EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SCHRÖDINGER-POISSON SYSTEMS

DA-BIN WANG, HUA-FEI XIE, WEN GUAN

Abstract. In this article, by using variational method, we study the existence of a positive ground state solution for the Schrödinger-Poisson system

\[-\Delta u + V(x)u + K(x)\phi u = f(x,u), \quad x \in \mathbb{R}^3,\]
\[-\Delta \phi = K(x)u^2, \quad x \in \mathbb{R}^3,\]

where \(V(x), K(x)\) and \(f(x,u)\) are asymptotically periodic functions in \(x\) at infinity.

1. Introduction and statement of results

For past decades, much attention has been paid to the nonlinear Schrödinger-Poisson system

\[
i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \Psi + U(x)\Psi + \phi(x)\Psi - |\Psi|^{q-1}\Psi, \quad x \in \mathbb{R}^3, t \in \mathbb{R} \tag{1.1}
\]
\[-\Delta \phi = |\Psi|^2, \quad x \in \mathbb{R}^3,
\]

where \(\hbar\) is the Planck constant. Equation (1.1) derived from quantum mechanics. For this equation, the existence of stationary wave solutions is often sought, that is, the following form of solution

\[
\Psi(x,t) = e^{it}u(x), \quad x \in \mathbb{R}^3, \quad t \in \mathbb{R}.
\]

Therefore, the existence of the standing wave solution of the equation (1.1) is equivalent to finding the solution of the following system \((m = \frac{1}{2}, \hbar = 1, V(x) = U(x) + 1)\)

\[-\Delta u + V(x)u + \phi u = |u|^{q-1}u, \quad x \in \mathbb{R}^3,\]
\[-\Delta \phi = u^2, \quad x \in \mathbb{R}^3. \tag{1.2}
\]

As far as we know, the first result on Schrödinger-Poisson system was obtained in [6]. Thereafter, using the variational method, there is a series of work to discuss the existence, non existence, radially symmetric solutions, non-radially symmetric

2010 Mathematics Subject Classification. 35J20, 35J60, 35J65.

Key words and phrases. Schrödinger-Poisson systems; ground state solution; variational methods.

©2017 Texas State University.
solutions and ground state to Schrödinger-Poisson system \([1.2]\) \([11, 12, 15, 16, 17, 19, 20, 21, 32, 33, 37, 40, 41, 44, 45, 47, 48, 49]\).

To the best of our knowledge, Azzollini and Pomponio \([5]\) firstly obtained the ground state solution to the Schrödinger-Poisson system \([1.2]\). The conclusion they got was that if \(V\) is a positive constant and \(2 < q < 5\), or \(V\) is non-constant, possibly unbounded below and \(3 < q < 5\), system \([1.2]\) has a ground state solution.

Alves, Souto and Soares \([1]\) studied Schrödinger-Poisson system

\[-\Delta u + V(x)u + \phi u = f(u), \quad x \in \mathbb{R}^3,\]

\[-\Delta \phi = u^2, \quad x \in \mathbb{R}^3,\]

where \(V\) is bounded locally Hölder continuous and satisfies:

1. \(V(x) \geq \alpha > 0, \quad x \in \mathbb{R}^3\);
2. \(\lim_{|x| \to \infty} |V(x) - V_0(x)| = 0\), where \(V_0\) satisfy \(V_0(x) = V_0(x + y)\) for all \(x \in \mathbb{R}^3\) and all \(y \in \mathbb{Z}^3\);
3. \(V(x) \leq V_0(x)\) for all \(x \in \mathbb{R}^3\), and there exists an open set \(\Omega \subset \mathbb{R}^3\) with \(m(\Omega) > 0\) such that \(V(x) < V_0(x)\) for all \(x \in \Omega\).

Alves et al. studied the ground state solutions to system \([1.3]\) in case the asymptotically periodic condition under conditions \([1]–[3]\).

In case \(p \in (3, 5)\), Cerami and Vaira \([9]\) studied the existence of positive solutions for the following non-autonomous Schrödinger-Poisson system

\[-\Delta u + u + K(x)\phi(x)u = a(x)|u|^{p-1}u, \quad x \in \mathbb{R}^3,\]

\[-\Delta \phi = K(x)u^2, \quad x \in \mathbb{R}^3,\]

where \(a, K\) are nonnegative functions such that \(\lim_{|x| \to \infty} a(x) = a_\infty > 0\), and \(\lim_{|x| \to \infty} K(x) = 0\).

Zhang, Xu and Zhang \([48]\) considered existence of positive ground state solution for the Schrödinger-Poisson system

\[-\Delta u + V(x)u + K(x)\phi u = f(x, u), \quad x \in \mathbb{R}^3,\]

\[-\Delta \phi = K(x)u^2, \quad x \in \mathbb{R}^3.\]

In their paper, \(V\) and \(K\) satisfy:

- \(V, K \in L^\infty(\mathbb{R}^3)\), \(\inf_{\mathbb{R}^3} V > 0\), \(\inf_{\mathbb{R}^3} K > 0\), and \(V - V_p, K - K_p \in \mathcal{F}\), where \(V_p\) and \(K_p\) satisfy \(V_p(x + z) = V_p(x)\), \(K_p(x + z) = K_p(x)\) for all \(x \in \mathbb{R}^3\) and \(z \in \mathbb{Z}^3\), here \(\mathcal{F} = \{ g \in L^\infty(\mathbb{R}^3) : \forall \varepsilon > 0 \}, \) the set \(\{ x \in \mathbb{R}^3 : |g(x)| \geq \varepsilon \}\) has finite Lebesgue measure.

