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Abstract. This article concerns the existence of non-trivial weak solutions

for a class of non-homogeneous Neumann problems. The approach is through
variational methods and critical point theory in Orlicz-Sobolev spaces. We

investigate the existence of two solutions for the problem under some alge-

braic conditions with the classical Ambrosetti-Rabinowitz condition on the
nonlinear term and using a consequence of the local minimum theorem due

to Bonanno and mountain pass theorem. Furthermore, by combining two al-

gebraic conditions on the nonlinear term and employing two consequences of
the local minimum theorem due Bonanno we ensure the existence of two solu-

tions, by applying the mountain pass theorem of Pucci and Serrin, we set up
the existence of the third solution for the problem.

1. Introduction

In this paper we consider the non-homogeneous Neumann problem

− div(α(|∇u(x)|)∇u(x)) + α(|u(x)|)u(x) = λf(x, u(x)) in Ω,
∂u

∂ν
= 0 on ∂Ω.

(1.1)

Here, Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, ν is the
outer unit normal to ∂Ω, f : Ω×R→ R is an L1-Carathéodory function such that
f(x, 0) 6= 0 for all x ∈ Ω, λ is a positive parameter and α : (0,∞)→ R is such that
the mapping ϕ : R→ R defined by

ϕ(t) =

{
α(|t|)t, for t 6= 0,
0, for t = 0,

is an odd, strictly increasing homeomorphism from R onto R.
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It should be noticed that if ϕ(t) = |t|p−2t, then problem (1.1) becomes the
well-known Neumann boundary value problem involving the p-Laplacian equation

−∆pu+ |u|p−2u = λf(x, u(x)) in Ω,
∂u

∂ν
= 0 on ∂Ω.

(1.2)

This problem arises in the study of mathematical models in biological formation
theory governed by diffusion and cross-diffusion systems [37]. We refer to the recent
monograph by Kristály et al. [31] for several related results and examples.

In recent years, quasilinear elliptic partial differential equations involving non-
homogeneous differential operators are becoming increasingly important in applica-
tions in many fields of mathematics, such as approximation theory, mathematical
physics (electrorheological fluids, nonlinear elasticity and plasticity), calculus of
variations, nonlinear potential theory, the theory of quasi-conformal mappings, dif-
ferential geometry, geometric function theory, probability theory (for instance see
[19, 24, 32, 41, 43, 46]). Another recent application which uses non-homogeneous
differential operators can be found in the framework of image processing (see [14]).
The study of nonlinear elliptic equations involving quasilinear homogeneous type
operators is based on the theory of Sobolev spaces Wm,p(Ω) in order to find weak
solutions. In the case of non-homogeneous differential operators, the natural set-
ting for this approach is the use of Orlicz-Sobolev spaces. These spaces consist of
functions that have weak derivatives and satisfy certain integrability conditions.
Many properties of Orlicz-Sobolev spaces can be found in [1, 18, 20, 38]. Due
to these, many researchers have studied the existence of solutions for eigenvalue
problems involving non-homogeneous operators in the divergence form in Orlicz-
Sobolev spaces by means of variational methods and critical point theory, mono-
tone operator methods, fixed point theory and degree theory (for instance, see
[2, 3, 5, 8, 9, 10, 11, 13, 15, 16, 22, 23, 26, 30, 33, 34, 35, 36, 45]). For example,
Clément et al. in [15] established the existence of weak solutions in an Orlicz-
Sobolev space for the Dirichlet problem

−div(α(|∇u(x)|)∇u(x)) = g(x, u(x)) in Ω,
u = 0 on ∂Ω,

(1.3)

where Ω is a bounded domain in RN , g ∈ C(Ω × R,R), and the function ϕ(s) =
sα(|s|) is an increasing homeomorphism from R onto R. Under appropriate condi-
tions on ϕ, g and the Orlic–Sobolev conjugate Φ∗ of Φ(s) =

∫ s
0
ϕ(t) dt, they obtained

the existence of non-trivial solutions of mountain pass type. Moreover Clément et
al. in [16] used Orlicz-Sobolev spaces theory and a variant of the Mountain–Pass
Lemma of Ambrosetti-Rabinowitz to obtain the existence of a (positive) solution to
a semi-linear system of elliptic equations. In addition, by an interpolation theorem
of Boyd, they established an elliptic regularity result in Orlicz-Sobolev spaces. Ha-
lidias and Le in [23], by a Brezis-Nirenberg’s local linking theorem, investigated the
existence of multiple solutions for the problem (1.3). Mihăilescu and Rădulescu in
[34], by adequate variational methods in Orlicz-Sobolev spaces, studied the bound-
ary value problem

−div(log(1 + |∇u|q)|∇u|p−2∇u) = f(u) in Ω,
u = 0 on ∂Ω,
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where Ω is a bounded domain in RN with smooth boundary. They distinguished
the cases where either f(u) = −λ|u|p−2u + |u|r−2u or f(u) = λ|u|p−2u − |u|r−2u,
with p, q > 1 , p + q < min{N, r}, and r < (Np − N + p)/(N − p). In the first
case they showed the existence of infinitely many weak solutions for any λ > 0 and
in the second case they proved the existence of a non-trivial weak solution if λ is
sufficiently large, while in [33] they considered the boundary value problem

−div ((a1(|∇u|) + a2(|∇u|)∇u) = λ|u|q(x)−2u in Ω,
u = 0 on ∂Ω,

(1.4)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary, λ is a positive
real number, q is a continuous function and a1, a2 are two mappings such that
a1(|t|)t, a2(|t|)t are increasing homeomorphisms from R to R. They established
the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that any
λ ∈ [λ1,∞) is an eigenvalue, while any λ ∈ (0, λ1) is not an eigenvalue of the
problem (1.4). Kristály et al. in [30] by using a recent variational principle of
Ricceri, established the existence of at least two non-trivial solutions for the problem
(1.1) in the Orlicz-Sobolev space W 1LΦ(Ω). Mihăilescu and Repovs̆ in [36], by
combining Orlicz-Sobolev spaces theory with adequate variational methods and a
variant of Mountain Pass Lemma, proved the existence of at least two non-negative
and non-trivial weak solutions for the problem

−div(α(|∇u(x)|)∇u(x)) = λf(x, u(x)) in Ω,
u = 0 on ∂Ω,

where α is the same as in the problem (1.1), f : Ω × R → R is a Carathéodory
function and λ is a positive parameter. In [10] Bonanno et al. studied the problem
(1.1) and established that for all λ in a prescribed open interval, the problem has in-
finitely many solutions that converge to zero in the Orlicz-Sobolev space W 1LΦ(Ω).
In [9] they also established a multiplicity result for (1.1). In fact, they employed a
recent critical points result for differentiable functionals in order to prove the exis-
tence of a determined open interval of positive eigenvalues for which the problem
(1.1) admits at least three weak solutions in the Orlicz-Sobolev space W 1LΦ(Ω),
while in [8] under an appropriate oscillating behavior of the nonlinear term, they
proved the existence of a determined open interval of positive parameters for which
(1.1) admits infinitely many weak solutions that strongly converges to zero, in the
same Orlicz-Sobolev space. In [2] employing variational methods and critical point
theory, in an appropriate Orlicz-Sobolev setting, the existence of infinitely many
solutions for Steklov problems associated to non-homogeneous differential operators
was established.

