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OPERATORS
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Communicated by Vicentiu D. Radulescu

Abstract. In this article, we are concerned with a class of nonlinear partial
differential elliptic equations with Dirichlet boundary data. The key feature of

this paper consists in competition effects of two generalized differential opera-

tors, which extend the standard operators with variable exponent. This class
of problems is motivated by phenomena arising in non-Newtonian fluids or im-

age reconstruction, which deal with operators and nonlinearities with variable

exponents. We establish an existence property in the framework of small per-
turbations of the reaction term with indefinite potential. The mathematical

analysis developed in this paper is based on the theory of anisotropic function

spaces. Our analysis combines variational arguments with energy estimates.

1. Introduction

Partial differential equations driven by nonhomogeneous differential operators
have been a very productive and rich research field in the last few decades because
of the multiple relevant applications in various fields. We mainly refer to nonlin-
ear stationary problems with associated energy that changes pointwise its growth
properties and ellipticity. Problems with this structure have been comprehensively
analyzed. We refer, e.g., to the seminal works of Halsey [12] and Zhikov [26, 27],
in close connection with the qualitative and quantitative mathematical analysis of
some classes of anisotropic materials and their applications to fields like homoge-
nization and nonlinear elasticity.

In the framework of materials with non-homogeneous structure, the standard
abstract analytic approach relying on the classical theory of Lp and W k,p function
spaces (Lebesgue and Sobolev) is not satisfactory. We refer to electro-rheological
fluids (also called “smart fluids”) as well as to image processing, which should
enable that the exponent p is varying; see Chen, Levine and Rao [8] and Ruz-
icka [24]. For instance, we refer to the Winslow effect of some fluids (like lithium
polymetachrylate) in which the viscosity in a certain magnetic or electric range is
inversely proportional to the field strength. This corresponds to non-Newtonian
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electro-rheological fluids, which are mathematically understood by means of non-
linear equations with one or more variable exponents.

Such a study corresponds to the abstract setting of Lebesgue and Sobolev func-
tion spaces Lp(x) and W 1,p(x). Here, p is a nonconstant smooth real-valued function
with given properties. The abstract theory of function spaces with variable expo-
nent was studied by Diening, Hästo, Harjulehto and Ruzicka [11] while the recent
book by Rădulescu and Repovš [22] is devoted to the careful mathematical analysis
of some models of nonlinear problems with one or more variable exponents; see
also Harjulehto, Hästö, Le and Nuortio [13] and Rădulescu [20]. We also refer to
Alsaedi et al. [1, 2], Mingione et al. [5, 9, 10], Pucci et al. [3, 19], Repovš et al.
[7, 23] for related results.

Recently, Kim and Kim [14] introduced an extended class of non-homogeneous
differential operators. The main feature of their work is in relationship with the
thorough mathematical understanding of nonlinear models with lack of uniform
convexity. More precisely, Kim and Kim [14] studied some classes of the boundary-
value problems

−div(φ(x, |∇u|)∇u) = f(x, u) in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN .
The reaction term f : Ω × R → R fulfills a Carathéodory-type hypothesis and

the function φ(x, t) behaves as |t|p(x)−2 with p : Ω → (1,∞) continuous. In the
case where φ(x, t) = |t|p(x)−2, then the operator involved in problem (1.1) reduces
to the p(x)-Laplace operator.

In many papers (see, e.g., [18, Hypothesis (A4), p. 2629]), the functional Φ
induced by the principal part of problem (1.1) is assumed to be uniformly convex.
This means that there exists k > 0 such that for each (x, ξ, ψ) ∈ Ω× RN × RN ,

Φ
(
x,
ξ + ψ

2

)
≤ 1

2
Φ(x, ξ) +

1
2

Φ(x, ψ)− k |ξ − ψ|p(x).

However, since the function Ψ(x, s) = sp is not uniformly convex for s ∈ (0,∞) for
1 < p < 2, this condition is not applicable to all p-Laplacian problems. A feature of
the abstract setting developed in [14] is that the main results are obtained without
any uniform convexity assumption. Related properties can be found in the recent
paper of Baraket, Chebbi, Chorfi and Rădulescu [4].

We study some nonlinear phenomena driven by non-homogeneous differential
operators. Our main purpose in this paper is to establish some qualitative properties
of solutions in the framework of small perturbations.