On the other hand, when \(K = 0\) the Schrödinger-Poisson system \([1.5]\) becomes the standard Schrödinger equation (replace \(\mathbb{R}^3\) with \(\mathbb{R}^N\))

\[-\Delta u + V(x)u = f(x, u), \quad x \in \mathbb{R}^N.\]

The Schrödinger equation \([1.6]\) has been widely investigated by many authors, see \([2, 7, 13, 14, 18, 23, 29, 34, 35, 36, 42, 43, 46]\) and reference their. Especially, in \([23, 29, 34, 42, 43]\), they studied the nontrivial solution and ground state solution for problem \([1.6]\) in which \(V\) or \(f\) satisfy the asymptotically periodic condition. In the other context about asymptotically periodic condition, we refer the reader to \([22, 25, 26, 39]\) and reference their.

Motivated by above results, in this paper we study positive ground state solutions to system \([1.5]\) under reformative condition about asymptotically periodic case of \(V, K\) and \(f\) at infinity.
To state our main results, we assume that:

(A1) \(V, V_p \in L^\infty(\mathbb{R}^3) \), \(0 \leq V(x) \leq V_p(x) \) and \(V(x) - V_p(x) \in A_0 \), where \(A_0 := \{k(x) : \) for any \(\varepsilon > 0, m\{x \in B_1(y) : |k(x)| \geq \varepsilon \} \to 0 \) as \(|y| \to \infty \} \) and \(V_p \) satisfies \(V_0 := \inf_{x \in \mathbb{R}^3} V_p > 0 \) and \(V_p(x + z) = V_p(x) \) for all \(x \in \mathbb{R}^3 \) and \(z \in \mathbb{Z}^3 \), \(K, K_p \in L^\infty(\mathbb{R}^3) \), \(0 < K(x) \leq K_p(x) \), \(K(x) - K_p(x) \in A_0 \) and \(K_p \) satisfies \(K_0 := \inf_{x \in \mathbb{R}^3} K_p > 0 \) and \(K_p(x + z) = K_p(x) \) for all \(x \in \mathbb{R}^3 \) and \(z \in \mathbb{Z}^3 \);

and \(f \in C(\mathbb{R}^3 \times \mathbb{R}^+, \mathbb{R}) \) satisfies

(A2) \(\lim_{s \to 0^+} \frac{f(x,s)}{s} = 0 \) uniformly for \(x \in \mathbb{R}^3 \),

(A3) \(\lim_{s \to +\infty} \frac{f(x,s)}{s} = 0 \) uniformly for \(x \in \mathbb{R}^3 \),

(A4) \(f(x,s) \) is nondecreasing on \((0, +\infty)\),

(A5) there exists \(f_p \in C(\mathbb{R}^3 \times \mathbb{R}^+, \mathbb{R}) \) such that

(i) \(f(x,s) \geq f_p(x,s) \) for all \((x,s) \in \mathbb{R}^3 \times \mathbb{R}^+ \) and \(f(x,s) - f_p(x,s) \in A \), where \(A := \{h(x,s) : \) for any \(\varepsilon > 0, m\{x \in B_1(y) : |h(x,s)| \geq \varepsilon \} \to 0 \) as \(|y| \to \infty \} \) bounded,

(ii) \(f_p(x + z,s) = f_p(x,s) \) for all \((x,s) \in \mathbb{R}^3 \times \mathbb{R}^+ \) and \(z \in \mathbb{Z}^3 \),

(iii) \(f_p(x,s) \) is nondecreasing on \((0, +\infty)\),

(iv) \(\lim_{s \to +\infty} \frac{f_p(x,s)}{s^3} = +\infty \) uniformly for \(x \in \mathbb{R}^3 \), where

\[
F_p(x,s) = \int_0^s f_p(x,t)dt.
\]

Remark 1.1. (i) Functional sets \(A_0 \) in (A1) and \(A \) in (A5) were introduced by [29] in which Liu, Liao and Tang studied positive ground state solution to Schrödinger equation \((1.6)\).

(ii) Since \(\mathcal{F} \subset A_0 \), our assumptions on \(V \) and \(K \) are weaker than in [18]. Furthermore, in our paper \(V(x) \geq 0 \) but in [18] they assumed \(V(x) > 0 \).

(iii) In [18], to obtain the positive ground state to system \((1.5)\), they firstly consider the periodic system

\[
-\Delta u + V_p(x)u + K_p(x)\phi u = f_p(x,u) \quad x \in \mathbb{R}^3,
\]

\[
-\Delta \phi = K_p(x)u^2 \quad x \in \mathbb{R}^3.
\]

Then a solution of system \((1.5)\) was obtained by applying inequality between the energy of periodic system \((1.7)\) and that of system \((1.5)\). In this paper, we do not using methods that of [18] and we proof the Theorem 1.2 directly.

Since we are looking for a positive solution, we may assume that \(f(x,s) = f_p(x,s) = 0 \) for all \((x,s) \in (\mathbb{R}^3 \times \mathbb{R}^-) \). The next theorems are the main results of the present paper.

