
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 219, pp. 1–19.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

A WAVELET METHOD FOR SOLVING BACKWARD HEAT
CONDUCTION PROBLEMS

CHUNYU QIU, XIAOLI FENG

Abstract. In this article, we consider the backward heat conduction problem
(BHCP). This classical problem is more severely ill-posed than some other

problems, since the error of the data will be exponentially amplified at high

frequency components. The Meyer wavelet method can eliminate the influence
of the high frequency components of the noisy data. The known works on this

method are limited to the a priori choice of the regularization parameter. In
this paper, we consider also a posteriori choice of the regularization parameter.

The Hölder type stability estimates for both a priori and a posteriori choice

rules are established. Moreover several numerical examples are also provided.

1. Introduction

Wavelet theory has been widely developed in the late of the previous century.
The multiscale analysis and wavelet decomposition are now still subjects of intensive
development. At the same time, the investigation of mutual interactions between
wavelet theory and ill-posed problems has never stopped. Some results have been
applied to the analysis of some inverse problems. Wavelet methods have advantages
for use in certain inverse problems: 1. They allow for the decomposition of an
object into multiple resolutions (or scales). This is a particular advantage for high
precision inversion of the objects; 2. The localization of wavelets in both time and
frequency makes them quite useful for analyzing local features; 3. Wavelets have
excellent data compression capabilities for spatially variable objects, such as signals
characterized by singularities or images determined primarily by a set of edges; 4.
Some methods of denoising, based on thresholding of the wavelet coefficients, have
been proven to be nearly optimal for a number of tasks across a wide range of
function classes [13].

We emphasized that Meyer wavelets possess specially important significance for
solving many ill-posed problems. Meyer wavelets have the property that their
Fourier transforms have compact supports. This means that they can be used to
prevent high frequency noise from destroying the solution, i.e., by expanding the
data and the solution in a basis of Meyer wavelets, high-frequency components can
be filtered away. Within Vj , which is generated by the father wavelet of Meyer, the
original ill-posed problem is well-posed, and we can find a regularization parameter
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J depending on the noise level of the data such that the solution in Vj is a good ap-
proximation of the original problem. Moreover, the combination of Meyer wavelets
method with the fast Fourier transform (FFT) can build high-speed algorithm.

Meyer wavelet techniques have been used by Regińska et al [18, 19], Hào et al [10],
Eldén [6], and Wang [24] to solve the inverse heat conduction problems (IHCP), and
by Vani [23], Qiu et al [17] to solve the Cauchy problem for the Laplace equation.
However, they all used the a priori wavelet method, and did not consider the a
posteriori error estimate. Since the numerical results for the a posteriori method
do not depend on the a priori information, the a posteriori wavelet method is more
effective to solve practical problems than the a priori method. In this paper, we
continue to study the a priori wavelet method, and then focus on the a posteriori
wavelet method and its numerical solution.

Although the application of wavelet theory in differential equation has been
mostly focused on numerical computation, the connection between the wavelet the-
ory and differential equation is also searched all the time. Shen and Strang in [21]
have introduced the concept of heatlets in order to solve the heat equation using
wavelet expansions of the initial data. The heatlet is a “fundamental” solution to
the heat equation, when the initial data is expanded in terms of the wavelet basis,
the solution to the heat equation is then obtained from an expansion using the
heatlets and the corresponding wavelet coefficients of the data. In [11] the authors
combined heatlets with quasi-reversibility method to regularize the backward heat
equation, and obtained some theoretical error estimates. However, there are no
numerical results.

In the present paper, we consider the following backward heat equation in a strip
domain by a Meyer wavelet method.

ut = uxx, −∞ < x <∞, 0 ≤ t < T,

u(x, T ) = ϕT (x), −∞ < x <∞, (1.1) e11

where we want to determine the temperature distribution u(·, t) on the interval
t ∈ [0, T ) from the data ϕT (x). Backward heat conduction problem is a classical
ill-posed problem [12, 14], and is known as the most severely ill-posed problem,
which has been studied by many authors by different methods [1, 2, 4, 20, 22, 25].

Let ĝ(ξ) denote the Fourier transform of g(x) defined by

ĝ(ξ) :=
1√
2π

∫ ∞
−∞

e−ixξg(x)dx, (1.2) e12

and ‖f‖Hs denote the norm on the Sobolev space Hs defined by

‖f‖Hs :=
(∫ ∞
−∞
|f̂(ξ)|2(1 + ξ2)sdξ

)1/2

. (1.3) e13

When s = 0, ‖ · ‖H0 := ‖ · ‖ denotes the L2(R)-norm, and (·, ·) denotes the L2(R)-
inner product. It is easy to know that L2(R) ⊂ Hs(R) for s ≤ 0.