2. Terminology and preliminary results

We suppose that Ω ⊂ RN is a smooth bounded domain. Define

C+(Ω) = {p ∈ C(Ω) : p > 1in Ω}.

For p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x); p− = inf
x∈Ω

p(x).

We define the Banach space

Lp(x)(Ω) = {u : u is measurable and
∫

Ω

|u|p(x) dx <∞}
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with the associated Luxemburg norm

|u|p(x) = inf
{
µ > 0 :

∫
Ω

|u(x)
µ
|p(x) dx ≤ 1

}
.

According to [22], Lp(x)(Ω) is reflexive if and only if 1 < p− ≤ p+ <∞.
The usual continuous embedding property of Lebesgue function spaces extends

to variable exponent spaces. More precisely, if Ω has finite measure and p1, p2 are
two functions satisfying p1 ≤ p2 in Ω then there exists a continuous embedding
Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Let Lp
′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) = 1.

Then for all u ∈ Lp(x)(Ω) and all v ∈ Lp′(x)(Ω) the following Hölder-type inequality
holds: ∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) . (2.1)

The modular of Lp(x)(Ω) has a crucial role in arguments dealing with variable
exponent Lebesgue spaces. This modular is the map ρp(x) : Lp(x)(Ω) → R defined
by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If u, (un) ∈ Lp(x)(Ω) and p+ <∞ then the following properties are true:

if |u|p(x) > 1 then |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (2.4)

Let
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

This Banach space is usually equipped with the norm

‖u‖p(x) = |u|p(x) + |∇u|p(x)

or

‖u‖p(x) = inf
{
µ > 0 :

∫
Ω

(
|∇u
µ
|p(x) + |u

µ
|p(x)

)
dx ≤ 1

}
.

Zhikov [27] showed that smooth functions are not always dense in W 1,p(x)(Ω).
This property is in relationship with the Lavrentiev phenomenon. Roughly speak-
ing, this phenomenon asserts that there are problems with variational structure
such that the infimum over the family of smooth functions is bigger than the in-
fimum over the set of all functions satisfying the same boundary conditions. We
refer to [22, pp. 12-13] for more details.

Let W 1,p(x)
0 (Ω) denote the closure with respect to ‖u‖p(x) of the family of all

W 1,p(x)-functions with compact support. In the case where smooth functions are
dense, we can use as alternative approach the closure of the function space C∞0 (Ω)
in W 1,p(x)(Ω). We also point out that Poincaré’s inequality enables to define,
equivalently, the space W 1,p(x)

0 (Ω) as the closure of C∞0 (Ω) with respect to

‖u‖p(x) = |∇u|p(x).
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The vector space (W 1,p(x)
0 (Ω), ‖ · ‖) is a reflexive and separable Banach space.

Moreover, if Ω has finite measure and p1, p2 are two functions satisfying p1 ≤ p2 in
Ω then there is a continuous embedding W 1,p2(x)

0 (Ω) ↪→W
1,p1(x)
0 (Ω).

Let

%p(x)(u) =
∫

Ω

|∇u(x)|p(x) dx. (2.5)

Assume that (un), u ∈W 1,p(x)
0 (Ω). Then the following properties are true:

‖u‖ > 1 ⇒ ‖u‖p
−
≤ %p(x)(u) ≤ ‖u‖p

+
, (2.6)

‖u‖ < 1 ⇒ ‖u‖p
+
≤ %p(x)(u) ≤ ‖u‖p

−
, (2.7)

‖un − u‖ → 0 ⇔ %p(x)(un − u)→ 0 . (2.8)

Set

p∗(x) =

{
Np(x)
N−p(x) for p(x) < N

+∞ for p(x) ≥ N.

We recall that if p and q belong to C+(Ω) and q(x) < p?(x) for every x ∈ Ω then
the continuous embedding W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω) is compact.
If the function p is constant, then variable exponent Lebesgue and Sobolev spaces

reduce to the standard Lebesgue and Sobolev spaces.
From [22], some curious properties are valid in this framework, such as:
(i) If p is a smooth function, then the following coarea formula∫

Ω

|w(x)|pdx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |w(x)| > t}| dt

is no longer valid for variable exponent spaces.
(ii) Suppose that p is a nonconstant smooth (continuous) function in a ball B.

Then there exists w ∈ Lp(x)(B) such that w(x + h) 6∈ Lp(x)(B) for all h ∈ RN ,
provided that the norm of h is sufficiently small.