In [21] the authors considered eigenvalue problems involving non-homogeneous
differential operators and as an application of their results, they proved the ex-
istence of solutions for non-homogeneous Dirichlet problem. In [12] the authors
analyzed a class of quasilinear elliptic problems involving a p(·)-Laplace-type oper-
ator on a bounded domain Ω ⊆ RN , N ≥ 2 dealing with nonlinear conditions on
the boundary. In fact, working on the variable exponent Lebesgue-Sobolev spaces,
they followed the steps described by the fountain theorem and they established
the existence of a sequence of weak solutions for the problem. In [25] using varia-
tional methods and critical point theory the existence of infinitely many solutions
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for perturbed Kirchhoff-type non-homogeneous Neumann problems involving two
parameters in Orlicz-Sobolev spaces was discussed.

To the best of our knowledge, for the non-homogeneous Neumann problem, there
has so far been few papers concerning its multiple solutions.

Motivated by the above facts, in the present paper, we are interested in in-
vestigating the existence of solutions for the non-homogeneous Neumann problem
(1.1). First using a consequence of the local minimum theorem due Bonanno and
mountain pass theorem we obtain the existence of two non-trivial solutions for the
problem (1.1) in the Orlicz-Sobolev space W 1LΦ(Ω), by combining an algebraic
condition on f with the classical Ambrosetti-Rabinowitz (AR) condition ([4]) (see
Theorem 3.1). The role of (AR) is to ensure the boundedness of the Palais-Smale
sequences for the Euler-Lagrange functional associated with the problem. This is
very crucial in the applications of critical point theory. Then, combining two al-
gebraic conditions employing two consequences of the local minimum theorem due
Bonanno we guarantee the existence of two local minima for the Euler-Lagrange
functional and applying the mountain pass theorem as given by Pucci and Serrin
(see [39]), we ensure the existence of the third critical point for the corresponding
functional which is the third weak solution of our problem in the Orlicz-Sobolev
space W 1LΦ(Ω) (see Theorems 3.13 and 3.14).

Our approach is variational and the main tool is a local minimum theorem for
differentiable functionals established in [6], two of whose consequences are here
applied (see Theorems 2.1 and 2.2).

We should emphasize that in the present paper the method used for analyzing
the multiplicity and existence of solutions for the problem (1.1) differs completely
from all the methods used in [3, 8, 9] for ensuring the solution of the problem and
similar ones so far. In fact, we establish the existence of two weak solutions for
the problem (1.1) employing a local minimum theorem and the classical theorem
of Ambrosetti and Rabinowitz under an algebraic condition on the nonlinear part
with the classical Ambrosetti-Rabinowitz (AR) condition on the nonlinear term,
which is extremely fundamental in critical point theory. Moreover, by combining
two algebraic conditions on the nonlinear term which guarantee the existence of
two weak solutions, applying the mountain pass theorem given by Pucci and Serrin
we established the existence of third weak solution for the problem (1.1), while
in [3, 8, 9] the existence of multiple solutions have been established directly using
multiple critical point theorems.

Here, we state two special cases of our results when the Orlicz-Sobolev space
W 1LΦ(Ω) coincides with the Sobolev space W 1,p(Ω).

Theorem 1.1. Let p > N and g : R → R be a non-negative continuous function
such that g(0) 6= 0 and

lim
ξ→0+

g(ξ)
ξp−1

= +∞.

Putting

G(t) =
∫ t

0

g(ξ) dξ, ∀ t ∈ R,

suppose that
(AR) there exist constants ν > p and R > 0 such that, for all ξ ≥ R,

0 < νG(ξ) ≤ ξg(ξ).
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Then, for each

λ ∈
]
0,

1
(2κ)p meas(Ω)

sup
γ>0

γp

G(γ)
[
,

where κ is a constant such that

‖u‖∞ ≤ κ‖u‖W 1,p(Ω) ,

for every u ∈W 1,p(Ω) and

‖u‖W 1,p(Ω) :=
(∫

Ω

|∇u(x)|pdx+
∫

Ω

|u(x)|pdx
)1/p

,

the problem
−∆pu+ |u|p−2u = λg(u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.5)

admits at least two positive weak solutions in W 1,p(Ω).

Theorem 1.2. Let p > N . Assume that Ω is a bounded domain in RN (N ≥ 3)
with smooth boundary ∂Ω such that meas(Ω) > p

(4κ)p , where κ is the same constant
as in Theorem 1.1. Let g : R→ R be a non-negative continuous function such that
g(0) 6= 0,

lim
ξ→0+

g(ξ)
ξp−1

= +∞, lim
ξ→+∞

g(ξ)
ξp−1

= 0

and ∫ 1

0

g(t) dt <
p

(4κ)p meas(Ω)

∫ 2

0

g(t) dt.

Then, for each

λ ∈
] 2p∫ 2

0
g(t) dt

,
1

(2κ)p meas(Ω)
∫ 1

0
g(t) dt

[
problem (1.5) admits at least three positive weak solutions in W 1,p(Ω).

For a thorough study on the subject, we also refer the reader to [7, 17, 27, 28].

2. Preliminaries

Our main tools are the following theorems, that are consequences of the existence
result of a local minimum theorem for differentiable functionals [6, Theorem 3.1],
which is inspired by Ricceri’s variational principle (see [42]).

For a given non-empty set X, and two functionals J, I : X → R, we define the
following functions

ϑ(r1, r2) = inf
v∈J−1(r1,r2)

supu∈J−1(r1,r2) I(u)− I(v)
r2 − J(v)

,

ρ1(r1, r2) = sup
v∈J−1(r1,r2)

I(v)− supu∈J−1(−∞,r1] I(u)
J(v)− r1

for all r1, r2 ∈ R, r1 < r2, and

ρ2(r) = sup
v∈J−1(r,∞)

I(v)− supu∈J−1(−∞,r] I(u)
J(v)− r

for all r ∈ R.
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Theorem 2.1 ([6, Lemma 5.1]). Let X be a real Banach space, J : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on X∗,
and I : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Assume that there are r1, r2 ∈ R, r1 < r2, such that

ϑ(r1, r2) < ρ1(r1, r2).

