 0 \quad \text{for } r \geq R
\]

and thus

\[
\frac{1}{2} \frac{v''_b}{K} + \frac{F(bv_b)}{b^2} \leq \frac{1}{2K(R)} \quad \text{for } r \geq R. \tag{2.5}
\]

It then follows from (2.5) and (H2)–(H4) that \(|v'_b| \) is uniformly bounded for large \(b > 0 \) on \([R, \infty)\). So there is a constant \(C_1 > 0 \) such that

\[
|v'_b| \leq C_1 \text{ for large } b > 0 \quad \text{and all } r \geq R. \tag{2.6}
\]

We now fix a compact set \([R, R_0]\). Then on \([R, R_0]\) we have by (2.6)

\[
|v_b| = |(r-R) + \int_R^r v'_b(t) \, dt| \leq (1 + C_1)(R_0 - R)
\]

so we see that \(|v_b| \) is uniformly bounded for large \(b \) on \([R, R_0]\).

In addition from (H1)–(H2) it follows there is a constant \(C_2 > 0 \) such that

\[
|f(u)| \leq C_2 |u|^p \quad \text{for all } u \tag{2.7}
\]

and therefore since the \(v_b \) are uniformly bounded on \([R, R_0]\) and \(0 < p < 1 \) it follows that

\[
|\frac{f(bv_b)}{b}| \leq C_2 |v_b|^p \quad \text{as } b \to \infty. \tag{2.8}
\]

Then from (2.4) and (2.8) we see that \(|v''_b| \) is uniformly bounded on \([R, R_0]\). So by the Arzela-Ascoli theorem there is a subsequence of \(v_b \) (still denoted \(v_b \)) such that \(v_b \to v_0 \) and \(v'_b \to v'_0 \) uniformly on \([R, R_0]\) as \(b \to \infty \). It then follows from (2.4) that \(v''_0 \) converges uniformly to \(v''_0 \) on \([R, R_0]\) and \(v''_0 + \frac{N-1}{r} v'_0 = 0 \). Since \(R_0 \) is arbitrary we see that \(v''_0 + \frac{N-1}{r} v'_0 = 0 \) on \([R, \infty)\). Thus, \(v''_0 v_0 = R^{N-1} \) and \(v_0 = R^{N-1} |v''_0|^r/\left(\frac{N-1}{r}\right)^{N-2} \). Now since \(M_b \leq M_0 \) for all \(b > 0 \) then a subsequence of \(M_b \) converges to some \(M \) and since \(v'_b(M_b) = 0 \) it follows that \(v'_0(M) = 0 \). However this contradicts that \(v'_0 = \frac{R^{N-1}}{r^{N-2}} > 0 \). Therefore our assumption that the \(M_b \) are bounded is false and so we see \(M_b \to \infty \) as \(b \to \infty \).

Next we see that since \(M_b \to \infty \) then \(M_b > 2R \) if \(b \) is sufficiently large and since \(u \) is increasing on \([R, M_b]\) then \(\frac{u(M_b)}{b} \geq \frac{u(2R)}{b} = v_b(2R) \to v_0(2R) > 0 \) for
sufficiently large \(b \). Thus \(u(M_b) > \frac{v_0(R_1)}{2} b \) for sufficiently large \(b \) and so we see that \(u(M_b) \to \infty \) as \(b \to \infty \). This completes the proof. \(\square \)

Lemma 2.2. Let \(N > 2 \), \(0 < p < 1 \), \(2 < \alpha < 2(N - 1) \), and assume (H1)–(H5). If \(u(z_b) = 0 \) with \(u > 0 \) on \((R, z_b)\) or \(u > 0 \) on \((R, \infty)\) with \(\lim_{r \to \infty} u = 0 \) then

\[
[u(M_b)]^\frac{1}{p} M_b^{\frac{p}{2} - 1} \leq \frac{k_2}{2 - 1} \sqrt[2-1]{\frac{1}{p + 1} + \frac{F_0}{\gamma^{p + 1}}}. \tag{2.9}
\]