3. Main result

Assume that p1, p2 ∈ C+(Ω) and let φ, ψ : Ω× [0,∞)→ [0,∞) be functions that
satisfy the following growth assumptions:

(H1) the functions φ(·, ξ), ψ(·, ξ) are measurable in the domain Ω for every ξ ≥ 0
and the mappings φ(x, ·), ψ(x, ·) are locally absolutely continuous in [0,∞)
for almost all x ∈ Ω;

(H2) there are a1 ∈ Lp
′
1(Ω), a2 ∈ Lp

′
2(Ω) and b > 0 such that

|φ(x, |v|)v| ≤ a1(x) + b|v|p1(x)−1, |ψ(x, |v|)v| ≤ a2(x) + b|v|p2(x)−1

for almost all x ∈ Ω and for every v ∈ RN ;
(H3) there exists a positive real number c such that

φ(x, ξ) ≥ cξp1(x)−2, φ(x, ξ) + ξ
∂φ

∂ξ
(x, ξ) ≥ cξp1(x)−2,

ψ(x, ξ) ≥ cξp2(x)−2, ψ(x, ξ) + ξ
∂ψ

∂ξ
(x, ξ) ≥ cξp2(x)−2

for almost all x ∈ Ω and for all ξ > 0.
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An interesting consequence of these assumptions is that φ and ψ satisfy a Simon-
type inequality. More precisely, if we denote

Ω1 := {x ∈ Ω : 1 < p(x) < 2} and Ω2 := {x ∈ Ω; p(x) ≥ 2},

then
〈φ(x, |u|)u− φ(x, |v|)v, u− v〉

≥

{
c(|u|+ |v|)p(x)−2|u− v|2 if x ∈ Ω1 and (u, v) 6= (0, 0)
41−p+c|u− v|p(x) if x ∈ Ω2

(3.1)

is valid for all u, v ∈ RN , where c is the constant given in hypothesis (H3). This
inequality is used in [14] to show that A′ : W 1,p(x)

0 (Ω) → W−1,p′(x)(Ω) is both a
nonlinear monotone operator and a (S+) mapping. We refer to Simon [25] for the
initial version of inequality (3.1) in the framework of the p-Laplace operator.

Consider the problem

− div(φ(x, |∇u|)∇u)− div(ψ(x, |∇u|)∇u)

= λa(x)|u|r(x)−2u− b(x)|u|s(x)−2u, x ∈ Ω
u = 0, x ∈ ∂Ω.

(3.2)

This problem extends in a general setting results that are valid for standard opera-
tors with variable exponent, such as the p(x)-Laplace operator, the mean curvature
equation with variable exponent, or the nonhomogeneous capillarity equation.

We assume that λ is a positive parameter and r, s ∈ C+(Ω). We study problem
(3.2) under the following hypotheses:

(H4) a ∈ Lq1(x)(Ω) and there exists ω b Ω, |ω| > 0 such that a > 0 in ω;
b ∈ Lq2(x)(Ω), b > 0 almost everywhere in Ω;

(H5) we have max{r(x), s(x)} < max{p1(x), p2(x)} ≤ N < min{q1(x), q2(x)} for
all x ∈ Ω;

(H6) we have infx∈ω r(x) < infx∈ω(p1 ∧ p2 ∧ s)(x).
When p1, p2 are the exponents introduced in (H2) and (H3), we set

p(x) := max{p1(x), p2(x)} for all x ∈ Ω.

Throughout this paper, we say that u is a (weak) solution of problem (3.2) if
u ∈W 1,p(x)

0 (Ω) \ {0} and∫
Ω

[φ(x, |∇u|)+ψ(x, |∇u|)]∇u·∇v dx = λ

∫
Ω

a(x)|u|r(x)−2uvdx−
∫

Ω

b(x)|u|s(x)−2uv,

for all functions v ∈W 1,p(x)
0 (Ω).

Our main result of the present paper establishes that problem (3.2) has solutions
in the case of small perturbation of the reaction term in the right-hand side of (3.2).

Theorem 3.1. Assume that hypotheses (H1)–(H6) are fulfilled. Then there exists
a positive real number Λ such that (3.2) has at least one solution for all λ ∈ (0,Λ).