Then, setting Γλ := J − λI, for each λ ∈ ( 1
ρ1(r1,r2) ,

1
ϑ(r1,r2) ), there is u0,λ ∈

J−1(r1, r2) such that Γλ(u0,λ) ≤ Γλ(u) for all u ∈ J−1(r1, r2) and Γ′λ(u0,λ) = 0.

Theorem 2.2 ([6, Lemma 5.3]). Let X be a real Banach space, J : X → R be
a continuously Gâteaux differentiable function whose Gâteaux derivative admits a
continuous inverse on X∗, and I : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Fix infX J < r < supX J , and
assume that

ρ2(r) > 0,
and for each λ > 1

ρ2(r) , the functional Γλ := J − λI is coercive. Then for each
λ ∈ ( 1

ρ2(r) ,+∞), there is u0,λ ∈ J−1(r,+∞) such that Γλ(u0,λ) ≤ Γλ(u) for all
u ∈ J−1(r,+∞) and Γ′λ(u0,λ) = 0.

Since the operator in the divergence form is non-homogeneous, we introduce an
Orlicz-Sobolev space setting for problems of this type. We first recall some basic
facts about Orlicz-Sobolev spaces.

Set

Φ(t) =
∫ t

0

ϕ(s) ds, Φ?(t) =
∫ t

0

ϕ−1(s) ds, for all t ∈ R.

We observe that Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and

lim
t→∞

Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0,

lim
t→0

Φ(t)
t

= 0 and lim
t→∞

Φ(t)
t

= +∞,

then Φ is called an N -function. The function Φ? is called the complementary
function of Φ and it satisfies

Φ?(t) = sup{st− Φ(s); s ≥ 0}, for all t ≥ 0 .

We observe that Φ? is also an N -function and the following Young’s inequality
holds true:

st ≤ Φ(s) + Φ?(t), for all s, t ≥ 0 .
Assume that Φ satisfies the following structural hypotheses

1 < lim inf
t→∞

tϕ(t)
Φ(t)

≤ p0 := sup
t>0

tϕ(t)
Φ(t)

<∞; (2.1)

N < p0 := inf
t>0

tϕ(t)
Φ(t)

< lim inf
t→∞

log(Φ(t))
log(t)

. (2.2)

The Orlicz space LΦ(Ω) defined by the N -function Φ (see for instance [1] and [29])
is the space of measurable functions u : Ω→ R such that

‖u‖LΦ := sup
{∫

Ω

u(x)v(x) dx;
∫

Ω

Φ?(|v(x)|) dx ≤ 1
}
<∞ .
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Then (LΦ(Ω), ‖·‖LΦ) is a Banach space whose norm is equivalent to the Luxemburg
norm

‖u‖Φ := inf
{
k > 0;

∫
Ω

Φ
(u(x)

k

)
dx ≤ 1

}
.

We denote by W 1LΦ(Ω) the corresponding Orlicz-Sobolev space for problem
(1.1), defined by

W 1LΦ(Ω) =
{
u ∈ LΦ(Ω);

∂u

∂xi
∈ LΦ(Ω), i = 1, . . . , N

}
.

This is a Banach space with respect to the norm

‖u‖1,Φ = ‖∇u‖Φ + ‖u‖Φ,

see [1] and [15].
As mentioned in [8, 10], Assumption (Φ0) is equivalent with the fact that Φ and

Φ? both satisfy the ∆2 condition (at infinity), see [1, p. 232]. In particular, (Φ,Ω)
and (Φ?,Ω) are ∆−regular, see [1, p.232]. Consequently, the spaces LΦ(Ω) and
W 1LΦ(Ω) are separable, reflexive Banach spaces, see [1, p. 241 and p. 247].

These spaces generalize the usual spaces Lp(Ω) and W 1,p(Ω), in which the role
played by the convex mapping t 7→ |t|p/p is assumed by a more general convex
function Φ(t).

We recall the following useful lemma regarding the norms on Orlicz-Sobolev
spaces.

Lemma 2.3 ([30, Lemma 2.2]). On W 1LΦ(Ω) the norms

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ,
‖u‖2,Φ = max{‖|∇u|‖Φ, ‖u‖Φ},

‖u‖ = inf
{
µ > 0 :

∫
Ω

[
[Φ
( |u(x)|

µ

)
+ Φ

( |∇u(x)|
µ

)]
dx ≤ 1

}
,

are equivalent. More precisely, for every u ∈W 1LΦ(Ω) we have

‖u‖ ≤ 2‖u‖2,Φ ≤ 2‖u‖1,Φ ≤ 4‖u‖.

We also recall the following lemmas which will be used in the proofs.

Lemma 2.4 ([25, Lemma 2.3]). Let u ∈W 1LΦ(Ω). Then∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ‖u‖p
0
, if ‖u‖ < 1,∫

Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ‖u‖p0 , if ‖u‖ > 1,∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≤ ‖u‖p0 , if ‖u‖ < 1,∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≤ ‖u‖p
0
, if ‖u‖ > 1.

Lemma 2.5 ([25, Lemma 2.5]). Let u ∈W 1LΦ(Ω) and assume that ‖u‖ = 1. Then∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx = 1.
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Lemma 2.6 ([9, Lemma 2.2]). Let u ∈W 1LΦ(Ω) and assume that∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≤ r,

for some 0 < r < 1. Then, one has ‖u‖ < 1.

Now from hypothesis (2.2), by Lemma D.2 in [15] it follows that W 1LΦ(Ω) is
continuously embedded in W 1,p0(Ω). On the other hand, since we assume p0 > N
we deduce that W 1,p0(Ω) is compactly embedded in C0(Ω). Thus, one has that
W 1LΦ(Ω) is compactly embedded in C0(Ω) and there exists a constant c > 0 such
that

‖u‖∞ ≤ c ‖u‖1,Φ, for all u ∈W 1LΦ(Ω) (2.3)

where ‖u‖∞ := supx∈Ω |u(x)|. A concrete estimation of a concrete upper bound for
the constant c remains an open question.

Let

F (x, ξ) =
∫ ξ

0

f(x, t) dt for (x, ξ) ∈ Ω× R.

Now for every u ∈W 1LΦ(Ω), we define Γλ(u) := J(u)− λI(u) where

J(u) =
∫

Ω

[Φ(|∇u(x)|) + Φ(|u(x)|)] dx, (2.4)

I(u) =
∫

Ω

F (x, u(x)) dx. (2.5)

Standard arguments show that Γλ ∈ C1(W 1LΦ(Ω),R). In fact, one has

Γ′λ(u)(v) = lim
h−→0

Γλ(u+ hv)− Γλ(u)
h

=
∫

Ω

α(|∇u(x)|)∇u(x) · ∇v(x) dx+
∫

Ω

α(|u(x)|)u(x)v(x) dx

− λ
∫

Ω

f(x, u(x))v(x) dx.

for all u, v ∈W 1LΦ(Ω) (see [30] for more details).
A function u : Ω→ R is a weak solution for problem (1.1) if∫

Ω

α(|∇u(x)|)∇u(x) · ∇v(x) dx+
∫

Ω

α(|u(x)|)u(x)v(x) dx

− λ
∫

Ω

f(x, u(x))v(x) dx = 0,

for every v ∈W 1LΦ(Ω).