Proof. We first show that if \(u(z_b) = 0 \) with \(u > 0 \) on \((M_b, z_b)\) then \(u' < 0 \) on \((M_b, z_b)\) and if \(u > 0 \) on \((M_b, \infty)\) with \(\lim_{r \to \infty} u(r) = 0 \) then \(u' < 0 \) on \((M_b, \infty)\). In the first case, if \(u \) has a positive local minimum, \(m_b \), with \(M_b < m_b < z_b \) then \(u'(m_b) = 0 \), \(u''(m_b) \leq 0 \), so \(f(u(m_b)) \geq 0 \) which implies \(0 < u(m_b) \leq \beta \). On the other hand, since \(E \) is nonincreasing \(0 > F(u(m_b)) = E(m_b) \geq E(z_b) = \frac{1}{2} \frac{u^2(z_b)}{K(z_b)} \geq 0 \) which is impossible. Secondly, suppose \(u > 0 \) on \((R, \infty)\) and \(\lim_{r \to \infty} u(r) = 0 \). Since \(E \) is nonincreasing it follows that \(\lim_{r \to \infty} E(r) \) exists and since \(\frac{1}{2} \frac{u^2}{K} \geq 0 \) and \(F(u(r)) \to 0 \) as \(r \to \infty \) we see that \(\lim_{r \to \infty} E(r) \geq 0 \). Thus \(E(r) \geq 0 \) for all \(r \geq R \).

Next, it follows from (2.1)-(2.2) that \(E(t) \leq E(M_b) \) for \(t \geq M_b \). Rewriting this inequality we obtain

\[
\frac{|u'(t)|}{\sqrt{2} \sqrt{F(u(M_b)) - F(u(t))}} \leq \sqrt{K} \tag{2.10}
\]

If \(u(z_b) = 0 \) then integrating (2.10) on \((M_b, z_b)\) and using that \(u' < 0 \) on \((M_b, z_b)\) gives

\[
\int_0^{u(M_b)} \frac{dt}{\sqrt{F(u(M_b)) - F(t)}} = \int_{z_b}^{M_b} \frac{-u'(t)}{2 \sqrt{F(u(M_b)) - F(u(t))}} dt \\ \leq \int_{M_b}^{z_b} \sqrt{K} dt \\ \leq \frac{k_2}{2 - 1} \left(M_b^{1 - \frac{2}{p}} - z_b^{1 - \frac{2}{p}}\right) \\ \leq \frac{k_2}{2 - 1} M_b^{1 - \frac{2}{p}}. \tag{2.11}
\]

Similarly if \(u(r) > 0 \) and \(\lim_{r \to \infty} u = 0 \) then integrating (2.10) on \((M_b, \infty)\) and using that \(u' < 0 \) on \((M_b, \infty)\) we again obtain

\[
\int_0^{u(M_b)} \frac{dt}{\sqrt{F(u(M_b)) - F(t)}} \leq \frac{k_2}{2 - 1} M_b^{1 - \frac{2}{p}}. \tag{2.12}
\]

Next from (H2), (H3) and (2.7) it follows that \(-F_0 \leq F(u) \leq \frac{C_2 \gamma}{p + 1} \) for all \(u \). Therefore estimating the left-hand side of (2.11) gives

\[
\int_0^{u(M_b)} \frac{dt}{\sqrt{F(u(M_b)) - F(t)}} \geq \frac{u(M_b)}{\sqrt{\frac{C_2}{p + 1} \gamma} + \frac{F_0}{\gamma^{p + 1}}} = \frac{\left[u(M_b)\right]^{\frac{1}{p}}}{\gamma^{p + 1} + \frac{p}{\gamma}}. \tag{2.12}
\]

Also from (2.1)-(2.2) if \(u(z_b) = 0 \) then we have \(F(u(M_b)) = E(M_b) \geq E(z_b) = \frac{1}{2} \frac{u^2(z_b)}{K(z_b)} \geq 0 \) and so \(u(M_b) \geq \gamma \). On the other hand, if \(u > 0 \) and \(\lim_{r \to \infty} u = 0 \)
then as we saw earlier $E(r) \geq 0$ for all $r \geq R$. Thus $F(u(M_b)) = E(M_b) \geq 0$ and again we see $u(M_b) \geq \gamma$. Now using (2.12) and rewriting gives

$$1 - \frac{p}{2} M_b^2 - 1 \leq \frac{k_2}{\alpha - 1} \sqrt{\frac{C_2}{p + 1} + \frac{F_0}{|u(M_b)|^{p+1}}} \leq \frac{k_2}{\alpha - 1} \sqrt{\frac{1}{p + 1} + \frac{F_0}{\gamma^{p+1}}}. \quad (2.13)$$

This completes the proof. \hfill \Box

Proof of Theorem 1.2. If u has a zero, z_b, with $u > 0$ on (R, z_b) or $u > 0$ on (R, ∞) with $\lim_{r \to \infty} u(r) = 0$ then by Lemmas 2.1 and 2.2 we know that u has a local maximum, M_b, with $R < M_b$ and $u' > 0$ on (R, M_b). In addition, from the proof of Lemma 2.2 we have $u(M_b) \geq \gamma$. Combining this with (2.13) and the fact that $\alpha > 2$ and $0 < p < 1$ we obtain

$$\gamma^{\frac{1-p}{2}} R^{2q-1} \leq |u(M_b)|^{1-p} M_b^{2q-1} \leq \frac{k_2}{\alpha - 1} \sqrt{\frac{1}{p + 1} + \frac{F_0}{\gamma^{p+1}}}. \quad (2.14)$$