We assume that there exists a solution u(x, t) satisfying (1.1) in the classical
sense and u(·, t) ∈ L2(R) for 0 < t < T . Using the Fourier transform technique to
problem (1.1) with respect to variable x, we can get the Fourier transform û(ξ, t)
of the exact solution u(x, t) of problem (1.1):

û(ξ, t) = eξ
2(T−t)ϕ̂T (ξ), (1.4) e14
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or equivalently,

u(x, t) =
1√
2π

∫ ∞
−∞

eiξxeξ
2(T−t)ϕ̂T (ξ)dξ. (1.5) e15

For any ill-posed problem some a priori assumptions on the exact solution are
needed, otherwise the convergence of the regularization approximate solution will
not be obtained or the convergence rate can be arbitrarily slow [7]. When we
consider problem (1.1) in L2(R) for the variable x, we assume there exists an a
priori bound for ϕ0(x) := u(x, 0):

‖ϕ0‖ = ‖u(·, 0)‖ ≤ E. (1.6) e17

From the formula (1.5) and the Parseval formula, we know

‖ϕ0‖2 =
∫ ∞
−∞
|eξ

2T ϕ̂T (ξ)|2dξ. (1.7) e18

For a concrete ill-posed problem, not all regularization methods are effective. For
example, for the severely ill-posed problems with growth rate of magnitude factor
reaching or exceeding O(eγξ

2
), γ > 0, ξ →∞, the Mollification method with Gauss

kernel suggested by Murio [15] cannot deal with them. Problem (1.1) considered in
the present paper just is the case as the magnitude factor eξ

2(T−t). Therefore, the
Mollification method is not effective both in theory and numerical computation. In
addition, the convergence rate and numerical results are also not completely the
same for different regularization methods. For example, for the Modified method
suggested by [16], the theoretical convergence rate for problem (1.1) is only loga-
rithm type not Hölder type. So construction of specific regularization methods for
different ill-posed problems is significant.

The main goal of this paper is to provide a Meyer wavelet method for solving
the backward heat equation (1.1). Our method of proving stability estimates is
constructive: We construct a stable solution to the problem for both a priori and
a posteriori choice rules.

The outline of this paper is as follows. In Section 2, a brief survey on some
fundamental properties of Meyer wavelet is presented. On this basis, we give the
Meyer wavelet regularization method to solve the problem (1.1) for both a priori
and a posteriori parameter choice rules, and obtain the error estimates of the a
priori and a posteriori situations respectively. In Section 3, four numerical exam-
ples are provided, and the comparison of numerical effects for a posteriori wavelet
method with other methods for Examples 3.1 and 3.2 are also taken into account.

2. Wavelet regularization and error estimates

Let ϕ(x), ψ(x) be Meyer scaling and wavelet functions respectively. Then from
[3] we know

supp ϕ̂ = [−4
3
π,

4
3
π], supp ψ̂ = [−8

3
π,−2

3
π] ∪ [

2
3
π,

8
3
π],

and ψjk(x) = 2
j
2ψ(2jx− k), j, k ∈ Z constitute an orthonormal basis of L2(R) and

supp ψ̂jk(ξ) = [−8
3
π2j ,−2

3
π2j ] ∪ [

2
3
π2j ,

8
3
π2j ], k ∈ Z. (2.1) e21
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The multiresolution analysis (MRA) {Vj}j∈Z of Meyer wavelet is generated by

Vj = {ϕjk : k ∈ Z}, ϕjk := 2
j
2ϕ(2jx− k), j, k ∈ Z,

supp ϕ̂jk(ξ) = [−4
3
π2j ,

4
3
π2j ], k ∈ Z.

(2.2) e22

The orthogonal projection of a function g ∈ L2(R) on space VJ is given by PJg :=∑
k∈Z(g, ϕJk)ϕJk, while QJg :=

∑
k∈Z(g, ψJk)ψJk denotes the orthogonal projec-

tion on wavelet space WJ with VJ+1 = VJ
⊕
WJ . It is easy to see from (2.2) and

(2.1) that

P̂Jg(ξ) = 0, for |ξ| ≥ 4
3
π2J , (2.3) e23

Q̂jg(ξ) = 0, for j > J and |ξ| < 4
3
π2J . (2.4) e24

Since (I − PJ)g =
∑
j≥J Qjg and from (2.4), we know

((I − PJ)g)b(ξ) = Q̂Jg(ξ), for |ξ| < 4
3
π2J . (2.5) e25

lem2.1 Lemma 2.1 ([10]). Let {Vj}j∈Z be Meyer’s MRA and suppose J ∈ N, r ∈ R. Then
for all g ∈ VJ , it holds the estimate

‖Dkg‖Hr ≤ C2(J−1)k‖g‖Hr , k ∈ N, (2.6) e26

where C is a positive constant and Dk = dk

dxk .