3. Main results

For a non-negative constant γ and a positive constant δ with

γ 6= 2c (Φ(δ) meas(Ω))1/p0

,

we set

aγ(δ) :=

∫
Ω

sup|t|≤γ F (x, t) dx−
∫

Ω
F (x, δ) dx

γp0 − (2c)p0Φ(δ) meas(Ω)
.
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Theorem 3.1. Assume that there exist a non-negative constant γ1 and two positive
constants γ2 and δ, with γ2 < 2c and

γp
0

1

(2c)p0 meas(Ω)
< Φ(δ) <

γp
0

2

(2c)p0 meas(Ω)
, (3.1)

where c is defined in (2.3), such that
(A1) aγ2(δ) < aγ1(δ);
(A2) there exist ν > p0 and R > 0 such that for all |ξ| ≥ R and for all x ∈ Ω,

0 < νF (x, ξ) ≤ ξf(x, ξ). (3.2)

Then, for each λ ∈] 1
(2c)p0

1
aγ1 (δ) ,

1
(2c)p0

1
aγ2 (δ) [, problem (1.1) admits at least two non-

trivial weak solutions u1 and u2 in W 1LΦ(Ω), such that

γp
0

1

(2c)p0 < J(u1) <
γp

0

2

(2c)p0 .

Proof. Take X := W 1LΦ(Ω). For u ∈ X, put Γλ(u) = J(u) − λI(u) where J and
I are given as in (2.4) and (2.5), respectively. Moreover, owing that Φ is convex, it
follows that J is a convex functional, hence one has that J is sequentially weakly
lower semicontinuous. We see that J is a coercive functional. Indeed, by Lemma 2.4,
we deduce that for any u ∈ X with ‖u‖ > 1 we have J(u) ≥ ‖u‖p0 which follows
lim‖u‖→+∞ J(u) = +∞. Finally we observe that the functional J : X → R is
continuously Gâteaux differentiable while Lemma 2.3 of [30] gives that its Gâteaux
derivative admits a continuous inverse on X∗. On the other hand, the fact that
X is compactly embedded into C0(Ω) implies that the operator I ′ : X → X∗ is
compact. Note that the critical points of Γλ are the weak solutions of the problem
(1.1). Choose

r1 =
(γ1

2c

)p0

, r2 =
(γ2

2c

)p0

and w(x) := δ for all x ∈ Ω. Clearly w ∈ X. Hence

J(w) =
∫

Ω

[Φ(|∇w(x)|) + Φ(|w(x)|)] dx =
∫

Ω

Φ(δ) dx = Φ(δ) meas(Ω).

From condition (3.1), we obtain r1 < Φ(w) < r2. For all u ∈ X, by (2.3) and
Lemma 2.3, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖, for all x ∈ Ω.

Hence, since γ2 < 2c, taking Lemmas 2.4 and 2.6 into account one has

J−1(−∞, r2) ⊆ {u ∈ X; ‖u‖ ≤ γ2

2c
} ⊆ {u ∈ X; |u(x)| ≤ γ2 for all x ∈ Ω},

and it follows that

sup
u∈J−1(−∞,r2)

I(u) ≤
∫

Ω

sup
|t|≤γ2

F (x, t) dx.

Therefore, one has

ϑ(r1, r2) ≤
supu∈J−1(−∞,r2) I(u)− I(w)

r2 − J(w)

≤ (2c)p
0

∫
Ω

sup|t|≤γ2
F (x, t) dx−

∫
Ω
F (x, δ) dx

γp
0

2 − (2c)p0Φ(δ) meas(Ω)



10S. HEIDARKHANI, M. FERRARA, G. CARISTI, J. HENDERSON, A. SALARI EJDE-2017/215

= (2c)p
0
aγ2(δ).

On the other hand, one has

ρ1(r1, r2) ≥
I(w)− supu∈J−1(−∞,r1] I(u)

J(w)− r1

≥ (2c)p
0

∫
Ω

sup|t|≤γ1
F (x, t) dx−

∫
Ω
F (x, δ) dx

(2c)p0Φ(δ) meas(Ω)− γp0

1

= (2c)p
0
aγ1(δ).

Hence, from (A1), one has ϑ(r1, r2) < ρ1(r1, r2). Therefore, from Theorem 2.1, for
each

λ ∈]
1

(2c)p0

1
aγ1(δ)

,
1

(2c)p0

1
aγ2(δ)

[,

the functional Γλ admits at least one non-trivial critical point u1 such that

r1 < J(u1) < r2,

that is
γp

0

1

(2c)p0 < J(u1) <
γp

0

2

(2c)p0 .

Now, we prove the existence of the second critical point distinct from the first one.
To this purpose, we verify the hypotheses of the mountain-pass theorem for the
functional Γλ. Clearly, the functional Γλ is of class C1 and Γλ(0) = J(0)−λI(0) =
0. The first part of proof guarantees that u1 ∈ X is a local non-trivial local
minimum for Γλ in X. We can assume that u1 is a strict local minimum for Γλ in
X. Therefore, there is ρ > 0 such that inf‖u−u1‖=ρ Γλ(u) > Γλ(u1), so condition
[40, (I1), Theorem 2.2] is verified. By integrating the condition (3.2) there exist
constants a1, a2 > 0 such that

F (x, t) ≥ a1|t|ν − a2

for all x ∈ Ω and t ∈ R. Now, choosing any u ∈ X \ {0}, and for convenience, let

p? =

{
p0, if ‖u‖ > 1,
p0, if ‖u‖ < 1.

One has

Γλ(τu) = (J − λI)(τu)

=
∫

Ω

(Φ(|τ∇u(x)|) + Φ(|τu(x)|)) dx− λ
∫

Ω

F (x, τu(x)) dx

≤ τp
?

‖u‖p
?