Thus we see that if R is sufficiently large then (2.14) is violated and so we obtain a contradiction. This completes the proof of Theorem 1.2. \hfill \Box

3. PROOF OF THEOREM 1.1

We now turn to the proof of existence for $N > 2, 0 < p < 1, 2 < N - p(N-2) < \alpha < 2(N-1)$ and $R > 0$ sufficiently small. First we make the change of variables:

$$u(r) = u_1(r^{\alpha-2}).$$

Using (1.4) we see that u_1 satisfies

$$u_1'' + h(t) f(u_1) = 0 \quad (3.1)$$

where it follows from (H4)–(H5) that:

$$0 < h(t) = \frac{t^{2(N-1)\alpha}}{(N-2)^2} K(t^{\frac{1-\alpha}{\alpha}}) \quad \text{and} \quad h'(t) < 0 \quad \text{for} \quad t > 0, \quad (3.2)$$

$$u_1(R^{2-N}) = 0 \quad \text{and} \quad u_1'(R^{2-N}) = -\frac{bR^{N-1}}{N-2} < 0. \quad (3.3)$$

In addition, from (H4) we have

$$\frac{k_1}{(N-2)^2 t^q} \leq h(t) \leq \frac{k_2}{(N-2)^2 t^q} \quad \text{for all} \quad t > 0, \quad \text{where} \quad q = \frac{2(N-1) - \alpha}{N-2}. \quad (3.4)$$

Note: Since $2 < \alpha < 2(N-1), N > 2$, and $q = \frac{2(N-1) - \alpha}{N-2}$ it follows that $0 < q < 2$.

Now instead of considering (3.1) with (3.3) we consider (3.1) with

$$u_1(0) = 0, \quad u_1'(0) = b_1 > 0. \quad (3.5)$$

Integrating (3.1) twice on $(0, t)$ and using (3.5) we see that a solution of (3.1), (3.5) is equivalent to a solution of:

$$u_1 = b_1 t - \int_0^t \int_0^s h(x) f(u_1) \, dx \, ds. \quad (3.6)$$
Letting \(u_1 = tv_1 \) we see that a solution of (3.6) is equivalent to a solution of

\[
v_1 = b_1 - \frac{1}{t} \int_0^t \int_0^s h(x)f(xv_1) \, dx \, ds.
\]

(3.7)

Now we define

\[
Tv_1 = b_1 - \frac{1}{t} \int_0^t \int_0^s h(x)f(xv_1) \, dx \, ds.
\]

(3.8)

Let \(0 < \epsilon < 1 \). Denoting \(\|w\| = \sup_{[0, \epsilon]} |w(x)| \) we let

\[
B = \{ v \in C[0, \epsilon] \mid \|v - b_1\| \leq 1 \}
\]

where \(C[0, \epsilon] \) is the set of continuous functions on \([0, \epsilon]\). It follows from (H1)–(H2) that there exists \(L > 0 \) such that

\[
|f(u)| \leq L|u| \quad \text{for all } u.
\]

(3.9)

Then by (3.4), (3.8)-(3.9), and since \(q < 2 \) as well as \(|v_1| \leq 1 + b_1 \):

\[
|Tv_1 - b_1| \leq \frac{Lk_2}{(N-2)^2} \int_0^t \int_0^s x^{-q}x|v_1| \, dx \, ds
\]

\[
\leq \frac{Lk_2(1 + b_1)^2}{(2-q)(3-q)(N-2)^2}
\]

\[
\leq \frac{Lk_2}{(2-q)(3-q)(N-2)^2}.
\]

Thus for sufficiently small \(\epsilon > 0 \) we have \(T : B \rightarrow B \). Next we see by the mean value theorem, (3.4), and (3.9) that we have

\[
|Tv_1 - Tv_2| = \frac{1}{t} \int_0^t \int_0^s h(x)[f(xv_1) - f(xv_2)] \, dx \, ds
\]

\[
\leq \frac{L}{t} \int_0^t \int_0^s xh(x)|v_1 - v_2| \, dx \, ds
\]

\[
\leq \frac{Lk_2}{(N-2)^2} \|v_1 - v_2\| \frac{1}{t} \int_0^t \int_0^s xx^{-q} \, dx \, ds
\]

\[
\leq \frac{Lk_2}{(2-q)(3-q)(N-2)^2} \|v_1 - v_2\|.
\]

Thus for small enough \(\epsilon > 0 \) we see that \(T \) is a contraction for any \(b_1 > 0 \) and so by the contraction mapping principle there is a solution of (3.7) and hence of (3.1), (3.5) on \([0, \epsilon]\) for some \(\epsilon > 0 \).