Theorem 1.2. Suppose that (A1)–(A5) are satisfied. Then system \((1.5)\) has a positive ground state solution.

Theorem 1.3. Suppose that \(V(x) \equiv V_p(x), K(x) \equiv K_p(x) \) satisfy (A1), and \(f(x,s) \equiv f_p(x,s) \) satisfies (A2)–(A5). Then system \((1.5)\) has a positive ground state solution.

2. Variational framework and preliminary results

The letter \(C \) and \(C_i \) will be repeatedly used to denote various positive constants whose exact values are irrelevant. \(B_R(z) \) denotes the open ball centered at \(z \) with
radius R. We denote the standard norm of L^p by $|u|_p = (\int_{\mathbb{R}^3} |u|^p dx)^{1/p}$ and $|u|_\infty = \text{ess sup}_{x \in \mathbb{R}^3} |u|$.

The Sobolev space $H^1(\mathbb{R}^3)$ is endowed with the norm

$$||u||^2_H := \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2)dx.$$

The space $D^{1,2}(\mathbb{R}^3)$ is endowed with the standard norm

$$||u||^2_{D^{1,2}} := \int_{\mathbb{R}^3} |\nabla u|^2dx.$$

Let $E := \{u \in L^6(\mathbb{R}^3) : |\nabla u| \in L^2(\mathbb{R}^3) \text{ and } \int_{\mathbb{R}^3} V(x)u^2dx < \infty \}$ be the Sobolev space endowed with the norm

$$||u||^2 := \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2)dx.$$

Lemma 2.1. Suppose (A1) holds. Then there exists two positive constants C_1 and C_2 such that $C_1||u||^2_H \leq ||u|| \leq C_2||u||^2_H$ for all $u \in E$. Moreover, $E \hookrightarrow L^p(\mathbb{R}^3)$ for any $p \in [2,6]$ is continuous.

System (1.5) can be transformed into a Schrödinger equation with a nonlocal term. In fact, for all $u \in E$ (then $u \in H^1(\mathbb{R}^3)$), considering the linear functional L_u defined in $D^{1,2}(\mathbb{R}^3)$ by

$$L_u(v) = \int_{\mathbb{R}^3} K(x)u^2vdx.$$

According to the Hölder inequality and lemma (2.1), one has that

$$|L_u(v)| \leq |K|_{\infty}|u|^2_{12/\gamma}v|^6_6 \leq C||u||^2||v||_{D^{1,2}}.$$

(2.1)

So, by the Lax-Milgram theorem exists an unique $\phi_u \in D^{1,2}(\mathbb{R}^3)$ such that

$$\int_{\mathbb{R}^3} \nabla \phi_u \cdot \nabla v dx = (\phi_u, v)_{D^{1,2}} = L_u(v) = \int_{\mathbb{R}^3} K(x)u^2v dx,$$

for any $v \in D^{1,2}(\mathbb{R}^3)$ and $||\phi_u||_{D^{1,2}} \leq C||u||^2$. Namely, ϕ_u is the unique solution of

$$-\Delta \phi = K(x)u^2, \quad x \in \mathbb{R}^3.$$

Moreover, ϕ_u can be expressed as

$$\phi_u = C \int_{\mathbb{R}^3} \frac{K(y)u^2(y)}{|x-y|}dy.$$

Substituting ϕ_u into the system (1.5), we obtain

$$-\Delta u + V(x)u + K(x)\phi_u u = f(x,u), \quad x \in \mathbb{R}^3.$$

(2.2)

By (2.1), we get

$$|\int_{\mathbb{R}^3} K(x)\phi_u u^2 dx| \leq C||u||^4.$$

(2.3)

So the energy functional $I : H^1(\mathbb{R}^3) \to \mathbb{R}$ corresponding to (2.2) is given by

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2)dx + \frac{1}{4} \int_{\mathbb{R}^3} K(x)\phi_u u^2 dx - \int_{\mathbb{R}^3} F(x,u)dx,$$

where $F(x,s) = \int_0^s f(x,t)dt$.

Moreover, under our condition, \(I \) belongs to \(C^1 \), so the Fréchet derivative of \(I \) is

\[
(I'(u), v) = \int_{\mathbb{R}^3} (\nabla u \cdot \nabla v + V(x) uv) dx + \int_{\mathbb{R}^3} K(x) \phi_u uvdx - \int_{\mathbb{R}^3} f(x, u)vdx
\]

and \((u, \phi) \in H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)\) is a solution of system (1.3) if and only if \(u \in H^1(\mathbb{R}^3) \) is a critical point of \(I \) and \(\phi = \phi_u \).

For all \(u \in E \), let \(\tilde{\phi}_u \in D^{1,2}(\mathbb{R}^3) \) is unique solution of the following equation

\[-\Delta \phi = K_p(x)u^2, \quad x \in \mathbb{R}^3.\]

Moreover, \(\tilde{\phi}_u \) can be expressed as

\[\tilde{\phi}_u = C \int_{\mathbb{R}^3} \frac{K_p(y)u^2(y)}{|x - y|} dy.\]

Let

\[I_p(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V_p(x)u^2) dx + \frac{1}{4} \int_{\mathbb{R}^3} K_p(x) \tilde{\phi}_u u^2 dx - \int_{\mathbb{R}^3} F_p(x, u)dx,\]

where \(F_p(x, s) = \int_0^s f_p(x, t)dt \). Then \(I_p \) is the energy functional corresponding to the equation

\[-\Delta u + V_p(x)u + K_p(x)\tilde{\phi}_u u = f_p(x, u), \quad x \in \mathbb{R}^3. \quad (2.4)\]

It is easy to see that \((u, \phi) \in H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)\) is a solution of periodic system (1.7) if and only if \(u \in H^1(\mathbb{R}^3) \) is a critical point of \(I_p \) and \(\phi = \tilde{\phi}_u \).