− λτνa1

∫
Ω

|u(t)|ν dt+ λa2 → −∞

as τ → +∞, so condition [40, (I2), Theorem 2.2] is satisfied. So, the functional Γλ
satisfies the geometry of mountain pass. Moreover, Γλ satisfies the Palais-Smale
condition. Indeed, assume that {un}n∈N ⊂ X such that {Γλ(un)}n∈N is bounded
and

Γ′λ(un)→ 0 as n→ +∞. (3.3)
Then, there exists a positive constant C0 such that

|Γλ(un)| ≤ C0, |Γ′λ(un)| ≤ C0, ∀n ∈ N.
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Therefore, since

p0 ≥ tϕ(t)
Φ(t)

, ∀t > 0,

we deduce from the definition of Γ′λ and the assumption (A2) that

C0 + C1‖un‖ ≥ νΓλ(un)− Γ′λ(un)(un)

= ν

∫
Ω

(Φ(|∇un(x)|) + Φ(|un(x)|)) dx

−
∫

Ω

ϕ(|∇un(x)|)∇un(x) dx−
∫

Ω

ϕ(|un(x)|)un(x) dx

− λ
∫

Ω

(νF (x, un(x))− f(x, un(x))(un(x))) dx

≥

{
(ν − p0)‖un‖p0 , if ‖un‖ ≥ 1,
(ν − p0)‖un‖p

0
, if ‖un‖ < 1,

for some C1 > 0. Since ν > p0 this implies that (un) is bounded. Consequently,
since X is a reflexive Banach space there exists a subsequence, still denoted by
{un}, and u ∈ X such that {un} converges weakly to u in X. Now, arguing as in
[34], from the continuity of f , we have that

lim
n→∞

I(un) = I(u), lim
n→∞

I ′(un) = I ′(u). (3.4)

Since
J(u) = Γλ(u)− λI(u), ∀u ∈ X ,

relations (3.3) and (3.4) imply

lim
n→∞

J ′(un) = −λI ′(u), in X∗. (3.5)

By the convexity of Φ we have the convexity of J and thus

J(un) ≤ J(u) + (J ′(un), un − u).

Passing to the limit as n→∞ and using (3.5) we deduce that

lim sup
n→∞

J(un) ≤ J(u). (3.6)

Since J is weakly lower semi-continuous we have

lim inf
n→∞

J(un) ≥ J(u). (3.7)

By (3.6) and (3.7) we have
lim
n→∞

J(un) = J(u)
or

lim
n→∞

∫
Ω

[Φ(|∇un(x)|) + Φ(|un(x)|)] dx =
∫

Ω

[Φ(|∇u(x)|) + Φ(|u(x)|)] dx . (3.8)

Since Φ is increasing and convex, it follows that

Φ
(1

2
|∇un(x)−∇u(x)|

)
+ Φ

(1
2
|un(x)− u(x)|

)
≤ Φ

(1
2

(|∇un(x)|+ |∇u(x)|)
)

+ Φ
(1

2
(|un(x)|+ |u(x)|)

)
≤ Φ(|∇un(x)|) + Φ(|∇u(x)|)

2
+

Φ(|un(x)|) + Φ(|u(x)|)
2

,
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for all x ∈ Ω and all n. Integrating the above inequalities over Ω we find

0 ≤
∫

Ω

[
Φ
(1

2
|∇(un − u)(x)|

)
+ Φ

(1
2
|(un − u)(x)|

)]
dx

≤
∫

Ω
Φ(|∇un(x)|) dx+

∫
Ω

Φ(|∇u(x)|) dx
2

+

∫
Ω

Φ(|un(x)|) dx+
∫

Ω
Φ(|u(x)|) dx

2

=

∫
Ω

[Φ(|∇un(x)|) + Φ(|un(x)|)] dx+
∫

Ω
[Φ(|∇u(x)|) + Φ(|u(x)|)] dx

2
,

for all n. We point out that Lemma 2.4 implies∫
Ω

[Φ(|∇un(x)|) + Φ(|un(x)|)] dx ≤ ‖un‖p0 < 1,

provided that ‖un‖ < 1, and∫
Ω

[Φ(|∇un(x)|) + Φ(|un(x)|)] dx ≤ ‖un‖p
0
,

provided that ‖un‖ > 1. Since {un} is bounded in X, the above inequalities prove
the existence of a positive constant M1 such that∫

Ω

[Φ(|∇un(x)|) + Φ(|un(x)|)] dx ≤M1,

for all n. So, there exists a positive constant M2 such that

0 ≤
∫

Ω

[
Φ
(1

2
|∇(un − u)(x)|

)
+ Φ

(1
2
|(un − u)(x)|

)]
dx ≤M2, (3.9)

for all n. On the other hand, since {un} converges weakly to u in X, Theorem 2.1
in [21] implies∫

Ω

∂un
∂xi

v dx→
∫

Ω

∂u

∂xi
v dx, ∀v ∈ LΦ?(Ω), i = 1, . . . , N.

In particular this holds for all v ∈ L∞(Ω). Hence {∂un∂xi
} converges weakly to ∂u

∂xi

in L1(Ω) for all i = 1, . . . , N . Thus we deduce that

∇un(x)→ ∇u(x) a.e. x ∈ Ω. (3.10)

Relations (3.8), (3.9) and (3.10) and Lebesgue’s dominated convergence theorem
imply

lim
n→∞

∫
Ω

[
Φ
(1

2
|∇(un − u)(x)|

)
+ Φ

(1
2
|(un − u)(x)|

)]
dx = 0. (3.11)

On the other hand, the assumption (Φ0) implies that Φ satisfies ∆2-condition.
Thus, by (3.11) and [16, Lemma A.4] (see also [1, p. 236]) we have

lim
n→∞

‖1
2

(un − u)‖ = 0.

So ‖un − u‖ → 0 as n → ∞, which implies that {un} converges strongly to u
in X. Therefore, Γλ satisfies the Palais-Smale condition. Hence, the classical
theorem of Ambrosetti and Rabinowitz ensures a critical point u2 of Γλ such that
Γλ(u2) > Γλ(u1). Since f(x, 0) 6= 0 for all x ∈ Ω, u1 and u2 are two distinct
non-trivial solutions of (1.1) and the proof is complete. �
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Remark 3.2. In Theorem 3.1 we ensured the existence of at least two non-trivial
weak solutions u1 and u2 for (1.1), with u2 obtained in association with the classical
Ambrosetti-Rabinowitz condition on the data by assuming f(x, 0) 6= 0 for all x ∈ Ω.
If f(x, 0) = 0 for all x ∈ Ω, u2 may be trivial.

Now, we point out an immediate consequence of Theorem 3.1.

Theorem 3.3. Assume that there exist two positive constants δ and γ, with γ < 2c
and

Φ(δ) <
γp

0

(2c)p0 meas(Ω)
,

such that (A2) in Theorem 3.1 holds. Furthermore, suppose that∫
Ω

sup|t|≤γ F (x, t) dx
γp0 <

∫
Ω
F (x, δ) dx

(2c)p0Φ(δ) meas(Ω)
. (3.12)

Then, for each

λ ∈
]Φ(δ) meas(Ω)∫

Ω
F (x, δ) dx

,
γp

0

(2c)p0
∫

Ω
sup|t|≤γ F (x, t) dx

[
,

problem (1.1) admits at least two non-trivial weak solutions u1 and u2 in W 1LΦ(Ω)
such that

0 < J(u1) <
γp

0

(2c)p0 .