Next from (3.7) and (3.9) we have

\[
\frac{|u_1|}{t} = |v_1| \leq b_1 + \frac{L}{t} \int_0^t \int_0^s xh(x)|v_1(x)| \, dx \, ds
\]

(3.10)

\[
\leq b_1 + \frac{Lk_2}{(N-2)^2} \int_0^t \int_0^s x^{-q}|v_1(x)| \, dx \, ds
\]

\[
\leq b_1 + \frac{k_2 L}{(N-2)^2} \int_0^t x^{-q}|v_1(x)| \, dx.
\]

(3.11)

Now let \(w_1 = \int_0^s s^{-q}|v_1(s)| \, ds \). Then

\[
w_1' = t^{1-q}|v_1(t)| = t^{-q}|u_1(t)|
\]

(3.12)
and from (3.10)–(3.12) we obtain
\[
 w_1' - \frac{k_2 L}{(N - 2)^2} t^{1-q} w_1 \leq b_1 t^{1-q}. \tag{3.13}
\]
Multiplying (3.13) by \(\mu(t) = e^{-\frac{k_2 L t^{2-q}}{(2-q)(N-2)^2}} \leq 1\), integrating on \([0, t]\), and rewriting gives
\[
w_1 \leq \frac{b_1}{\mu(t)} \int_0^t s^{1-q} \mu(s) \, ds \leq \frac{b_1}{(2-q)} t^{2-q}. \tag{3.14}
\]
Then from (3.12)–(3.14) we obtain
\[
u_1 \leq \left(\frac{k_2 L}{(2-q)(N-2)^2}\right) \frac{b_1 t^{3-q}}{\mu(t)} + b_1 t = b_1 (t + B(t)t^{3-q}) \tag{3.15}
\]
where
\[
B(t) = \left(\frac{k_2 L}{(2-q)(N-2)^2}\right) \frac{1}{\mu(t)}. \tag{3.16}
\]
Note that \(\mu(t)\) is decreasing and continuous hence \(B(t)\) is increasing and continuous.

Next it follows from (3.6) that
\[
u_1' = b_1 - \int_0^t h(x) f(u_1) \, dx \tag{3.17}
\]
and thus from (3.4), (3.15), (3.17), and since \(B(t)\) is increasing:
\[
|u_1'| \leq b_1 + \frac{k_2 L}{(N-2)^2} \int_0^t x^{-q} b_1 (x + B(x)x^{3-q}) \, dx \\
\leq b_1 + \frac{k_2 L b_1}{2(N-2)^2(2-q)} (2t^{2-q} + B(t)t^{4-2q}). \tag{3.18}
\]

Thus from (3.15) and (3.18) we see that \(u_1\) and \(u_1'\) are bounded on \([0, t]\) and so it follows that the solution of (3.1), (3.5) exists on \([0, t]\). Since \(t\) is arbitrary it follows that the solution of (3.1), (3.5) exists on \([0, \infty)\).

Lemma 3.1. Let \(N \geq 2\), \(0 < p < 1\), and \(2 < \alpha < 2(N-1)\). Assuming (H1)–(H5) and that \(u_1\) solves (3.1), (3.5) then there exists \(t_{b_1} > 0\) such that \(u_1(t_{b_1}) = \beta\) and \(0 < u_1 < \beta\) on \((0, t_{b_1})\). In addition, \(u_1'(t) > 0\) on \([0, t_{b_1}]\).

Proof. Since \(u_1'(0) = b_1 > 0\) we see that \(u_1\) is initially increasing, positive, and less than \(\beta\). On this set \(f(u_1) < 0\) and so by (3.1) we have \(u_1'' > 0\). Thus by (3.5) we have \(u_1' > b_1 > 0\) when \(0 < u_1 < \beta\) and so on this set we have \(u_1 > b_1 t\). Since \(b_1 t\) exceeds \(\beta\) for sufficiently large \(t\) we see then that there exists \(t_{b_1} > 0\) such that \(u_1(t_{b_1}) = \beta\) and \(0 < u_1 < \beta\) on \((0, t_{b_1})\). This completes the proof. \(\square\)

Lemma 3.2. Let \(N \geq 2\), \(0 < p < 1\), and \(2 < \alpha < 2(N-1)\). Assuming (H1)–(H5) and that \(u_1\) solves (3.1), (3.5) then \(t_{b_1} \to \infty\) as \(b_1 \to 0^+\).