Lemma 2.2. Suppose (A1) holds. Then

\[\int_{\mathbb{R}^3} K_p(x)\tilde{\phi}_{u(-z)}u^2(\cdot + z) dx = \int_{\mathbb{R}^3} K_p(x)\tilde{\phi}_u u^2 dx, \quad \forall z \in \mathbb{Z}^3, u \in E.\]

Lemma 2.3. Suppose that (A2), (A4), (A5) hold. Then

(i) \(\frac{1}{2} f(x, s)s \geq F(x, s) \geq 0 \) for all \((x, s) \in \mathbb{R}^3 \times \mathbb{R}, \)

(ii) \(\frac{1}{2} f_p(x, s)s \geq F_p(x, s) \geq 0 \) for all \((x, s) \in \mathbb{R}^3 \times \mathbb{R}.\)

The proof of the above lemma is similar to that in \[31\], so we omitted here.

Lemma 2.4. Operator \(I' \) is weakly sequentially continuous. Namely if \(u_n \rightharpoonup u \) in \(E, I'(u_n) \rightarrow I'(u) \) in \(E^{-1}.\)

The proof of the above lemma is similar to that of in \[48\], so we omitted here.

Lemma 2.5 (\[29\]). Suppose that (A2), (A3), (A5)(i) hold. Assume that \(\{u_n\} \) is bounded in \(E \) and \(u_n \rightharpoonup 0 \) in \(L^s_{loc}(\mathbb{R}^3) \), for any \(s \in [2, 6]. \) Then up to a subsequence, one has

\[\int_{\mathbb{R}^3} (F(x, u_n) - F_p(x, u_n))dx = o_n(1).\]

Lemma 2.6 (\[29\]). Suppose that (A1), (A2), (A3) (A5)(i) hold. Assume that \(\{u_n\} \) is bounded in \(E \) and \(|z_n| \rightarrow \infty. \) Then any \(\varphi \in C_0^\infty(\mathbb{R}^3) \), one has

\[\int_{\mathbb{R}^3} (V_p(x) - V(x)) u_n \varphi(\cdot - z_n) dx = o_n(1),\]

\[\int_{\mathbb{R}^3} (f(x, u_n) - f_p(x, u_n)) \varphi(\cdot - z_n) dx = o_n(1).\]
Lemma 2.7. Suppose that (A1), (A2), (A3), (A5)(i) hold. Assume that $u_n \to 0$ in E. Then up to a subsequence, one has

$$
\int_{\mathbb{R}^3} (K(x)\phi_{u_n} u_n \varphi(-z_n) - K_p(x)\tilde{\phi}_{u_n} u_n \varphi(-z_n))dx = o_n(1),
$$

where $|z_n| \to \infty$ and $\varphi \in C_0^\infty(\mathbb{R}^3)$.

Proof. Set $h(x) := K(x) - K_p(x)$. By (A1), we have $h(x) \in A_0$. Then for any $\varepsilon > 0$, there exists $R_\varepsilon > 0$ such that

$$
m \{x \in B_1(y) : |h(x)| \geq \varepsilon\} < \varepsilon, \quad \text{for any } |y| \geq R_\varepsilon.
$$

We cover \mathbb{R}^3 by balls $B_1(y_i), i \in \mathbb{N}$. In such a way that each point of \mathbb{R}^3 is contained in at most $N + 1$ balls. Without any loss of generality, we suppose that $|y_i| < R_\varepsilon$, $i = 1, 2, \ldots, n_\varepsilon$ and $|y_i| \geq R_\varepsilon, i = n_\varepsilon + 1, n_\varepsilon + 2, n_\varepsilon + 3, \ldots, + \infty$. Then

$$
\int_{\mathbb{R}^3} (K(x)\phi_{u_n} u_n \varphi(-z_n) - K_p(x)\tilde{\phi}_{u_n} u_n \varphi(-z_n))dx
$$

$$
= \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{K_p(y)u_n(y)\varphi(y-z_n)}{|x-y|}dyh(x)u_n^2(x)dx
$$

$$
+ \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{K_p(y)u_n^2(y)}{|x-y|}dyh(x)u_n(x)\varphi(x-z_n)dx
$$

$$
+ \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{h(y)u_n^2(y)}{|x-y|}dyh(x)u_n(x)\varphi(x-z_n)dx
$$