Proof. The conclusion follows from Theorem 3.1, by taking γ1 = 0 and γ2 = γ.
Indeed, owing to the inequality (3.12), one has

aγ(δ) =

∫
Ω

sup|t|≤γ F (x, t) dx−
∫

Ω
F (x, δ) dx

γp0 − (2c)p0Φ(δ) meas(Ω)

<
(1− (2c)p

0
Φ(δ) meas(Ω)

γp0 )
∫

Ω
sup|t|≤γ F (x, t) dx

γp0 − (2c)p0Φ(δ) meas(Ω)

=

∫
Ω

sup|t|≤γ F (x, t) dx
γp0

<

∫
Ω
F (x, δ) dx

(2c)p0Φ(δ) meas(Ω)
= a0(δ).

In particular, one has

aγ(δ) <

∫
Ω

sup|t|≤γ F (x, t) dx
γp0 ,

which follows
1

(2c)p0

γp
0∫

Ω
sup|t|≤γ F (x, t) dx

<
1

(2c)p0

1
aγ2(δ)

.

Hence, Theorem 3.1 concludes the result. �

Now, we give an application of Theorem 2.2 which will be used later to ensure
the existence of multiple solutions for non-homogeneous Neumann problems.
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Theorem 3.4. Assume that there exist two positive constants γ̄ and δ̄ with γ̄ < 2c
and

Φ(δ̄) >
γ̄p

0

(2c)p0 meas(Ω)
,

such that ∫
Ω

sup
|t|≤γ̄

F (x, t) dx <
∫

Ω

F (x, δ̄) dx,

lim sup
|ξ|→+∞

F (x, ξ)
|ξ|p0

≤ 0 uniformly in R. (3.13)

Then, for each λ > λ̃, where

λ̃ :=
(2c)p

0
Φ(δ̄) meas(Ω)− γ̄p0

(2c)p0
(∫

Ω
F (x, δ̄) dx−

∫
Ω

sup|t|≤γ̄ F (x, t) dx
) ,

problem (1.1) admits at least one non-trivial weak solution ū ∈W 1LΦ(Ω) such that

J(ū) >
γ̄p

0

(2c)p0 .

Proof. Take the real Banach space X as defined in Theorem 3.3, and for u ∈ X put
Γλ(u) = J(u) − λI(u) where J and I are given as in (2.4) and (2.5), respectively.
Our aim is to apply Theorem 2.2 to function Γλ. The functionals J and I satisfy
all required assumptions in Theorem 2.2. Moreover, for λ > 0, the functional
Γλ is coercive. Indeed, fix 0 < ε < 1

cp0 meas(Ω)λ . From (3.13) there is a function
ρε ∈ L1(Ω) such that

F (x, t) ≤ ε|t|p0 + ρε(x),

for every x ∈ Ω and t ∈ R. Taking (2.3) into account, it follows that, for each
u ∈ X with ‖u‖ > 1,

J(u)− λI(u) =
∫

Ω

(Φ[|∇u(x)|) + Φ(|u(x)|)] dx− λ
∫

Ω

F (x, u(x)) dx

≥ ‖u‖p0 − λε
∫

Ω

|u(x)|p0 dx− λ‖ρε‖L1(Ω)

≥ (1− λεcp0 meas(Ω))‖u‖p0 − λ‖ρε‖L1(Ω) ,

and thus
lim

‖u‖→+∞
(J(u)− λI(u)) = +∞,

which means the functional Γλ is coercive. Choosing r̄ = γ̄p
0

(2c)p0 and w̄(x) = δ̄ for
all x ∈ Ω, and arguing as in the proof of Theorem 3.1, we obtain that

ρ(r̄) ≥ (2c)p
0

∫
Ω
F (x, δ̄) dx−

∫
Ω

sup|t|≤γ̄ F (x, t) dx

(2c)p0Φ(δ̄) meas(Ω)− γ̄p0 .

So, from our assumption it follows that ρ(r̄) > 0. Hence, from Theorem 2.2 for
each λ > λ̃, the functional Γλ admits at least one local minimum ū such that

J(ū) > γ̄p
0

(2c)p0 . The conclusion is achieved. �
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Now, we point out some results in which the function f has separated variables.
To be precise, consider the problem

−div(α(|∇u|)∇u) + α(|u|)u = λθ(x)g(u) in Ω,
∂u

∂ν
= 0 on ∂Ω

(3.14)

where θ : Ω→ R is a non-negative and non-zero function such that θ ∈ L1(Ω) and
g : R→ R is a non-negative continuous function.

Put G(t) =
∫ t

0
g(ξ) dξ for all t ∈ R.

Since the nonlinear term is supposed to be non-negative, the following results
give the existence of multiple positive solutions. To justify this, we point out the
following weak maximum principle.

Lemma 3.5. Suppose that u∗ ∈ W 1LΦ(Ω) is a non-trivial weak solution of the
problem (3.14). Then, u∗ is positive.

Proof. Arguing by a contradiction, assume that the set A = {x ∈ Ω; u∗(x) < 0} is
non-empty and of positive measure. Put u−∗ (x) = min{u∗(x), 0}. By [22, Remark
5] we deduce that u−∗ ∈W 1LΦ(Ω). Suppose that ‖u∗‖ < 1. Using this fact that u∗
also is a weak solution of (3.14) and by choosing v = u−∗ , since

p0 ≤
tϕ(t)
Φ(t)

, ∀ t > 0,

and using the first inequality of Lemma 2.4 and recalling our sign assumptions on
the data, we have

‖u∗‖p
0

W 1LΦ(A) ≤
∫
A

[Φ(|∇u∗(x)|) + Φ(|u∗(x)|)] dx

≤ 1
p0

∫
A

[ϕ(|∇u∗(x)|)|∇u∗(x)|+ ϕ(|u∗(x)|)|u∗(x)|] dx

=
1
p0

∫
A

[α(|∇u∗(x)|)|∇u∗(x)|2 + α(|u∗(x)|)|u∗(x)|2] dx

=
1
p0

∫
A
θ(x)g(u∗(x))u∗(x) dx ≤ 0,

i.e.,

‖u∗‖p
0

W 1LΦ(A) ≤ 0,

which contradicts that u∗ is a non-trivial weak solution. Hence, the set A is empty,
and u∗ is positive. The proof of the case ‖u∗‖ > 1 is similar to the case ‖u∗‖ < 1
(use the second part of Lemma 2.4 instead). For the case ‖u∗‖ = 1, we may assume
‖u∗‖W 1LΦ(A) = 1, and arguing as for the case ‖u∗‖ < 1, and using Lemma 2.5, we
have

‖u∗‖W 1LΦ(A) =
∫
A

[Φ(|∇u∗(x)|) + Φ(|u∗(x)|)] dx

≤ 1
p0

∫
A
θ(x)g(u∗(x))u∗(x) dx ≤ 0,

which also contradicts with the fact that u∗ is a non-trivial weak solution. There-
fore, we deduce u∗ is positive. �
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Setting f(x, t) = θ(x)g(t) for every (x, t) ∈ Ω×R, the following existence results
are consequences of Theorems 3.1-3.4, respectively.