Proof. Evaluating (3.15) at \(t = t_{b_1}\) gives:
\[
\beta = u_1(t_{b_1}) \leq b_1 (t_{b_1} + B(t_{b_1})t_{b_1}^{3-q}). \tag{3.19}
\]
Since \(2 < \alpha < 2(N-1)\) it then follows from the note after (3.4) that \(0 < q < 2\). Now if \(t_{b_1}\) is bounded as \(b_1 \to 0^+\) then the right-hand side of (3.19) goes to 0 as \(b_1 \to 0^+\) which violates (3.19). Thus we obtain a contradiction and so we see that \(t_{b_1} \to \infty\) as \(b_1 \to 0^+\). This completes the proof. \(\square\)
Lemma 3.3. Let $N > 2$, $0 < p < 1$, and $N - p(N - 2) < \alpha < 2(N - 1)$. Assuming (H1)--(H5) and that u_1 solves (3.1)--(3.5) then u_1 has a local maximum, M_{b_1}, on $(0, \infty)$.

Proof. From Lemma 3.1 it follows that there exists $t_{b_1} > 0$ such that $u_1(t_{b_1}) = \beta$ and $u_1' > 0$ on $[0, t_{b_1})$. Now if u_1 does not have a local maximum then $u_1' \geq 0$ for $t > t_{b_1}$ and so $u_1 \geq u_1(t_{b_1} + \delta) > \beta > 0$ for $t > t_{b_1} + \delta$ and some $\delta > 0$. Then from (H2) we see that there is a $C_3 > 0$ such that $f(u_1) \geq C_3$ on $|t_{b_1} + \delta, \infty)$. Thus

$$-u_1'' = h(t)f(u_1) \geq C_3 h(t) \text{ for } t > t_{b_1} + \delta.$$ (3.20)

We now divide the rest of the proof into 3 cases.

Case 1: $N < \alpha < 2(N - 1)$ In this case we see from (3.4) that $0 < q < 1$ so integrating (3.20) on $(t_{b_1} + \delta, t)$ and using (3.4) gives

$$u_1' \leq u_1'(t_{b_1} + \delta) - \frac{k_1 C_3}{(1 - q)(N - 2)^2} (t^{1-q} - (t_{b_1} + \delta)^{1-q}) \to -\infty \text{ as } t \to \infty.$$ (3.21)

Thus u_1' gets negative which contradicts that $u_1' \geq 0$ for $t > 0$ and so u_1 must have a local maximum.

Case 2: $\alpha = N$ In this case we have $q = 1$ by (3.4) and so again integrating (3.20) on $(t_{b_1} + \delta, t)$ we obtain

$$u_1' \leq u_1'(t_{b_1} + \delta) - \frac{k_1 C_3}{(N - 2)^2} (\ln(t) - \ln(t_{b_1} + \delta)) \to -\infty \text{ as } t \to \infty.$$ (3.22)

which again contradicts that $u_1' \geq 0$ for $t > 0$. Thus u_1 must have a local maximum.

Case 3: $N - p(N - 2) < \alpha < N$ We denote

$$E_1 = \frac{1}{2} \frac{u_1''}{h(t)} + F(u_1)$$ (3.23)

and observe from (3.1)--(3.2) that

$$E_1' = \left(\frac{1}{2} \frac{u_1''}{h(t)} + F(u_1)\right)' = -\frac{u_1'^2}{2h^2} \geq 0.$$ (3.24)

In addition we see from (3.4) that $E_1(0) = 0$ and so $E_1(t) \geq 0$ for $t \geq 0$.

We suppose now that u_1 is increasing for $t > t_{b_1}$. We first show that there exists $t_{b_2} > t_{b_1}$ such that $u(t_{b_2}) = \gamma$. So we suppose by the way of contradiction that $0 < u_1 < \gamma$ and $u_1' \geq 0$ for $t > t_{b_1}$.