4. Proof of Theorem 3.1

For x ∈ Ω we set

α1(x) =
q1(x)r(x)
q1(x)− r(x)

and α2(x) =
q2(x)s(x)
q2(x)− s(x)

.
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By hypothesis (H5), α1(x) and α2(x) are positive numbers. Assumption (H5) also
yields that

max{α1(x), α2(x)} < p∗(x) for x ∈ Ω, (4.1)

max{q′1(x)α1(x), q′2(x)α2(x)} < p∗(x). (4.2)

It follows that W 1,p(x)
0 (Ω) is compactly embedded into the spaces Lαj(x)(Ω) and

Lq
′
j(x)αj(x)(Ω), j = 1, 2.
For functions φ and ψ satisfying (H1)-(H3), we define

A0(x, t) :=
∫ t

0

[φ(x, s) + ψ(x, s)]sds. (4.3)

Consider the associated functional A : W 1,p(x)
0 (Ω)→ R defined by

A(u) :=
∫

Ω

A0(x, |∇u|)dx, (4.4)

where A0 is introduced in (4.3).
By [14, Lemma 3.2] and since hypotheses (H1) and (H2) are fulfilled, we obtain

that A ∈ C1(W 1,p(x)
0 (Ω),R) and its Gâteaux directional derivative is given by

A′(u)(v) =
∫

Ω

[φ(x, |∇u|)+ψ(x, |∇v|)]∇u ·∇vdx for all u, v ∈W 1,p(x)
0 (Ω). (4.5)

Moreover, since conditions (H1)–(H3) are satisfied, [14, Lemma 3.4] implies that the
nonlinear mapping A : W 1,p(x)

0 (Ω)→W−1,p′(x)(Ω) is a strictly monotone operator.
Moreover, this is a (S+) mapping; namely, if

un ⇀ u in W
1,p(x)
0 (Ω) as n→∞ and lim sup

n→∞
〈A′(un)−A′(u), un − u〉 ≤ 0,

then
un → u in W

1,p(x)
0 (Ω) as n→∞.

It is straightforward that the nonlinear mapping A is weakly lower semicontinuous,
see [14] for details and proofs.

Define the functionals B, E : W 1,p(x)
0 (Ω)→ R by

B(u) = λ

∫
Ω

a(x)
r(x)

|u|r(x)dx−
∫

Ω

b(x)
s(x)

|u|s(x)dx,

E(u) = A(u)−B(u).

We argue in what follows that B is well-defined in W
1,p(x)
0 (Ω). Indeed, for all

u ∈W 1,p(x)
0 (Ω) we have∣∣ ∫
Ω

a(x)
r(x)

∣∣u|r(x)dx| ≤ 1
r−
|a|q1(x)| |u|r(x) |α′1(x) ≤

1
r−
|a|q1(x)|u|k1r(x)α′1(x). (4.6)

Here, k1 is a positive real number not depending on u. Similarly, there exists k2 > 0
such that for all u ∈W 1,p(x)

0 (Ω)∣∣ ∫
Ω

b(x)
s(x)

∣∣u|s(x)dx| ≤ 1
s−
|b|q2(x)|u|k2s(x)α′2(x). (4.7)



EJDE-2017/223 BIFURCATION ANALYSIS OF ELLIPTIC EQUATIONS 7

Relations (4.6) and (4.7) and the continuous embeddings of W 1,p(x)
0 (Ω) into the

spaces Lr(x)α′1(x)(Ω) and Ls(x)α′2(x)(Ω) imply that B is well-defined. Moreover, by
standard computation we deduce that B is of class C1 and for all u, v ∈W 1,p(x)

0 (Ω)

B′(u)(v) = λ

∫
Ω

a(x)|u|r(x)−2uvdx−
∫

Ω

b(x)|u|s(x)−2uv dx.

Returning to (4.5), we conclude that E is of class C1 on W
1,p(x)
0 (Ω) and

E ′(u)(v) =
∫

Ω

[φ(x, |∇u|) + ψ(x, |∇v|)]∇u · ∇vdx

− λ
∫

Ω

a(x)|u|r(x)−2uvdx+
∫

Ω

b(x)|u|s(x)−2uv dx.

These arguments also show that u ∈W 1,p(x)
0 (Ω) is a nontrivial critical point of the

energy functional E if and only if u is a (weak) solution of problem (3.2).
Step 1. For all ρ > 0 sufficiently small, we can find λ∗, η > 0 such that E(u) ≥ η,
provided that ‖u‖ = ρ and λ ∈ (0, λ∗).