$$
:= E_1 + E_2 + E_3
$$

As in [18], we define

$$
H(x) := \int_{\mathbb{R}^3} \frac{K_p(y)u_n(y)\varphi(y-z_n)}{|x-y|}dy
$$

$$
= \int_{\{y:|x-y|\leq 1\}} \frac{K_p(y)u_n(y)\varphi(y-z_n)}{|x-y|}dy
$$

$$
+ \int_{\{y:|x-y|> 1\}} \frac{K_p(y)u_n(y)\varphi(y-z_n)}{|x-y|}dy.
$$

By the Hölder inequality and the Sobolev embedding, we have

$$
|H(x)| \leq |K_p|_\infty |u_n|_3 |\varphi|_6 \left(\int_{\{y:|x-y|\leq 1\}} \frac{1}{|x-y|^2}dy \right)^{1/2}
$$

$$
+ |K_p|_\infty |u_n|_2 |\varphi|_4 \left(\int_{\{y:|x-y|> 1\}} \frac{1}{|x-y|^2}dy \right)^{1/4}
$$

$$
\leq C \left(\int_{\{z:|z|\leq 1\}} \frac{1}{|z|^2}dz \right)^{1/2} + C \left(\int_{\{z:|z|> 1\}} \frac{1}{|z|^2}dz \right)^{1/4}.
$$

So, $\sup_{x \in \mathbb{R}^3} |H(x)| < \infty$. Then, we obtain

$$
E_1 = \int_{\mathbb{R}^3} H(x)h(x)u_n^2(x)dx
$$

$$
\leq \int_{\{|h(x)| \geq \varepsilon\}} |H(x)h(x)u_n^2(x)|dx + \int_{\{|h(x)| < \varepsilon\}} |H(x)h(x)u_n^2(x)|dx
$$

$$
:= Q_1 + Q_2
$$
Letting $\varepsilon > 0$, we have

$$Q_1 = \int_{\{x : |u(x)| \geq \varepsilon \}} |H(x)h(x)u_n^2(x)| dx$$

$$= \int_{\{x : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} |H(x)h(x)u_n^2(x)| dx$$

$$+ \int_{\{x : |h(x)| \geq \varepsilon, |x| \leq R_0 + 1\}} |H(x)h(x)u_n^2(x)| dx$$

$$\leq \sum_{n_\varepsilon + 1} \int_{\{x \in B_1(y_\varepsilon) : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} |H(x)h(x)u_n^2(x)| dx$$

$$+ 2 \sup_{x \in \mathbb{R}^3} |H(x)||K_p| \int_{B_{R_0 + 1}} |u_n(x)|^2 dx$$

$$:= Q_{11} + Q_{12}$$

$$Q_{11} = \sum_{n_\varepsilon + 1} \int_{\{x \in B_1(y_\varepsilon) : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} |H(x)h(x)u_n^2(x)| dx$$

$$\leq 2 \sup_{x \in \mathbb{R}^3} |H(x)||K_p| \sum_{n_\varepsilon + 1} \int_{\{x \in B_1(y_\varepsilon) : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} |u_n^2(x)| dx$$

$$\leq C \sum_{n_\varepsilon + 1} \left(m \{x \in B_1(y) : |h(x)| \geq \varepsilon \} \right)^{2/3}$$

$$\times \left(\int_{\{x \in B_1(y_\varepsilon) : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} |u_n^6(x)| dx \right)^{1/3}$$

$$\leq C \varepsilon^{2/3} \sum_{n_\varepsilon + 1} \int_{\{x \in B_1(y_\varepsilon) : |h(x)| \geq \varepsilon, |x| > R_0 + 1\}} (|\nabla u_n|^2 + u_n^2) dx$$

$$\leq C_1 \varepsilon^{2/3} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + u_n^2) dx \leq C_2 \varepsilon^{2/3}.$$
Proof. Define $g(t) := I(tu)$, $t \geq 0$. Using (A2), (A3) and (A5), we can prove that $g(0) = 0$, $g(t) > 0$ for t small and $g(t) < 0$ for t large. In fact, by (A2) and (A3), for all $\varepsilon > 0$ there exists a $C_\varepsilon > 0$ such that

$$|f(x,s)| \leq \varepsilon |s| + C_\varepsilon |s|^5, \quad |F(x,s)| \leq \frac{\varepsilon}{2} |s|^2 + \frac{C_\varepsilon}{6} |s|^6, \quad s \in \mathbb{R}.$$

Then

$$g(t) = \frac{t^2}{2} \|u\|^2 + \frac{t^4}{4} \int_{\mathbb{R}^3} K(x) \phi_u u^2 dx - \int_{\mathbb{R}^3} F(x,tu) dx
= \frac{t^2}{2} \|u\|^2 + \frac{t^4}{4} \int_{\mathbb{R}^3} K(x) \phi_u u^2 dx - \int_{\mathbb{R}^3} F(x,tu) dx
\geq \frac{t^2}{2} \|u\|^2 - \varepsilon t^2 \int_{\mathbb{R}^3} |u|^2 dx - C_\varepsilon t^6 \int_{\mathbb{R}^3} |u|^6 dx
\geq \frac{t^2}{2} \|u\|^2 - C\varepsilon t^2 \|u\|^2 - C_\varepsilon t^6 \|u\|^6.$$

Hence, $g(0) = 0$, $g(t) > 0$ for t small.