Then from (3.1)--(3.2) and (H3) we have

$$\left(\frac{1}{2} u_1'' + h(t) F(u_1)\right)' = h'(t) F(u_1) \geq 0 \text{ when } 0 \leq u_1 \leq \gamma.$$ (3.25)

Now we recall from (H1) that $\lim_{u \to 0} \frac{F(u)}{u^2} = \frac{f''(0)}{2}$. Also since $u_1(0) = 0$ and $u_1'(0) = b_1$ then $\lim_{u \to 0^+} \frac{u}{t} = b_1$. Therefore for small positive t and (3.4) we have

$$0 \leq h(t) |F(u_1)| = t^2 h(t) \frac{|F(u_1)|}{u_1^2} \leq \frac{|f''(0)| k_2 b_1^2 t^{2-q}}{(N - 2)^2} \to 0$$ (3.26)

as $t \to 0^+$ since $q < 2$. Therefore, integrating (3.23) on $(0, t)$ and using (3.24) we obtain

$$\frac{1}{2} u_1'' + h(t) F(u_1) \geq \frac{1}{2} b_1^2 \text{ when } 0 \leq u_1 \leq \gamma.$$ (3.27)
In addition, since $0 \leq u_1 \leq \gamma$ it follows that $h(t)F(u_1) \leq 0$ and thus from (3.28),
\[u_1' \geq b_1 \quad \text{when } 0 \leq u_1 \leq \gamma. \] (3.26)

Integrating on $(0, t)$ we obtain
\[u_1 \geq b_1 t \rightarrow \infty \text{ as } t \rightarrow \infty \]
- a contradiction since we assumed $u_1 < \gamma$. Thus there exists $t_{b_2} > t_{b_1}$ such that $u(t_{b_2}) = \gamma$ and $u_1' \geq b_1 > 0$ on $[0, t_{b_2}]$ by (3.26).

We show now that $u_1(t) \rightarrow \infty$ as $t \rightarrow \infty$. If not then u_1 is bounded from above and so there exists $Q > \gamma$ such that $\lim_{t \rightarrow \infty} u_1(t) = Q$. Returning to (3.1) we see that this implies:
\[\lim_{t \rightarrow \infty} \frac{u_1''}{h(t)} = -f(Q) < 0. \] (3.27)

In particular, $u_1'' < 0$ for large t and so u_1' is decreasing for large t. Since $u_1' > 0$ for large t it follows that $\lim_{t \rightarrow \infty} u_1'$ exists. This limit must be zero otherwise this would imply $u_1 \rightarrow \infty$ as $t \rightarrow \infty$ contradicting the assumption that u_1 is bounded. Thus $\lim_{t \rightarrow \infty} u_1' = 0$. Next denoting $H(t) = \int_t^\infty h(s) \, ds$ we see that since $N - p(N - 2) < \alpha < N$ and $q = \frac{2(N-1)-\alpha}{N-2}$ this implies:
\[1 < q < 1 + p < 2. \] (3.28)

Therefore by (3.4) we see that $h(t)$ is integrable at infinity so $H(t)$ is defined. Then by (3.27) and L’Hôpital’s rule we see that
\[\lim_{t \rightarrow \infty} \frac{u_1'}{H(t)} = \lim_{t \rightarrow \infty} -\frac{u_1''}{h(t)} = f(Q) > 0. \] (3.29)

Then from (3.4) and (3.28)-(3.29) we see
\[u_1' \geq f(Q)H(t) \geq \frac{k_1f(Q)}{2(q-1)(N-2)} t^{1-q} \quad \text{for large } t. \] (3.30)

Now integrating (3.30) on (t_0, t) where t_0 and t are sufficiently large gives
\[u_1 \geq u_1(t_0) + \frac{k_1f(Q)}{2(q-1)} \frac{t^{2-q}}{(2-q)(N-2)^2} \rightarrow \infty \quad \text{as } t \rightarrow \infty \text{ since } q < 2 \]
- a contradiction since we assumed u_1 was bounded. Thus if $u_1' > 0$ for $t > 0$ then it must be that $u_1 \rightarrow \infty$ as $t \rightarrow \infty$.

Next recalling (3.23) we have
\[\left(\frac{1}{2} u_1'^2 + h(t)F(u_1) \right)' = h'(t)F(u_1) < 0 \quad \text{when } u_1 > \gamma. \] (3.31)

Integrating this on (t_{b_2}, t) gives
\[\frac{1}{2} u_1'^2 + h(t)F(u_1) \leq \frac{1}{2} u_1'^2(t_{b_2}) \quad \text{for } t > t_{b_2}. \] (3.32)

On (t_{b_2}, t) we have $h(t)F(u_1) > 0$ and thus from (3.32):
\[|u_1'| < |u_1'(t_{b_2})| \quad \text{for } t > t_{b_2}. \] (3.33)

We claim now that
\[\lim_{t \rightarrow \infty} \frac{t^2 h(t)F(u_1)}{u_1} = \infty. \] (3.34)