Theorem 3.6. Assume that g(0) 6= 0 and there exist a non-negative constant γ1

and two positive constants γ2 and δ, with γ2 < 2c and

γp
0

1

(2c)p0 meas(Ω)
< Φ(δ) <

γp
0

2

(2c)p0 meas(Ω)
,

such that
G(γ1)−G(δ)

γp
0

1 − (2c)p0Φ(δ) meas(Ω)
<

G(γ2)−G(δ)

γp
0

2 − (2c)p0Φ(δ) meas(Ω)
.

Furthermore, suppose that
(AR) there exist constants ν > p0 and R > 0 such that, for all ξ ≥ R,

0 < νG(ξ) ≤ ξg(ξ).

Then, for each λ ∈]λ1, λ2[, where

λ1 =
1

(2c)p0

γp
0

1 − (2c)p
0
Φ(δ) meas(Ω)

‖θ‖L1(Ω) (G(γ1)−G(δ))
,

λ2 =
1

(2c)p0

γp
0

2 − (2c)p
0
Φ(δ) meas(Ω)

‖θ‖L1(Ω) (G(γ2)−G(δ))
,

problem (3.14) admits at least two positive weak solutions u1 and u2 in W 1LΦ(Ω)
such that

γp
0

1

(2c)p0 < J(u1) <
γp

0

2

(2c)p0 .

Theorem 3.7. Assume that g(0) 6= 0 and there exist two positive constants δ and
γ, with γ < 2c and

Φ(δ) <
γp

0

(2c)p0 meas(Ω)
,

such that
G(γ)
γp0 <

1
(2c)p0 meas(Ω)

G(δ)
Φ(δ)

. (3.15)

Furthermore, suppose that (AR) holds. Then, for every

λ ∈

]
Φ(δ) meas(Ω)
‖θ‖L1(Ω)G(δ)

,
γp

0

(2c)p0‖θ‖L1(Ω)G(γ)

[
,

problem (3.14) admits at least two positive weak solutions u1 and u2 in W 1LΦ(Ω)
such that

0 < J(u1) <
γp

0

(2c)p0 .

Theorem 3.8. Assume that g(0) 6= 0 and there exist two positive constants γ̄ and
δ̄ with γ̄ < 2c and

Φ(δ̄) >
γ̄p

0

(2c)p0 meas(Ω)
, (3.16)

such that
G(γ̄) < G(δ̄) (3.17)
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and

lim sup
|ξ|→+∞

G(ξ)
|ξ|p0

≤ 0.

Then, for each λ > λ̄, where

λ̄ :=
(2c)p

0
Φ(δ̄) meas(Ω)− γ̄p0

(2c)p0‖θ‖L1(Ω)

(
G(δ̄)−G(γ̄)

) ,
problem (3.14) admits at least one positive weak solution ū1 ∈ W 1LΦ(Ω) such

J(ū1) > γ̄p
0

(2c)p0 .

Now we illustrate Theorem 3.8 by presenting the following example.

Example 3.9. Let 3 ≤ N < p, and let Ω ⊂ RN be a domain such that

meas(Ω) >
p(p+ 2)

(2
√

3)p+2cp [(p+ 2) log(1 + c2)− c2]
, (3.18)

and let
ϕ(t) = log(1 + |t|2)|t|p−2t, t ∈ R.

It is easy to see that, ϕ : R→ R is an odd, increasing homeomorphism from R onto
R, and one has

p0 = p and p0 = p+ 2.
Thus the relations (2.1) and (2.2) are satisfied (see [16, Example 2] for the details).
Now we define the function g : R→ R by

g(t) =
c

c2 + t2
earctan(t/c).

Clearly, g is a non-negative continuous function, g(0) 6= 0 and

G(t) = earctan(t/c) − 1, ∀t ∈ R.

Thus

lim sup
|ξ|→+∞

G(ξ)
|ξ|p0

= lim sup
|ξ|→+∞

earctan(ξ/c) − 1
|ξ|p

= 0.

By choosing δ̄ = c and γ̄ =
√

3c/3 < 2c we clearly observe that (3.16) and (3.17)
are satisfied. Indeed,

G(γ̄) = eπ/6 − 1 < eπ/4 − 1 = G(δ̄)

and by (3.18) we have

Φ(δ̄) = Φ(c) =
cp

p
log(1 + c2)− 2

p

∫ c

0

sp+1

1 + s2
ds

>
cp

p
log(1 + c2)− 2

p

∫ c

0

sp+1 ds =
cp

p
log(1 + c2)− cp+2

p(p+ 2)

>
(
√

3
3 c)

p+2

(2c)p+2 meas(Ω)
=

γ̄p
0

(2c)p0 meas(Ω)
.

Hence, by applying Theorem 3.8, for every

λ >
(2c)p+2Φ(c)meas(Ω)− (

√
3

3 c)
p+2

(2c)p+2meas(Ω)(eπ/4 − eπ/6)
,
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the problem

−div
(
log(1 + |∇u|2)|∇u|p−2∇u

)
+ log(1 + |u|2)|u|p−2u =

λc

c2 + u2
earctan u

c in Ω,

∂u

∂ν
= 0 on ∂Ω

has at least one positive weak solution.

A further consequence of Theorem 3.1 is the following existence result.

Theorem 3.10. Assume that g(0) 6= 0 and

lim
ξ→0+

G(ξ)
Φ(ξ)

= +∞. (3.19)

Furthermore, suppose that (AR) holds. Then, for every λ ∈]0, λ?γ [ where

λ?γ :=
1

(2c)p0‖θ‖L1(Ω)

sup
0<γ<2c

γp
0

G(γ)
,

problem (3.14) admits at least two positive weak solutions in W 1LΦ(Ω).

Proof. Fix λ ∈]0, λ?γ [. Then there is 0 < γ < 2c such that λ < γp
0

(2c)p0‖θ‖L1(Ω)G(γ)
.

From (3.19) there exists a positive constant δ with

Φ(δ) <
γp

0

(2c)p0 meas(Ω)
,

such that
1
λ
<
‖θ‖L1(Ω)G(δ)
Φ(δ) meas(Ω)

.

Therefore, the conclusion follows from Theorem 3.3. �

Remark 3.11. Theorem 1.1 immediately follows from Theorem 3.10 by setting
α(|t|) = |t|p−2 (for details about this choice of α(|t|), see [9, Remark 3.4]).

Now we illustrate Theorem 3.10 by presenting the following example.

Example 3.12. Let N = 3, Ω ⊂ R3, p = 5 and define

ϕ(t) =

{
|t|p−2t

log(1+|t|) , if t 6= 0,

0, if t = 0.