Define an operator At : ϕT (x) 7→ u(x, t) by (1.4), i.e.,

AtϕT = u(x, t), 0 ≤ t < T,

or
ÂtϕT (ξ) = eξ

2(T−t)ϕ̂T (ξ), 0 ≤ t < T. (2.7) e27

Then we have the following lemma.

lem2.2 Lemma 2.2. Let {Vj}j∈Z be Meyer’s MRA and suppose J ∈ N, r ∈ R, 0 ≤ t < T .
Then for all g ∈ VJ we have

‖Atg‖Hr ≤ 2C exp
{

22(J−1)(T − t)
}
‖g‖Hr , (2.8) e28

where constant C is the same as in (2.6).

Proof. From (2.6) we know that

‖Atg‖Hr =
(∫ ∞
−∞
|Âtg(ξ)|2(1 + ξ2)rdξ

)1/2

=
(∫ ∞
−∞
|eξ

2(T−t)ĝ(ξ)|2(1 + ξ2)rdξ
)1/2

≤
(∫ ∞
−∞
|2 cosh(ξ2(T − t))ĝ(ξ)|2(1 + ξ2)rdξ

)1/2

= 2
(∫ ∞
−∞
|
∞∑
k=0

(T − t)2k

(2k)!
ξ4kĝ(ξ)|2(1 + ξ2)rdξ

)1/2

= 2
(∫ ∞
−∞
|
∞∑
k=0

(T − t)2k

(2k)!
(iξ)4kĝ(ξ)|2(1 + ξ2)rdξ

)1/2
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≤ 2
∞∑
k=0

(T − t)2k

(2k)!
‖D4kg‖Hr

≤ 2C
∞∑
k=0

(T − t)2k

(2k)!
2(J−1)4k‖g‖Hr

= 2C cosh
(
22(J−1)(T − t)

)
‖g‖Hr

≤ 2C exp
{

22(J−1)(T − t)
}
‖g‖Hr .

�

Let ϕT (x), ϕδT (x) be exact and measured data, respectively, which satisfy

‖ϕT − ϕδT ‖Hr < δ, for some r ≤ 0. (2.9) e29

Since ϕδT (x) belongs, in general, to L2(R) ⊂ Hr(R) for r ≤ 0, r should not be
positive. In general, L2 a priori bound for exact solution as (1.6) can only lead
to a Hölder stability estimate for the regularization solution, but this a priori
assumption can not ensure the convergence of the regularization solution at t = 0 for
problem (1.1). To obtain a more sharp convergence for the regularization solution,
here we assume, for some s ≥ r, there exists an a priori bound:

‖ϕ0‖Hs ≤ E. (2.10) e210

Denote operator At,J := AtPJ , we can show it approximates At in a stable way for
an appropriate choice of J ∈ N depending on δ and E. In fact, we have

‖AtϕT −At,JϕδT ‖Hr ≤ ‖AtϕT −At,JϕT ‖Hr + ‖At,JϕT −At,JϕδT ‖Hr . (2.11) e211

From Lemma 2.2 and condition (2.9), we can see that the second term of the right-
hand side of (2.11) satisfies

‖At,JϕT −At,JϕδT ‖Hr = ‖AtPJ(ϕT − ϕδT )‖Hr

≤ 2C exp
{

22(J−1)(T − t)
}
‖PJ(ϕT − ϕδT )‖Hr

≤ 2C exp
{

22(J−1)(T − t)
}
δ.

(2.12) e212

For the first term of the right-hand side of (2.11), from (2.3) we have

‖AtϕT −At,JϕT ‖Hr

= ‖At(I − PJ)ϕT ‖Hr

=
(∫ ∞
−∞
|eξ

2(T−t)((I − PJ)ϕT
)b(ξ)|2(1 + ξ2)rdξ

)1/2

=
(∫
|ξ|≥ 4

3π2J

|eξ
2(T−t)ϕ̂T (ξ)|2(1 + ξ2)rdξ

)1/2

+
(∫
|ξ|< 4

3π2J

|eξ
2(T−t)((I − PJ)ϕT

)b(ξ)|2(1 + ξ2)rdξ
)1/2

:= I1 + I2.