Set $\Omega := \{x \in \mathbb{R}^3 : u(x) > 0\}$, by using Fatou lemma and (A5), we have

$$\liminf_{t \to +\infty} \int_{\Omega} \frac{F(x,tu)}{(tu)^4} u^4 dx \geq \liminf_{t \to +\infty} \int_{\Omega} \frac{F_p(x,tu)}{(tu)^4} u^4 dx = +\infty.$$

Hence

$$\limsup_{t \to +\infty} \frac{g(t)}{t^4}
= \limsup_{t \to +\infty} \frac{1}{2t^2} \|u\|^4 + \frac{1}{4} \int_{\mathbb{R}^3} K(x) \phi_u u^2 dx - \liminf_{t \to +\infty} \int_{\mathbb{R}^3} \frac{F(x,tu)}{t^4} dx
= \limsup_{t \to +\infty} \frac{1}{2t^2} \|u\|^4 + \frac{1}{4} \int_{\mathbb{R}^3} K(x) \phi_u u^2 dx - \liminf_{t \to +\infty} \int_{\Omega} \frac{F(x,tu)}{(tu)^4} u^4 dx = -\infty,$$

which deduces $g(t) \to -\infty$ as $t \to +\infty$. Therefore, there exists a t_u such that $I(t_u u) = \max_{t \geq 0} I(tu)$ and $t_u u \in \mathcal{N}$. Suppose that there exist $t'_u > t_u > 0$ such that $t'_u u, t_u u \in \mathcal{N}$. Then, We have

$$\frac{1}{(t'_u)^2} \|u\|^2 + \int_{\mathbb{R}^3} K(x) \phi_u u^2 dx = \int_{\mathbb{R}^3} \frac{f(x,t'_u u)}{(t'_u)^3} u^4 dx$$

and this identity is also true if t'_u is replaced by t_u. Therefore,

$$\left(\frac{1}{(t'_u)^2} - \frac{1}{(t_u)^2}\right) \|u\|^2 = \int_{\mathbb{R}^3} \left(\frac{f(x,t'_u u)}{(t'_u)^3} - \frac{f(x,t_u u)}{(t_u)^3}\right) u^4 dx,$$

which is absurd in view of (A4) and $t'_u > t_u > 0$. \qed

Remark 2.9. As in [36, 38], we have

$$c = \inf_{u \in \mathcal{N}} I(u) = \inf_{u \in F} \max_{t > 0} I(tu) = \inf_{\gamma \in \Gamma(t) \in [0,1]} \max_{t \in [0,1]} I(\gamma(t)) > 0$$

where

$$\Gamma := \{\gamma \in C([0,1], E) : \gamma(0) = 0, I(\gamma(1)) < 0\}.$$

Lemma 2.10. Suppose that (A1), (A2)–(A5) hold. Then there exists a nonnegative and bounded sequence $\{u_n\} \in E$ such that

$$I(u_n) \to c \quad \text{and} \quad \|I'(u_n)\|_{E^{-1}} \to 0.$$
\begin{proof}
From the proof of Lemma \ref{lem:2.8}, it is easy to see that \(I\) satisfies the mountain pass geometry. By \cite{33}, there exists an \(\{u_n\}\) such that \(I(u_n) \to c\) and \((1 + \|u_n\|)\|I'(u_n)\|_{E^{-1}} \to 0\). By Lemma (2.3), we have
\[

c = I(u) - \frac{1}{4}\langle I'(u_n), u_n \rangle + o_n(1)
\]
\[
= \frac{1}{4}\|u_n\|^2 + \int_{\mathbb{R}^3} \frac{1}{4}f(x, u_n)u_n - F(x, u_n)dx + o_n(1)
\]
\[
\geq \frac{1}{4}\|u_n\|^2 + o_n(1).
\]
Therefore, \(\{u_n\}\) is bounded. Moreover, we have
\[
\langle I'(u_n), u_n^- \rangle = \|u_n^-\|^2 + \int_{\mathbb{R}^3} K(x)\phi_{u_n}(u_n^-)dx = o_n(1).
\]
Then \(\|u_n\|^2 = o(1)\) and \(\int_{\mathbb{R}^3} K(x)\phi_{u_n}(u_n^-)^2 = o(1)\). Therefore, we can infer that \(I(u_n^+) \to c\) and \(\|I'(u_n^+)\|_{E^{-1}} \to 0\). Hence, we may always assume that \(\{u_n\}\) is nonnegative and the prove is fished.
\end{proof}

Lemma 2.11. Suppose that (A1)--(A5) hold. If \(u \in N\) and \(I(u) = c\), then \(u\) is a solution of system (1.5).