Integrating (3.33) on (t_{b_2}, t) gives
\[u_1 < \gamma + (t-t_{b_2}) |u_1'(t_{b_2})| \leq C_4 t \quad \text{for some } C_4 > 0 \text{ for large } t. \] (3.35)
Next from (H2) we have
\[
\frac{f(u_1)}{u_1^p} \geq 1 - \epsilon \text{ for large } u_1.
\]
Thus by (3.35),
\[
\frac{f(u_1)}{u_1} \geq \frac{(1-\epsilon)u_1^p}{u_1} = \frac{(1-\epsilon)}{u_1^{1-p}} \geq \frac{(1-\epsilon)}{C_4^{1-p}t^{1-p}} \text{ for large } t. \tag{3.36}
\]
Therefore by (3.4), (3.28), and (3.36):
\[
\frac{t^2 h(t) f(u_1)}{u_1} \geq \frac{k_1(1-\epsilon)}{C_4^{1-p}(N-2)^2} \frac{t^{1-p}}{t^{1-p}} \to \infty,
\]
since \(1 + p > q\). This establishes (3.34).

Next let (3.4) and that \(u_1\) solves (3.34), (3.28), and (3.36):\]
\[
\frac{t^2 h(t) f(u_1)}{u_1} = \frac{k_1(1-\epsilon)}{C_4^{1-p}(N-2)^2} \frac{t^{1-p}}{t^{1-p}} \to \infty,
\]
since \(1 + p > q\). This establishes (3.34).

Next we rewrite (3.1) as
\[
u_1'' + \frac{t^2 h(t) f(u_1) u_1}{t^2} = 0. \tag{3.37}
\]
Now it follows from (3.34) that we may choose \(t_0\) sufficiently large so that
\[
\frac{t^2 h(t) f(u_1)}{u_1} \geq A > \frac{1}{4} \text{ on } [t_0, \infty).
\]

Next let \(y_1\) be the solution of
\[
y_1'' + \frac{A y_1}{t^2} = 0 \tag{3.38}
\]
with \(y_1(t_0) = u_1(t_0) = \gamma\) and \(y_1'(t_0) = u_1'(t_0) > 0\). It follows then for some constants \(d_1 \neq 0\) and \(d_2\) that
\[
y_1 = d_1 \sqrt{t} \left(\sin \left(\ln \left(\sqrt{A} - \frac{1}{4} \right) + d_2 \right) \right)
\]
and so clearly \(y_1\) has an infinite number of local extrema on \([t_0, \infty)\). Consider now the interval \([t_0, M]\) such that \(y_1 > 0, y_1' > 0\) on \([t_0, M]\) and \(y_1'(M) = 0\). We claim now that \(u_1\) must get negative on \([t_0, M]\). So suppose not. Then \(u_1' \geq 0\) on \([t_0, M]\).

Then multiplying (3.37) by \(y_1\), multiplying (3.38) by \(u_1\), and subtracting we obtain
\[
(y_1 u_1' - y_1'u_1)' + \left(\frac{t^2 h(t) f(u_1)}{u_1} - A \right) \frac{y_1 u_1}{t^2} = 0.
\]
Integrating this on \([t_0, M]\) gives
\[
y_1(M)u_1'(M) + \int_{t_0}^{M} \left(\frac{t^2 h(t) f(u_1)}{u_1} - A \right) \frac{y_1 u_1}{t^2} \, dt = 0. \tag{3.39}
\]
The integral term in (3.39) is positive by (3.34) and also \(y_1(M)u_1'(M) \geq 0\) yielding a contradiction. Therefore we see that \(u_1\) must have a maximum, \(M_{b_1} > 0\), and \(u_1' > 0\) on \([0, M_{b_1}]\). This completes the proof. \(\square\)

Lemma 3.4. Let \(N > 2, 0 < p < 1\), and \(N - p(N - 2) < \alpha < 2(N - 1)\). Assuming (H1)-(H5) and that \(u_1\) solves (3.1), (3.5), then there exists \(t_0 > M_{b_1}\) such that \(u_1(t_0) = \frac{2 + \epsilon}{2}^\frac{1}{2}\) and \(u_1' < 0\) on \([M_{b_1}, t_0]\).
Proof. If \(u_1 \geq \frac{\beta + \gamma}{2} \) for all \(t \geq M_{b_i} \), then \(f(u_1) > 0 \) for \(t \geq M_{b_i} \). Then from (3.1) it follows that \(u''_1 < 0 \) and thus \(u'_1(t) \leq u'_1(t_0) < 0 \) for \(t > t_0 > M_{b_i} \). Integrating this inequality on \((t_0,t)\) gives

\[
u_1(t) \leq u_1(t_0) + u'_1(t_0)(t - t_0) \to -\infty \quad \text{as } t \to \infty
\]

which gives a contradiction since we assumed \(u_1 \geq \frac{\beta + \gamma}{2} \) for all \(t \geq M_{b_i} \). Thus there exists \(t_{b_i} > M_{b_i} \) such that \(u_1(t_{b_i}) = \frac{\beta + \gamma}{2}, u_1 > \frac{\beta + \gamma}{2} \), and \(u'_1 < 0 \) on \((M_{b_i}, t_{b_i})\). □