(2.13) e213
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Noting (1.4) and (2.10), we have

I1 =
(∫
|ξ|≥ 4

3π2J

|eξ
2(T−t)ϕ̂T (ξ)|2(1 + ξ2)rdξ

)1/2

=
(∫
|ξ|≥ 4

3π2J

|e−tξ
2
ϕ̂0(ξ)|2(1 + ξ2)rdξ

)1/2

≤ sup
|ξ|≥ 4

3π2J

e−tξ
2 1

(1 + ξ2)
s−r
2

(∫
|ξ|≥ 4

3π2J

|ϕ̂0(ξ)|2(1 + ξ2)sdξ
)1/2

≤ sup
|ξ|≥ 4

3π2J

e−tξ
2 1

(1 + ξ2)
s−r
2

‖ϕ0‖Hs

≤ e−t( 4
3π2J )2 E

( 4
3π2J)s−r

≤ e−t2
2(J+2) E

2(J+2)(s−r)

= 2−(J+2)(s−r) exp{−t22(J+2)}E.

(2.14) e214

From (2.5), Lemma 2.2, and noting that QJϕT ∈WJ ⊂ VJ+1, it is easy to see that
I2 satisfies:

I2 =
(∫
|ξ|< 4

3π2J

|eξ
2(T−t) ((I − PJ)ϕT )b(ξ)|2(1 + ξ2)rdξ

)1/2

=
(∫
|ξ|< 4

3π2J

|eξ
2(T−t)Q̂JϕT (ξ)|2(1 + ξ2)rdξ

)1/2

≤ ‖AtQJϕT ‖Hr

≤ 2C exp{2 2J(T − t)}‖QJϕT ‖Hr .

Denote χJ as the characteristic function of the interval [− 2
3π2J , 2

3π2J ]. We intro-
duce an operator MJ defined by

M̂Jg = (1− χJ)ĝ, g ∈ L2(R).

Noting that ϕT ∈ L2(R), so from Parseval formula and (2.1) we have

QJϕT =
∑
k∈Z

(ϕT , ψJk)ψJk =
∑
k∈Z

(ϕ̂T , ψ̂Jk)ψJk

=
∑
k∈Z

((1− χJ)ϕ̂T , ψ̂Jk)ψJk

=
∑
k∈Z

(MJϕT , ψJk)ψJk

= QJMJϕT .
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So, from (1.4),

‖QJϕT ‖Hr = ‖QJMJϕT ‖Hr ≤ ‖MJϕT ‖Hr

=
(∫
|ξ|≥ 2

3π2J

|ϕ̂T (ξ)|2(1 + ξ2)rdξ
)1/2

=
(∫
|ξ|≥ 2

3π2J

|e−ξ
2T ϕ̂0(ξ)|2(1 + ξ2)rdξ

)1/2

=
(∫
|ξ|≥ 2

3π2J

|e−ξ
2T 1

(1 + ξ2)
s−r
2

|2|ϕ̂0(ξ)|2(1 + ξ2)sdξ
)1/2

≤ sup
|ξ|≥ 2

3π2J

e−ξ
2T

|ξ|s−r
‖ϕ0‖Hs

≤ 2−(J+1)(s−r) exp
{
− T22(J+1)

}
E.

(2.15) e2*

Therefore,

I2 ≤ 2C exp
{

22J(T − t)
}

2−(J+1)(s−r) exp
{
− T22(J+1)

}
E

≤ 2C2−(J+1)(s−r) exp
{

22(J+1)(T − t)− T22(J+1)
}
E

= 2C2−(J+1)(s−r) exp
{
− t22(J+1)

}
E.

(2.16) e215

From (2.14), (2.16) and (2.13), we obtain

‖AtϕT −At,JϕT ‖Hr

≤ 2−(J+2)(s−r) exp{−t22(J+2)}E + 2C2−(J+1)(s−r) exp
{
− t22(J+1)

}
E

≤ (1 + 2C)2−(J+1)(s−r) exp
{
− t22(J+1)

}
E.

(2.17) e216

Combining (2.17), (2.12) with (2.11), we have

‖AtϕT −At,JϕδT ‖Hr

≤ 2C exp
{

22(J−1)(T − t)
}
δ + (1 + 2C)2−(J+1)(s−r) exp

{
− t22(J+1)

}
E

≤ 2C exp
{

22J(T − t)
}
δ + (1 + 2C)2−(J+1)(s−r) exp

{
− t22(J+1)

}
E.

(2.18) e217

Based on the above results, we will give the estimates for the a priori and a poste-
riori parameter choice rules, respectively.