Using (H3) and (2.3) we observe that for all u ∈W 1,p(x)
0 (Ω) with ‖u‖ < 1∫

Ω

∫ |∇u|
0

φ(x, s)s ds dx ≥ c
∫

Ω

∫ |∇u|
0

sp1(x)−1 ds dx ≥ c

p+
1

∫
Ω

|∇u|p1(x)dx

and ∫
Ω

∫ |∇u|
0

ψ(x, s)s ds dx ≥ c

p+
2

∫
Ω

|∇u|p2(x)dx.

Thus, for all u ∈W 1,p(x)
0 (Ω) with ‖u‖ < 1,

A(u) ≥ c

p+

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx

≥ c

p+

∫
Ω

|∇u|p(x) ≥ c

p+
‖u‖p

+
.

(4.8)

Next, by Hölder’s inequality,∫
Ω

a(x)
r(x)

|u|r(x)dx ≤ 1
r−

∫
Ω

a(x)|u|r(x)dx ≤ 1
r−
|a|r(x)|u|r

−

r(x)q′1(x).

Assumption (H5) implies that r(x)q′1(x) < p∗(x), hence W 1,p(x)
0 (Ω) is continuously

embedded in Lr(x)q′1(x)(Ω). Relation (2.7) implies the existence of some C1 > 0
such that for all u ∈W 1,p(x)

0 (Ω) with sufficiently small norm we have∫
Ω

a(x)
r(x)

|u|r(x)dx ≤ C1

r−
|a|r(x) ‖u‖r

−
. (4.9)

Combining relations (4.8) and (4.9) we obtain that for every u ∈ W 1,p(x)
0 (Ω) with

sufficiently small norm we have

E(u) ≥ c

p+
‖u‖p

+
− λC1

r−
|a|r(x)‖u‖r

−

= C2 ‖u‖p
+
− λC3 ‖u‖r

−

= ‖u‖r
−(
C2‖u‖p

+−r− − λC3

)
.

Then step 1 follows by using hypothesis (H5).
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Step 2. There exist w ∈ W
1,p(x)
0 (Ω) and t0 > 0 such that E(tw) < 0 for all

t ∈ (0, t0).
Let ω be the subdomain of Ω defined in hypothesis (H4) and let p−1,ω, p−2,ω, s−ω ,

and r−ω denote the infima of p1, p2, s, and r in ω. Set

δ := min{p−1,ω, p
−
2,ω, s

−
ω }.

By hypothesis (H6), there exists ε0 > 0 such that

1 < r−ω + ε0 < δ . (4.10)

We fix ω1 ⊂⊂ ω such that

r−ω − ε0 ≤ r(x) ≤ r−ω + ε0.

We also fix w ∈ C∞0 (Ω) such that

supp(w) ⊂ ω1 and 0 ≤ w ≤ 1 in ω1.

Let t ∈ (0, 1). We have

A(tw) =
∫

Ω
A0(x, t|∇w|)dx =

∫
Ω

∫ t|∇w|
0

[φ+ ψ]s ds dx∫
ω

∫ t|∇w|
0

[φ+ ψ]s ds dx.

Using hypothesis (H2) we obtain

A(tw) ≤
∫
ω

∫ t|∇w|

0

(
|a1(x)|s+ bsp1(x)

)
ds dx

+
∫
ω

∫ t|∇w|

0

(
|a2(x)|s+ bsp2(x)

)
ds dx

≤
∫
ω

(
|a1(x)|t|∇w|+ btp1(x)|∇w|p1(x)

)
dx

+
∫
ω

(
|a2(x)|t|∇w|+ btp2(x)|∇w|p2(x)

)
dx

≤ btδ
(∫

ω

|∇w|p1(x) +
∫
ω

|∇w|p2(x)
)

+ C6t.

On the other hand, we have

B(tw) = λ

∫
Ω

a(x)
r(x)

tr(x)wr(x)dx−
∫

Ω

b(x)
s(x)

ts(x)ws(x)dx

= λ

∫
ω

a(x)
r(x)

tr(x)wr(x)dx−
∫
ω

b(x)
s(x)

ts(x)ws(x)dx

≥ λ t
r−ω +ε0

r+

∫
ω

a(x)wr(x)dx− ts
−
ω

s−

∫
ω

b(x)ws(x)dx

= λC7t
r−ω +ε0 − tδ

s−

∫
ω

b(x)ws(x)dx.