\begin{proof}
The proof is similar to that of \cite{29,30}. Suppose by contradiction, that \(u\) is not a solution of system (1.5). Hence, there exists \(\varphi \in E\) such that
\[
\langle I'(u), \varphi \rangle < -1.
\]
Choose \(\varepsilon \in (0, 1)\) small enough such that for all \(|t - 1| \leq \varepsilon\) and \(|\sigma| \leq \varepsilon\),
\[
\langle I'(tu + \sigma \varphi), \varphi \rangle \leq -\frac{1}{2}.
\]
Let \(\zeta(t) \in [0, 1]\) satisfies \(\zeta(t) = 1\) for \(|t - 1| \leq \frac{\varepsilon}{3}\) and \(\zeta(t) = 0\) for \(|t - 1| \geq \varepsilon\). For all \(t > 0\), let \(\gamma(t)\) be a curve such that \(\gamma(t) = tu\) for \(|t - 1| \geq \varepsilon\) and \(\gamma(t) = tu + \varepsilon \zeta(t)\varphi\) for \(|t - 1| < \varepsilon\). Obviously, \(\gamma(t)\) is a continuous curve, furthermore, \(\|\gamma(t)\| > 0\) for \(|t - 1| < \varepsilon\) in which \(\varepsilon\) small enough. Next we will prove \(I(\gamma(t)) < c\), for all \(t > 0\).
In fact, if \(|t - 1| \geq \varepsilon\), \(I(\gamma(t)) = I(tu) < I(u) = c\). If \(|t - 1| < \varepsilon\), for all \(\sigma \in [0, \varepsilon]\), we define \(A : \sigma \mapsto I(tu + \sigma \zeta(t)\varphi)\). Obviously, \(A \in C^1\). By the mean value theorem, there exists \(\sigma \in (0, \varepsilon)\) such that
\[
I(tu + \varepsilon \zeta(t)\varphi) = I(tu) + \langle I'(tu + \sigma \zeta(t)\varphi), \varepsilon \zeta(t)\varphi \rangle \leq I(tu) - \frac{\varepsilon}{2} \zeta(t) < c.
\]
Set \(\nu(u) := \langle I'(u), u \rangle\), then \(\nu(\gamma(1 - \varepsilon)) = \nu((1 - \varepsilon)u) > 0\) and \(\nu(\gamma(1 + \varepsilon)) = \nu((1 + \varepsilon)u) < 0\). According to the continuity of \(t \to \nu(\gamma(t))\), there exists \(t' \in (1 - \varepsilon, 1 + \varepsilon)\) such that \(\nu(\gamma(t')) = 0\). Thus \(\gamma(t') \in N\) and \(I(\gamma(t')) < c\), which is a contradiction.
\end{proof}

Remark 2.12. For any \(u \in F\), by Lemma \ref{lem:2.8}, there exists \(t_u > 0\) such that \(t_u u \in N\) and then \(I(t_u u) \geq c\). Using \(V(x) \leq V_p(x)\) and \(F(x, s) \geq F_p(x, s)\), we have \(c \leq I(t_u u) \leq I_p(t_u u) \leq \max_{t > 0} I_p(tu)\). Then we obtain \(c \leq c_p\).
3. Proof of Main Results

Proof. According to Lemma 2.10, there exist a nonnegative and bounded sequence \(\{u_n\} \subset E \) such that \(I(u_n) \to c \) and \(\|I'(u_n)\|_{E^{-1}} \to 0 \). Then there exists \(u \in E \) such that, up to a subsequence, \(u_n \to u \) in \(E \), \(u_n \to u \) in \(L^2_{\text{loc}}(\mathbb{R}^3) \) and \(u_n(x) \to u(x) \) a.e. in \(\mathbb{R}^3 \). By Lemma 2.4, we have that

\[
0 = \langle I'(u_n), v \rangle + o_n(1) = \langle I'(u), v \rangle, \quad \forall v \in E,
\]

that is \(u \) is a solution of system (1.5). We next distinguish the following two case to prove system (1.5) have a nonnegative ground state solution.

Case 1: \(u \neq 0 \). Then \(I(u) \geq c \). By Lemma 2.3 and the Fatou lemma, we obtain

\[
c = \liminf_{n \to \infty} (I(u_n) - \frac{1}{4} \langle I'(u_n), u_n \rangle)
= \liminf_{n \to \infty} \left(\frac{1}{4} \|u_n\|^2 + \int_{\mathbb{R}^3} \left(\frac{1}{4} f(x, u_n) - F(x, u_n) \right) dx \right)
\geq \frac{1}{4} \|u\|^2 + \int_{\mathbb{R}^3} \left(\frac{1}{4} f(x, u) - F(x, u) \right) dx
= I(u) - \frac{1}{4} \langle I'(u), u \rangle = I(u).
\]

Therefore, \(I(u) = c \) and \(I'(u) = 0 \).

Case 2: \(u = 0 \). Let

\[
\beta := \limsup_{n \to \infty} \sup_{z \in \mathbb{R}^3} \int_{B_1(z)} u_n^2 dx.
\]

If \(\beta = 0 \), by using the Lions lemma 27, 28, we have \(u_n \to 0 \) in \(L^q(\mathbb{R}^3) \) for all \(q \in (2, 6) \). From the conditions of (A2) and (A3), for all \(\varepsilon > 0 \) there exists \(C_\varepsilon > 0 \) such that \(\frac{1}{2} f(x, u) - F(x, u) \leq \varepsilon (|u|^2 + |u|^6) + C_\varepsilon |u|^\alpha \) for any \((x, s) \in \mathbb{R}^3 \times \mathbb{R} \) and \(\alpha \in (2, 6) \). Let \(\varepsilon \) small enough, we have that

\[
c = I(u_n) - \frac{1}{2} \langle I'(u_n), u_n \rangle + o_n(1)
= -\frac{1}{4} \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 dx + \int_{\mathbb{R}^3} \left(\frac{1}{2} f(x, u_n) - F(x, u_n) \right) dx + o_n(1)
\leq -\frac{1}{4} \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 dx + \int_{\mathbb{R}^3} (\varepsilon (|u_n|^2 + |u_n|^6) + C_\varepsilon |u_n|^\alpha) dx + o_n(1) \leq 0,
\]

which is a contradiction with \(c > 0 \). So \(\beta > 0 \). Up to a subsequence, there exists \(R > 0 \) and \(\{z_n\} \subset \mathbb{Z}^3 \) such that

\[
\int_{B_R} u_n(x + z_n)^2 dx = \int_{B_R(z_n)} u_n^2 dx > \frac{\beta}{2}.
\]