2.1. A-priori parameter choice. Now we can firstly give an error estimate be-
tween the wavelet regularization solution At,Jϕ

δ
T and the exact solution u(x, t) =

AtϕT in L2(R).

thm2.1 Theorem 2.3. Suppose that ϕ0 ∈ L2(R) and (2.9), (2.10) hold for r = s = 0. The
problem of calculating At,JϕδT is stable. Furthermore, taking

J∗ :=
[1

2
log2

(
ln
(E
δ

)1/T )]
, (2.19) e218

where [a] denotes the largest integer less than or equal to a ∈ R, then the following
stability estimate holds:

‖AtϕT −At,J∗ϕδT ‖ ≤ (4C + 1)E1− t
T δt/T , (2.20) e219

where C is the same as in (2.6).
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Proof. Note that

exp
{

22J∗(T − t)
}
δ

≤ exp
{

(T − t) ln
(E
δ

)1/T}
δ =

(E
δ

)T−t
T δ = E1− t

T δt/T ,

exp
{
− t22(J∗+1)

}
E ≤ exp

{
− t ln

(E
δ

)1/T}
E = E1− t

T δt/T .

and from estimate (2.18) we have

‖AtϕT −At,J∗ϕδT ‖H0 = ‖AtϕT −At,J∗ϕδT ‖

≤ 2CE1− t
T δt/T + (1 + 2C)E1− t

T δt/T

= (4C + 1)E1− t
T δt/T .

The proof is complete. �

rmk2.1 Remark 2.4. From the result of reference [22] we know estimate (2.20) is an order
optimal Hölder stability estimate in L2(R). This suggests that wavelet method must
be useful for solving the considered ill-posed problem. However, from (2.20) we
know when t→ 0+, the accuracy of the regularized solution becomes progressively
lower. At t = 0, it merely implies that the error is bounded by 4C + 1, i.e., the
convergence of the regularized solution at t = 0 is not proved theoretically. This
defect is remedied by the following result.

thm2.2 Theorem 2.5. Suppose that ϕ0 ∈ Hs(R) for some s ∈ R and (2.9) holds for
r ≤ min{0, s}. Take

J∗∗ :=
[1

2
log2

(
ln
((E

δ

)1/T ( ln
E

δ

)− (s−r)
2T

))]
, (2.21) e220

where the bracket [a] is the same as in (2.19). Then

‖AtϕT −At,J∗∗ϕδT ‖Hr

≤
(

2C + (1 + 2C)
( ln E

δ

1
T ln E

δ + ln
(

ln E
δ

)−(s−r)/(2T )

) s−r
2
)

× E1− t
T δt/T

(
ln
E

δ

)− (T−t)(s−r)
2T .

(2.22) e221

Proof. Note that

exp
{

22J∗∗(T − t)
}
δ ≤ exp

{
(T − t) ln

((E
δ

)1/T ( ln
E

δ

)− (s−r)
2T

)}
δ

=
(E
δ

)T−t
T
(

ln
E

δ

)− (T−t)(s−r)
2T δ

= E1− t
T δt/T

(
ln
E

δ

)− (T−t)(s−r)
2T ,

exp
{
− t22(J∗∗+1)

}
E ≤ exp

{
− t ln

((E
δ

)1/T ( ln
E

δ

)− (s−r)
2T

)}
E

=
(E
δ

)− t
T
(

ln
E

δ

) t(s−r)
2T E

= E1− t
T δt/T

(
ln
E

δ

) t(s−r)
2T ,
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2−(J∗∗+1)(s−r) = 22(J∗∗+1)(− s−r
2 )

≤
(

ln
((E

δ

)1/T ( ln
E

δ

)− (s−r)
2T

))− s−r
2

=
( 1

1
T ln E

δ + ln
(

ln E
δ

)− (s−r)
2T

) s−r
2

=
( ln E

δ

1
T ln E

δ + ln
(

ln E
δ

)− (s−r)
2T

) s−r
2 (

ln
E

δ

)− (s−r)
2 ,

and from (2.18) we know

‖AtϕT −At,J∗∗ϕδT ‖Hr

≤ 2CE1− t
T δt/T

(
ln
E

δ

)− (T−t)(s−r)
2T + (1 + 2C)

( ln E
δ

1
T ln E

δ + ln
(

ln E
δ

)− (s−r)
2T

) s−r
2

×
(

ln
E

δ

)−T (s−r)
2T E1− t

T δt/T
(

ln
E

δ

) t(s−r)
2T

≤
(

2C + (1 + 2C)
( ln E

δ

1
T ln E

δ + ln
(

ln E
δ

)− s−r
2T

) s−r
2
)
E1− t

T δt/T
(

ln
E

δ

)− (T−t)(s−r)
2T ,

where the factor
ln E

δ

1
T ln E

δ + ln
(

ln E
δ

)− s−r
2T

is bounded as δ → 0+. So, the proof of estimate (2.22) is complete. �

rmk2.2 Remark 2.6. When s = r = 0, estimate (2.21) becomes estimate (2.19) and the
convergence speed given by (2.22) is faster than the one given by (2.20) for s > r.
Especially, when t = 0, estimate (2.22) becomes