It is easy to see that ϕ : R→ R is an odd, increasing homeomorphism from R onto
R. By [16, Example 3] one has

p0 = p− 1 < p0 = p = lim inf
t→∞

log(Φ(t))
log(t)

.

Thus the relations (2.1) and (2.2) are satisfied. Now let

g(t) =

{
1 + t6, |t| ≥ 1,
3− t2, |t| < 1.

In this case, g is non-negative, continuous, g(0) = 3 6= 0 and the condition (3.19)
holds. Moreover, taking into account that

lim
|ξ|→+∞

ξg(ξ)
G(ξ)

= lim
|ξ|→+∞

ξ + ξ7

ξ + 1
7ξ

7
= 7 > p
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by choosing ν = 7 > p, there exists R > 1 such that the assumptions (AR) fulfilled.
Hence, by applying Theorem 3.10, for every λ > 0 the problem

−div
(

|∇u(x)|3

log(1 + |∇u(x)|)
∇u(x)

)
+

|u(x)|3

log(1 + |u(x)|)
u(x) = λg(u(x)) in Ω,

∂u

∂ν
= 0 on ∂Ω,

has at least two positive weak solutions.

Next, as a consequence of Theorems 3.7 and 3.8 we obtain the following result
on the existence of three solutions.

Theorem 3.13. Suppose that g(0) 6= 0 and

lim sup
|ξ|→+∞

G(ξ)
|ξ|p0

≤ 0. (3.20)

Moreover, assume that there exist four positive constants γ, δ, γ̄ and δ̄ with γ̄ < 2c
and

γ̄p
0

(2c)p0 meas(Ω)
< Φ(δ̄) ≤ Φ(δ) <

γp
0

(2c)p0 meas(Ω)
,

such that (3.15) and (3.17) hold, and

G(γ)
γp0 <

G(δ̄)−G(γ̄)
(2c)p0Φ(δ̄) meas(Ω)− γ̄p0 (3.21)

is satisfied. Then for each

λ ∈ Λ =
]

max
{
λ̄,

Φ(δ) meas(Ω)
‖θ‖L1(Ω)G(δ)

}
,

γp
0

(2c)p0‖θ‖L1(Ω)G(γ)

[
,

problem (3.14) admits at least three positive weak solutions u∗1, u∗2 and u∗3 such that

J(u∗1) <
γp

0

(2c)p0 , J(u∗2) >
γ̄p

0

(2c)p0 .

Proof. First, in view of (3.15) and (3.21), we have Λ 6= ∅. Next, fix λ ∈ Λ.
Employing Theorem 3.7 there is a positive weak solution u∗1 such that

J(u∗1) <
γp

0

(2c)p0

which is a local minimum for the associated functional Γλ, as well as Theorem 3.8
ensures a positive weak solution u∗2 such that

J(u∗2) >
γ̄p

0

(2c)p0

which is another local minimum for Γλ. Arguing as in the proof of Theorem 3.4
from the condition (3.20), we see that the functional Γλ is coercive, and then it
satisfies the (PS) condition. Hence, the conclusion follows from the mountain pass
theorem as given by Pucci and Serrin (see [39]). �

Now we present the following existence result as a consequence of Theorem 3.13.
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Theorem 3.14. Assume that g(0) 6= 0,

lim sup
ξ→0+

G(ξ)
Φ(ξ)

= +∞, (3.22)

lim sup
ξ→+∞

G(ξ)
|ξ|p0

= 0. (3.23)

Furthermore, suppose that there exist two positive constants γ̄ and δ̄ with γ̄ < 2c
and

Φ(δ̄) >
γ̄p

0

(2c)p0 meas(Ω)
(3.24)

such that
G(γ̄)
γ̄p0 <

G(δ̄)
(2c)p0Φ(δ̄) meas(Ω)

. (3.25)

Then for each

λ ∈
]Φ(δ̄) meas(Ω)
‖θ‖L1(Ω)G(δ̄)

,
γ̄p

0

(2c)p0‖θ‖L1(Ω)G(γ̄)

[
,

problem (3.14) admits at least three positive weak solutions.

Proof. We easily observe that from (3.23) the condition (3.20) is satisfied. More-
over, by choosing δ small enough and γ = γ̄, one can derive the condition (3.15)
from (3.22) as well as the conditions (3.17) and (3.21) from (3.25). Hence, the
conclusion follows from Theorem 3.13. �

Remark 3.15. Theorem 1.2 immediately follows from Theorem 3.14 by setting
α(|t|) = |t|p−2.

Finally, we present an application of Theorem 3.14 as follows.

Example 3.16. Let N = 3, 3 < p < 4, and

ϕ(t) = log(1 + |t|2)|t|p−2t, t ∈ R.

It is easy to see that ϕ : R→ R is an odd, increasing homeomorphism from R onto
R, and one has p0 = p and p0 = p+ 2. Thus relations (2.1) and (2.2) are satisfied
(see [16, Example 2] for the details). Now let g : R→ R be the function defined by

g(t) = 1 +
t2

1 + t2
.

Thus g is non-negative and continuous, g(0) 6= 0 and

G(t) = 2t− arctan t for every t ∈ R.

Therefore, one has

lim sup
ξ→0+

G(ξ)
Φ(ξ)

= lim
ξ→0+

2ξ − arctan ξ
ξp+2

= +∞,

lim sup
ξ→+∞

G(ξ)
|ξ|p0

= lim
ξ→+∞

2ξ − arctan ξ
|ξ|p

= 0.

Letting Ω ⊂ R3 be such that

1
2p+2Φ(π + c)

< meas(Ω) <
1

2p+2Φ(π + c)
2(π + c)− arctan(π + c)

2c− arctan c
,
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where Φ(π + c) =
∫ π+c

0
log(1 + |t|2)|t|p−2tdt, by choosing γ̄ = c and δ̄ = π + c, we

observe that (3.24) and (3.25) are satisfied. Hence, by applying Theorem 3.14, for
every

λ ∈
] Φ(π + c)

2(π + c)− arctan(π + c)
,

1
2p+2 meas(Ω)(2c− arctan c)

[
,

the problem

−div
(
log(1 + |∇u|2)|∇u|p−2∇u

)
+ log(1 + |u|2)|u|p−2u = λ

(
1 +

u2

1 + u2

)
in Ω,

∂u

∂ν
= 0 on ∂Ω,

has at least three positive weak solutions.

References

[1] R. A. Adams; Sobolev Spaces, Academic Press, New York, 1975.

[2] G. A. Afrouzi, S. Heidarkhani, S. Shokooh; Infinitely many solutions for Steklov problems

associated to non-homogeneous differential operators through Orlicz-Sobolev spaces, Complex
Var. Elliptic Eqs. 60 (2015), 1505–1521.
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