Set \(w_n := u_n(x + z_n) \). Hence, there exists a nonnegative function \(w \in E \) such that, up to a subsequence, \(w_n \to w \) in \(E \), \(w_n \to w \) in \(L^2_{\text{loc}}(\mathbb{R}^3) \) and \(w_n(x) \to w(x) \) a.e. in \(\mathbb{R}^3 \). Obviously, \(w \neq 0 \). If \(\{z_n\} \) is bounded, \(\exists R' \) such that

\[
\int_{B_{R'}(0)} u_n^2 dx \geq \int_{B_{R'}(z_n)} u_n^2 dx \geq \frac{\beta}{2},
\]

which contradicts with the fact \(u_n \to 0 \) in \(L^2_{\text{loc}}(\mathbb{R}^3) \). Hence \(\{z_n\} \) is unbounded. Up to a subsequence, we have \(z_n \to \infty \). For all \(\varphi \in C^0_0(\mathbb{R}^3) \), by Lemmas 2.6 and 2.7 we have

\[
0 = \langle I'(u_n, \varphi(\cdot - z_n)) + o_n(1)
\]
\begin{align*}
&= \int_{\mathbb{R}^3} (\nabla u_n \cdot \nabla \varphi (\cdot - z_n)) dx + V(x) u_n \varphi (\cdot - z_n)) dx + \int_{\mathbb{R}^3} K(x) \phi_n u_n \varphi (\cdot - z_n) dx \\
&\quad - \int_{\mathbb{R}^3} f(x, u_n) \varphi (\cdot - z_n) dx + o_n(1)
\end{align*}

\begin{align*}
&= \int_{\mathbb{R}^3} (\nabla w_n \cdot \nabla \varphi (\cdot - z_n) + V_p(x) u_n \varphi (\cdot - z_n)) dx + \int_{\mathbb{R}^3} K_p(x) \tilde{\phi}_n u_n \varphi (\cdot - z_n) dx \\
&\quad - \int_{\mathbb{R}^3} f_p(x, u_n) \varphi (\cdot - z_n) dx + o_n(1)
\end{align*}

\begin{align*}
&= \int_{\mathbb{R}^3} (\nabla w_n \cdot \nabla \varphi + V_p(x) w_n \varphi) dx + \int_{\mathbb{R}^3} K_p(x) \tilde{\phi}_n w_n \varphi dx \\
&\quad - \int_{\mathbb{R}^3} f_p(x, w_n) \varphi dx + o_n(1)
\end{align*}

\begin{align*}
&= \langle I_p'(w), \varphi \rangle,
\end{align*}

that is, \(w \) is a solution of periodic system \([1.7]\). By Lemma \([2.3]\), Lemma \([2.5]\) \((A5)\) and Fatou lemma, we have

\begin{align*}
c &= I(u_n) - \frac{1}{4} I'(u_n), u_n) + o_n(1)
&= \frac{1}{4} \| u_n \|^2 + \int_{\mathbb{R}^3} \frac{1}{4} f(x, u_n) u_n - F(x, u_n)) dx + o_n(1)
&\geq \frac{1}{4} \| u_n \|^2 + \int_{\mathbb{R}^3} \frac{1}{4} f_p(x, u_n) u_n - F_p(x, u_n)) dx + o_n(1)
&= \frac{1}{4} \| w_n \|^2 + \int_{\mathbb{R}^3} \frac{1}{4} f_p(x, w_n) w_n - F_p(x, w_n)) dx + o_n(1)
&\geq \frac{1}{4} \| w \|^2 + \int_{\mathbb{R}^3} \frac{1}{4} f_p(x, w) w - F_p(x, w)) dx + o_n(1)
&= I_p(w) - \frac{1}{4} I_p'(w), w)
&\geq I_p(w) \geq c_p.
\end{align*}

Using Remark \([2.12]\), \(I_p(w) = c_p = c. \) By the properties of \(c \) and \(\mathcal{N}, \) there exits \(t_w > 0 \) such that \(t_w w \in \mathcal{N}. \) Thus, we obtain \(c \leq I(t_w w) \leq I_p(t_w w) \leq I_p(w) = c. \)

So \(c \) is achieved by \(t_w w. \) By Lemma \([2.11]\) we have \(I'(t_w w) = 0. \) Therefore, \(u = t_w w \)
is a nonnegative ground state solution for system \([1.5]. \) Similar to that of discussed in \([48\), by the maximum principle discussed , \(u > 0. \)

Acknowledgements. The author thanks the anonymous referees and the editors for their helpful comments and suggestions. This research was supported by the Natural Science Foundation of China (11561043).

References

--

DA-BIN WANG (CORRESPONDING AUTHOR)
DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, Lanzhou, Gansu 730050, CHINA
E-mail address: wangdb96@163.com

HUA-FEI XIE
DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, Lanzhou, Gansu 730050, CHINA
E-mail address: xiehuafei120163.com

WEN GUAN
DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, Lanzhou, Gansu 730050, CHINA
E-mail address: mathguanw@163.com