‖A0ϕT −A0,J∗∗ϕ
δ
T ‖Hr

≤
(

2C + (1 + 2C)
( ln E

δ

1
T ln E

δ + ln
(

ln E
δ

)− s−r
2T

) s−r
2
)(

ln
E

δ

)− (s−r)
2 E → 0,

when δ → 0+ and s > r. This is a logarithmical stability estimate and an important
improvement to estimate (2.20).

rmk2.3 Remark 2.7. Noting that

lim
δ→0

ln E
δ

1
T ln E

δ + ln
(

ln E
δ

)− s−r
2T

= T,

estimate (2.22) also can be rewritten in the asymptotic form

‖AtϕT −At,J∗∗ϕδT ‖Hr

≤
(

2C + (1 + 2C)T
s−r
2 + o(1)

)
E1− t

T δt/T
(

ln
E

δ

)− (T−t)(s−r)
2T ,

as δ → 0.
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2.2. A-posteriori parameter choice. In this subsection, we consider the a pos-
teriori regularization parameter choice in the Morozov’s discrepancy principle. This
principle has been used by Feng et al [8] to solve the numerical analytic continu-
ation, however the backward heat conduction problem is more severely ill-posed
than the numerical analytic continuation.

lem2.3 Lemma 2.8. Assume conditions (2.9) for r = 0 and (2.10) for s = 0 hold. If J is
chosen as the solution of the inequalities

‖PJϕδT − ϕδT ‖ ≤ τδ ≤ ‖PJ−1ϕ
δ
T − ϕδT ‖, τ > 1, (2.23) e227

then it holds
exp(22JT ) ≤ 2E

(τ − 1)δ
. (2.24) e228

Proof. From Equations (2.3) and (2.5), we know
‖PJ−1ϕT − ϕT ‖

=
(∫ ∞
−∞
|((I − PJ−1)ϕT )b(ξ)|2dξ)1/2

≤
(∫
|ξ|≥ 4

3π2J−1
|ϕ̂T (ξ)|2dξ

)1/2

+
(∫
|ξ|< 4

3π2J−1
|(QJ−1ϕT )b(ξ)|2dξ)1/2

=: I3 + I4.

(2.25) e229

From (1.4),

I3 ≤ exp(−(
4
3
π2J−1)2T )E ≤ exp(−22JT )E. (2.26) e230

From (2.15),

I4 ≤ ‖(QJ−1ϕT )b(ξ)‖ ≤ 2−Js exp(−T22J)E ≤ exp(−22JT )E, s ≥ 0 (2.27) e231

Combining (2.25) with (2.26) and (2.27), we obtain

‖PJ−1ϕT − ϕT ‖ ≤ 2 exp(−22JT )E. (2.28) e232

On the other hand, by (2.9) for r = 0, (2.23), and the triangle inequality give

‖PJ−1ϕT − ϕT ‖ ≥ ‖(I − PJ−1)ϕδT ‖ − ‖(I − PJ−1)(ϕT − ϕδT )‖ ≥ (τ − 1)δ. (2.29) e233

From (2.28) and (2.29), estimate (2.24) is proved. �

thm2.3 Theorem 2.9. Assume that conditions (2.9) for r = 0 and (2.10) for s = 0 hold.
If the regularization parameter J is chosen as the solution of inequalities (2.23),
then

‖AtϕT −At,JϕδT ‖ ≤ C̃E1− t
T δt/T , (2.30) e234

where C̃ = (2C( 2
τ−1 )1−

t
T + (τ + 1)t/T ), and the constant C is the same as in (2.6).

Proof. By the Parseval formula and the triangle inequality,

‖AtϕT −At,JϕδT ‖ ≤ ‖Ât,JϕδT − Ât,JϕT ‖+ ‖Ât,JϕT − ÂtϕT ‖ =: I5 + I6. (2.31) e235

From Equation (2.12) and Lemma 2.8,

I5 ≤ 2C exp(22(J−1)(T − t))δ

= 2C(exp(22(J−1)T ))
T−t

T δ

≤ 2C
( 2E

(τ − 1)δ

)T−t
T

δ.

(2.32) e236
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Moreover,

I2
6

=
∫ ∞
−∞
|eξ

2(T−t)((I − PJ)ϕT )b(ξ)|2dξ
=
∫ ∞
−∞
|eξ

2T ((I − PJ)ϕT )b(ξ)|2 T−t
T |((I − PJ)ϕT )b(ξ)|2 t

T dξ

≤
(∫ ∞
−∞
|eξ

2T ((I − PJ)ϕT )b(ξ)|2dξ)T−t
T
(∫ ∞
−∞
|((I − PJ)ϕT )b(ξ)|2dξ)t/T .