Lemma 3.5. Let \(N > 2, 0 < p < 1, \) and \(N - p(N - 2) < \alpha < 2(N - 1) \). Assuming (H1)–(H5) and that \(u_1 \) solves (3.1), (3.5) then there exists \(z_{1,b_i} > M_{b_i} \) such that \(u_1(z_{1,b_i}) = 0 \). In fact, \(u_1 \) has an infinite number of zeros on \((0, \infty)\).

Proof. Suppose now by the way of contradiction that \(0 < u_1 < \gamma \) and thus \(F(u_1) < 0 \) for \(t > t_{b_i} \). Then from (3.21)–(3.22) we have

\[rac{1}{2} u_1^2 + F(u_1) \geq F(u_1(M_{b_i})) > 0 \quad \text{for } t \geq M_{b_i}.
\]

Therefore by (3.4) and (3.40) we have

\[u'_1^2 \geq 2h(t)F(u_1(M_{b_i})) \geq \frac{2k_1F(u_1(M_{b_i}))}{(N-2)^2}\]

for \(t > t_{b_i} \). Thus:

\[-u'_1 \geq C_5 t^{-q/2} \quad \text{where } C_5 = \frac{\sqrt{2k_1F(u_1(M_{b_i}))}}{N-2} > 0 \quad \text{for } t > t_{b_i}.
\]

Integrating (3.41) on \((t_{b_i}, t)\) gives

\[u_1 \leq \frac{\beta + \gamma}{2} - C_5(t^{-\frac{q}{2}} - t_{b_i}^{-\frac{q}{2}}) \to -\infty \quad \text{as } t \to \infty \text{ since } q < 2.
\]

Thus \(u_1 \) gets negative contradicting that \(u_1 > 0 \) on \((0, \infty)\). Hence there exists \(z_{1,b_i} > M_{b_i} \) such that \(u_1(z_{1,b_i}) = 0 \) and \(u'_1 < 0 \) on \((M_{b_i}, z_{1,b_i})\).

In a similar way to Lemma 3.3 we can show that \(u_1 \) has a negative local minimum, \(m_{b_i} > z_{1,b_i} \), and similar to Lemma 3.5 we can show that \(u_1 \) has a second zero \(z_{2,b_i} > m_{b_i} \). It then in fact follows that \(u_1 \) has an infinite number of zeros \(z_{n,b_i} \). This completes the proof. □

Proof of Theorem 1.1. By continuous dependence on initial conditions it follows that \(z_{1,b_i} \) is a continuous function of \(b_i \). In addition, by Lemma 3.2 it follows that \(t_{b_i} \to 0 \) as \(b_i \to 0^+ \) and since \(z_{1,b_i} > t_{b_i} \) it follows that \(z_{1,b_i} \to 0^+ \) as \(b_i \to 0^+ \).

So now let \(k,n \) be nonnegative integers with \(0 \leq k \leq n \). Choose \(R > 0 \) sufficiently small so that \(z_{1,b_i} < \cdots < z_{n,b_i} < R^{2-N} \). Then by the intermediate value theorem there exists a smallest value of \(b_i > 0 \), say \(b_{1,k} \), such that \(z_{k,b_{1,k}} = R^{2-N} \). Then \(u_1(t,b_{1,k}) \) is a solution of (3.1) and (3.5) such that \(u_1(t,b_{1,k}) \) has \(k \) zeros on \((0, R^{2-N})\).

Finally defining

\[U_k(r) = (-1)^k u_1(r^{2-N}, b_{1,k})
\]

we see that \(U_k \) solves (1.4), \(U_k \) has \(k \) zeros on \((R, \infty)\), and \(\lim_{r \to \infty} U_k(r) = 0 \). This completes the proof. □
Note: A crucial step in proving Theorem 1.1 is Lemma 3.3 which says that if $N - p(N - 2) < \alpha < 2(N - 1)$ then every solution of (3.1), (3.5) must have a local maximum. We conjecture that a similar lemma does not hold for $2 < \alpha < N - p(N - 2)$ because for an appropriate constant $c > 0$ the function $ct^{(N-2)(1-p)}$ is a monotonically increasing solution of the model equation

$$u'' + \frac{1}{t^q}u^p = 0$$

with $q = \frac{2(N-1)-\alpha}{N-2}$ and $0 < p < 1$.

References

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA
E-mail address: iaia@unt.edu