We conclude that

E(tw) = A(tw)−B(tw)

≤ tδ
[
b

∫
ω

(
|∇w|p1(x) + |∇w|p2(x)

)
dx+

1
s−

∫
ω

b(x)ws(x)dx
]

+ C6t− λC7t
r−ω +ε0 .
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Recalling the choice of ε0 and the definition of δ (see relation (4.10)), we deduce
that E(tw) < 0 for all t > 0 sufficiently small.

Proof of Theorem 3.1 concluded. Combining steps 1 and 2, we deduce that there
exist λ∗ > 0 and ρ > 0 such that for every λ ∈ (0, λ∗)

inf
‖u‖=ρ

E(u) > 0 and inf
‖u‖≤ρ

E(u) < 0.

Fix ε > 0 so that
ε < inf

‖u‖=ρ
E(u)− inf

‖u‖≤ρ
E(u). (4.11)

Consider the energy functional E restricted to the complete metric space B(0, ρ) ⊂
W

1,p(x)
0 (Ω). Applying Ekeland’s variational principle, we find uε ∈W 1,p(x)

0 (Ω) with
‖uε‖ ≤ ρ such that

inf
‖u‖≤ρ

E(u) ≤ E(uε) ≤ inf
‖u‖≤ρ

E(u) + ε, (4.12)

E(u)− E(uε) + ε ‖u− uε‖ ≥ 0 for all u 6= uε. (4.13)

The choice of ε given in (4.11) implies that ‖uε‖ < ρ, hence uε is an interior
point of B(0, ρ). Next, a standard argument based on relation (4.13) implies that
‖E ′(uε)‖ ≤ ε.

In conclusion, we obtain a bounded sequence (un) ⊂W 1,p(x)
0 (Ω) satisfying

E(un)→ inf
‖u‖≤ρ

E(u) and ‖E ′(un)‖ → 0 as n→∞.

Thus, passing if necessary to a subsequence, we can assume that (un) is weakly
convergent to u ∈W 1,p(x)

0 (Ω).
We claim that the sequence (un) ⊂ W

1,p(x)
0 (Ω) is strongly convergent. The

key argument for this purpose is that the nonlinear mapping A′ : W 1,p(x)
0 (Ω) →

W−1,p′(x)(Ω) is an operator of type (S+). For this purpose, we observe that the
Hölder inequality yields∣∣ ∫

Ω

a(x)|un|r(x)−2un(un − u)dx
∣∣

≤ |a|q1(x)

∣∣|un|r(x)−2un(un − u)
∣∣
q′1(x)

≤ |a|q1(x)

∣∣|un|r(x)−2un
∣∣
r(x)/[r(x)−1]

|un − u|α1(x).

(4.14)

Recall that α1(x) < p∗(x). Thus, up to a subsequence, the convergence of (un) to
u is strong in Lα1(x)(Ω). Returning to inequality (4.14), we obtain∫

Ω

a(x)|un|r(x)−2un(un − u)dx→ 0 as n→∞. (4.15)

A similar argument shows that∫
Ω

b(x)|un|s(x)−2un(un − u)dx→ 0 as n→∞. (4.16)

Relations (4.15) and (4.16) combined with the fact that ‖E ′(un)‖ → 0 as n → ∞
imply that

E ′(un)(un − u)− E ′(u)(un − u)→ 0 as n→∞. (4.17)
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But
E ′(un)(un − u)− E ′(u)(un − u)

=
∫

Ω

(φ(x, |∇un|) + ψ(x, |∇un|))∇un∇(un − u)dx

−
∫

Ω

(φ(x, |∇u|) + ψ(x, |∇u|))∇u∇(un − u)dx

− λ
∫

Ω

a(x)(|un|r(x)−2un − |u|r(x)−2u)(un − u)dx

+
∫

Ω

b(x)(|un|s(x)−2un − |u|s(x)−2u)(un − u)dx.

(4.18)

Combining relations (4.15)–(4.18) we deduce that

〈A′(un)−A′(u), un − u〉

=
∫

Ω

(φ(x, |∇un|)∇un + ψ(x, |∇un|)∇un)∇(un − u)dx

−
∫

Ω

(φ(x, |∇u|)∇u+ ψ(x, |∇u|)∇u)∇(un − u)dx→ 0 as n→∞.