(2.33) e237

By combining (1.6) with (2.23) and (2.33), it holds

I2
6 ≤ E2(1− t

T )((τ + 1)δ)2
t
T . (2.34) e238

From (2.31), (2.32) and (2.34), we complete the proof. �

3. Numerical aspects

In this section, we want to discuss some numerical aspects of the proposed
method.

3.1. Numerical implementation. Suppose that the vector {Φ(xi)}Ni=1 represents
samples from the function ϕT (x), and N is even, then we add a random normal
distribution to each data and obtain the perturbation data

Φδ = Φ + ε randn(size(Φ)), (3.1)

where the function “randn(·)” generates arrays of random numbers whose elements
are normally distributed with mean 0, variance σ2 = 1, and standard deviation
σ = 1.

The total noise δ can be measured in the sense of root mean square error ac-
cording to

δ = ‖Φδ − Φ‖l2 :=
( 1
N

N∑
i=1

(Φδ(xi)− Φ(xi))2
)1/2

. (3.2)

For a given measured function ϕδT , from Section 2, we have

Ât,JϕδT (ξ) =
∑
k∈Z

(ϕ̂δT , ϕ̂Jk)eξ
2(T−t)ϕ̂Jk = eξ

2(T−t)
∑
k∈Z

(ϕ̂δT , ϕ̂Jk)ϕ̂Jk. (3.3) e3.3

If no specific instructions are assumed, we will compute the regularization pa-
rameter J according to inequalities (2.23) with τ = 1.1. By using the Discrete
Meyer wavelet Transform (DMT) and the Fast Fourier Transform (FFT), we can
easily compute the regularized solution according to formula (3.3). Algorithms for
DMT are described in [13]. These algorithms are based on the FFT, and computing
the DMT of a vector in R requires O(N log2

2N) operations.

3.2. Numerical tests. In this subsection some numerical tests are presented to
demonstrate the usefulness of our method. The tests are performed using Matlab
7.0 and the wavelet package WaveLab 850, which is downloaded from http://www-
stat.stanford.edu/∼wavelab/.

Examples 3.1 and 3.2 are from [9] and [16], respectively. In theoretical aspect,
the error estimates of regularization solutions for the wavelet method (WM) and
Fourier method (FM) both are sharper Hölder-logarithm type, but it is only weaker
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logarithm type for the Modified method (MM). Here some comparison of numerical
result for these three methods are considered. The case with no explicit solutions
is considered in Examples 3.3 and 3.4.

In the following tests, the initial time is chosen as t = 0, and the number of
the discrete points N is 128. The selection of regularization parameters for Fourier
method and Modified method are chosen according to [9, (2.8) with s = 0] and [16,
(3.24)] in Examples 3.1 and 3.2, respectively.

Let u be the exact solution and v be the approximation of some regularization
method. The absolute error ea(u) is defined as

ea(u) := ‖u− v‖l2 =
( 1
N

N∑
n=1

|u(n)− v(n)|2
)1/2

,

examp1 Example 3.1 ([9]). It is easy to verify that the function

u(x, t) =
1√

1 + 4t
e−

x2
1+4t (3.4)

is the unique solution of the problem
ut = uxx, x ∈ R, t > 0,

u(x, T ) = ϕT (x) :=
1√

1 + 4T
e−

x2
1+4T , x ∈ R.

(3.5) eq:1

Table 1. Regularization parameters for different methods with
ε = 10−2tab:1

T ξmax(FM) µ(MM) J(WM)
0.01 21.4597 0.0046 4
0.04 10.7298 0.0185 4
0.09 7.1532 0.0416 4

Figure 1 illustrates the exact solution and the approximation corresponding to
the three methods at different times t = 0 from T = 0.01, T = 0.04, T = 0.09
with ε = 10−2 for Example 3.1 in the interval x ∈ [−10, 10]. The regularization
parameters are chosen as in Table 1. Here ξmax, µ and J are the regularization
parameters of Fourier method, Modified method and Wavelet method, respectively.
Figure 2 shows that the reconstruction error obtained by the different methods
for different numbers of discrete points with T = 0.01 and ε = 10−3. It shows
that the number N of discrete points (i.e., the step length) also plays the role
of regularization parameter [5]. According to the general regularization theory,
it should be neither too small nor too large. But usually, in some regularization
methods, the influence of number N is less than the regularization parameter.

examp2 Example 3.2 ([16]). The function

u(x, t) = e−t sin(x) (3.6)

is the unique solution of the problem
ut = uxx, x ∈ R, t > 0,

u(x, T ) = ϕT (x) := e−T sin(x), x ∈ R.
(3.7) eq:2
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Figure 1. Example 3.1. Exact solution and approximation at
t = 0 from T = 0.01 (top), T = 0.04 (middle), T = 0.09 (bottom)
with ε = 10−2. fig:1

Figure 3 plots the exact solution and the approximation by the three methods at
t = 0 from different times T = 0.01, T = 0.04, T = 0.09 with ε = 10−2 for Example
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Figure 2. Example 3.1. Reconstruction error obtained by the
different methods for different numbers of discrete points with T =
0.01, ε = 10−3. fig:2

3.2 in the interval x ∈ [−3π, 3π]. The regularization parameters are also chosen
as in Table 1. Figure 4 illustrates that the reconstruction error obtained by the
different methods for different noisy levels with T = 0.01, N = 128. It shows that,
for the different methods, the error between the exact solution and the approximate
solution gets smaller as the noise in the data decreases.

From the Figures 1 and 3, we can also see that, for all methods, the smaller the
T , the better the approximation. This phenomenon conforms to the theory that,
the larger the T , the more ill-posed the problem.

Unfortunately, for general data ϕT , it is not easy to find an explicit analytical
solution to problem (1.1), so we will construct new examples as follows: take a
function ϕ0(x) ∈ L2(R) and solve the well-posed problem

ut = uxx, x ∈ R, t > 0,

u(x, 0) = ϕ0(x), x ∈ R,
(3.8) eq:1b

to get an approximation to ϕT (x). To avoid the inverse crime, we use the finite
difference to compute this well-posed problem. Here we discretize problem (3.8)
only with respect to the spatial variable x and leave the time variable t continuous,
and then we obtain a system of ordinary differential equations and we can solve
it using an explicit Runge-Kutta method. See the details in [16]. Then we add a
random noise to ϕT (x) to get the noisy data ϕδT (x). At last, we use the proposed
regularized technique to obtain the regularized solution at t = 0.

examp3 Example 3.3. We choose a non-smooth function

ϕ0(x) =


1 + x

3 , −3 ≤ x ≤ 0,
1− x

3 , 0 < x ≤ 3,
0, |x| > 3.
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Figure 3. Example 3.2. Exact solution and approximation at
t = 0 from T = 0.01 (top), T = 0.04 (middle), T = 0.09 (bottom)
with ε = 10−2. fig:3
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Figure 4. Example 3.3. Reconstruction error obtained by the
different methods for different noisy levels with T = 0.01, N = 128. fig:4

examp4 Example 3.4. We consider a discontinuous function

ϕ0(x) =


1, −3 ≤ x ≤ 0,
−1, 0 < x ≤ 3,
0, |x| > 3.

Figures 5 and 6 illustrate the exact and regularized solutions corresponding to
different ε for Examples 3.3 and 3.4, respectively. The results show that the ap-
proximation gets better as the noise level ε decreases. Although ϕ0(x) in Example
3.3 is not smooth and ϕ0(x) in Example 3.4 is even non-continuous, our method is
also effective for them.

In summary, from the above different kinds of numerical examples, we can con-
clude that the numerical solution is stable, and the Meyer wavelet method is an
applicable method. This accords with our theoretical results.

Acknowledgments. The authors are very grateful to the anonymous referee for
their helpful comments and suggestions and to Prof. Chu-Li Fu for his constructive
suggestions. The authors also thank Dr. Yuan-Xiang Zhang and Dr. Yun-Jie
Ma for helpful discussion. The work is supported by the National Natural Science
Foundation of China (Nos. 11401456, 41475068), and by the Natural Science Basic
Research Plan in Shaanxi Province of China (No. 2015JQ1016).

References

s3 [1] A. Carasso; Error bounds in the final value problem for the heat equation, SIAM J. Math.
Anal., 7, 1976, 195–199.

s4 [2] D. Colton; The approximation of solutions to the backwards heat equation in a nonhomoge-
neous medium, J. Math. Anal. Appl., 72, 1979, 418–429.

s12 [3] I. Daubechies; Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

s5 [4] L. Eldén; Regularization of the backwards solution of parabolic problems, In: Inverse and
Improperly posed problems in Differential Equations (G. Anger, editor), Akademie Verlag,
Berlin, 1979.



EJDE-2017/219 BACKWARD HEAT CONDUCTION PROBLEMS 17

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

T
he

 e
xa

ct
 s

ol
ut

io
n 

uT

T=1

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

E
xa

ct
 s

ol
ut

io
n 

an
d 

ap
pr

ox
im

at
io

n 
at

 t=
0

 

 
Exact solution

WM with ε=10−1

WM with ε=10−2

WM with ε=10−3

Figure 5. Example 3.3. Computed input data ϕT (x) (top); exact
and regularized solutions with different ε from T = 0.09 (bottom). fig:5

Larsdifference [5] L. Eldén; Numerical solution of the sideways heat equation by difference approximation in
time, Inverse Probl., 11, 1995, 913–923.
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