(4.19)

Recall that the operator A′ is a (S+)-type mapping and un ⇀ u. Thus, using
relation (4.19), we deduce the strong convergence of (un) to u. It follows that
E(un)→ E(u) = inf‖w‖≤ρ E(w) < 0, hence u is a nontrivial critical point of E . �

Perspectives. Problem (3.2) has been studied in the subcritical case, see rela-
tions (4.1) and (4.2). In our setting, these assumptions are crucial to establish
that the bounded sequence of almost critical points of the energy functional E is,
in fact, strongly convergent (passing eventually to a subsequence) in W

1,p(x)
0 (Ω).

We suggest to the reader the approach of a similar problem in the almost critical
framework, namely subject to the following hypothesis: there are x0, x1 ∈ Ω such
that

max{α1(x0), α2(x0)} = p∗(x0); max{α1(x), α2(x)} < p∗(x) for all x ∈ Ω \ {x0}
(4.20)

and
max{q′1(x1)α1(x1), q′2(x1)α2(x1)} = p∗(x1);

max{q′1(x)α1(x), q′2(x)α2(x)} < p∗(x) for all x ∈ Ω \ {x1}
(4.21)

In our opinion, the result established in Theorem 3.1 remains valid if both hypothe-
ses (4.20) and (4.21) are fulfilled.

Motivated by the results developed by Chen, Levine and Rao [8] in connection
with models from image restoration, we consider that a rich field of investigation
concerns the study of energy functionals of the type

W
1,p(x)
0 (Ω) 3 u 7→ A(u) +

∫
Ω

|u(x)− I(x)|2dx,

where A is defined in (4.4), I is a given input corresponding to shades of gray in
the domain Ω, and 1 ≤ p1(x), p2(x) ≤ 2. Cf. [8], the variable exponents p1 and
p2 are close to 1 in regions where it is assumed to be edges, and close to 2 in the
contrary case. In order to have information on the relative location of edges, this
can be performed either by smoothing the input data or by looking for the region
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where the gradient is large. We refer to [22, pp. 5-6] for related results, including
the staircase effect.

Another important step is to extend the approach corresponds to double phase
problems, as introduced and developed by Mingione et al. [5, 9, 10]. In this
framework the associated energy is either

w 7→
∫

Ω

[|∇w|p1(x) + V |∇w|p2(x)]dx

or
w 7→

∫
Ω

[|∇w|p1(x) + V |∇w|p2(x) log(e+ |x|)]dx,

where p1(x) ≤ p2(x), p1 6= p2, and V (x) ≥ 0. Considering two materials having
corresponding hardening exponents p1 and p2, the potential V (x) characterizes the
geometry of a composite of these materials. More precisely, if V > 0 then the
associated p2(x)-material is present in the composite. In the contrary case, the
p1(x)-material is the only that contributes to the structure of the composite.

Problems with this structure extend the pioneering contributions of Paolo Mar-
cellini [16, 17] concerning variational functionals as u 7→

∫
Ω
F (x,∇u)dx, where

F : Ω× RN → R fulfills asymmetrical growth properties of the type

|η|p . F (x, η) . |η|q, for all (x, η) ∈ Ω× RN ,

provided that 1 < p < q.
We anticipate that the methods introduced in the present paper also work in a

more general framework corresponding to Orlicz-Sobolev-Musielak function spaces
(we refer to [22, Chaper 4] for a rigorous treatment of several models of stationary
problems in Orlicz-Sobolev-Musielak spaces).
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[2] R. Alsaedi, H. Mâagli, N. Zeddini; Exact behavior of the unique positive solution to some

singular elliptic problem in exterior domains, Nonlinear Anal., 119 (2015), 186-198.

[3] G. Autuori, P. Pucci; Asymptotic stability for Kirchhoff systems in variable exponent Sobolev
spaces, Complex Var. Elliptic Equ., 56 (2011), no. 7-9, 715-753.

[4] S. Baraket, S. Chebbi, N. Chorfi, V. Rădulescu; Non-autonomous eigenvalue problems
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[21] V. Rădulescu, D. Repovš; Combined effects in nonlinear problems arising in the study of

anisotropic continuous media. Nonlinear Anal., 75 (2012), no. 3, 1524-1530.
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d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math.,
665, Springer, Berlin, 1978.

[26] V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, Izv.

Akad. Nauk SSSR Ser. Mat., 50 (1986), no. 4, 675-710; English transl., Math. USSR-Izv. 29
(1987), no. 1, 33-66.

[27] V. V. Zhikov; Lavrentiev phenomenon and homogenization for some variational problems, C.

R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 5, 435-439.
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