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Abstract. Starting with the presented concept by Chaum and van Heijst and

its refers to digitally signing for a document by a group member, such signa-

tures allows the signers to remains anonymous but any verifier can confirm
that the signer is a group member. The signatory anonymity can be revealed

only by a designated group authority that has some auxiliary information. We
present a complexity efficient group signature scheme based on zero knowledge

and Schnorr signature algorithm. The scheme has two phases: the first one

demonstrates that the signer is a member of the group while the second gen-
erates the message signature. In the end, we modify the classic scheme using

differential elliptic curve cryptography to increase the system’s performance

against differential attacks.

1. Introduction

The group signature concept firstly was presented by Chaum and van Heijst [8]
in 1991. Using such a scheme, any group member can sign a message on the groups
behalf such that everybody can verify the signature but no one can find out which
group member provided it. However, there is a designed group authority (named
group manager) who can reveal the signer’s identity in the case of a dispute.

An important characteristic of such a scheme is the fact that is hard to decide
if two signatures were provided by the same group member. Most of the group
signature schemes become increasingly inefficient for large groups since the group
public key and the length of the signature depend on the size of the group. The
first efficient group signature was introduced by Camenisch [6]. Its efficiency relies
on the fact that the group public key and the signature length have a constant size.

Definition 1.1 ([4]). A digital signature scheme that has the following procedures
is called a group signature scheme:

• Setup: it is a procedure made between the group manager and all the
group members and its result is the group public key made from all the
group members’ public keys, the group members’ secret keys and the group
manager’s secret key.
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• Join: it is a protocol between the group manager and a user for making
the respective user a member of the group.
• Sign: it is a probabilistic algorithm that has on input a group member’s

private key, and a message and returns a signature on that message.
• Verify: it is an algorithm which takes as input the group public key, the

signature, and the signed message. This algorithm outputs yes if and only
if the signature is correct.
• Open: it is a deterministic algorithm which takes as input the message m,

the signature, and the group manager’s secret key and returns the identity
of the group member who issued the signature together with a proof of this
fact.

A secure group signature must respect the following properties [39]:

• Correctness – the signatures provided by a group member using the Sign
procedure must be accepted by the Verify procedure.
• Unforgeability – only the group members can sign messages on behalf of

the group.
• Anonymity – the identity of the member who provided a valid signature

must be computationally hard to find for anyone except the group manager.
• Unlinkability – given two valid signatures provided by the same member

it is computationally hard to verify this fact for anyone except the group
manager.
• Traceability – the group manager is always able to use the Open procedure

to identify the signer of a valid signature.
• Exculpability – the group manager and the group members are not able to

provide valid signatures for any other groups. The group manager is not
able to give responsibility to a group member for a valid signature that he
did not provide.
• Coalition-resistance – no subset of group members can provide a group

signature that cannot be open by the group manager.

This type of signature is highly used in big companies where an employee has
the permission to sign documents on behalf of the company. In this case the verifier
does not need to check that particular employee, he has to know only the company’s
public key to check the signature validity.

Group signature are also used in electronic commerce [29]. In this case a costumer
can use coins issued by several banks. The seller cannot find out which bank issued
the coin used by the costumer to buy a certain product. So, the central bank plays
the group manager role while the other banks are the group members [24].

Various group signature schemes have been proposed so far. Some of them have
the efficiency level depending on the group public key length [4, 8, 9, 33] while
others are independent of the number of the group members [5, 6].

This paper presents the security issues that must be taken in consideration when
designing a group signature scheme and also the algorithms and concepts underlying
the most popular schemes. We also propose an elliptic curve group signature scheme
which uses much more shorter keys and has the same security level as the classic
method.
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2. Number-theoretic problems

The security of many systems relies on the intractability of solving number-
theoretical problems. A problem is considered intractable if there is no algorithm
that solves it using a reasonable amount of resources. A reasonable amount of
resources means that the resources needed by the best algorithm are at least ex-
ponential in the number of bits needed to describe the problem. In this section we
present the discrete logarithm problem and factoring large integers problems. For
further details see [10, 30].

2.1. The discrete logarithm problem. The discrete logarithm can be considered
the analogous of the common logarithm for groups. The common logarithm loga b
is the solution of the equation

ax = b

So, given g and h elements from a finite cyclic group G the solution of the equation

gx = h

is called the discrete logarithm of the base g to h in the group G.

Definition 2.1 ([41]). Let G be a finite cyclic group with n elements and b a
generator of it. Then each element g ∈ G can be written as

logb : G→ Zn

where Zn is a ring of the integers modulo n. This function is an isomorphism of
groups and is called discrete logarithm of base b.

Changing the base for a discrete logarithm is done in the same way as for a
common one:

logc g = logc b · logb g

The discrete logarithm problem is similarly with solving common logarithms using
real numbers. The major difference is given by the fact that unlike the common
logarithms where the solution is approximated, the discrete logarithm problem is
defined over a discrete domain where the solution must necessarily be exact.

A brute solution for computing a discrete logarithm logb g is raising b to the
power k. k will grow increasingly more until g is found. This algorithm needs a
linear time proportional with G’s size. Thus, the time consuming is exponential.

There are other algorithms more difficult but, also, more efficient based on in-
tegers factorization. However, none of these algorithms has a polynomial running
time. These algorithms are grouped in three:

(1) Generic algorithms that work in arbitrary groups.
(2) Algorithms that work in arbitrary groups but especially efficient if the

group’s order is smooth.
(3) Special algorithms that are designed for special groups.

The generic algorithms are the ones based on exhaustive search. Two of the most
efficient algorithms from this category are Baby-Step Giant-Step [25] and Pollard’s
rho algorithm [34]. The Baby-Step Giant-Step algorithm computes discrete loga-
rithms in O(

√
n log n) group operations and stores

√
n group elements. Pollard’s

rho algorithm has the same complexity as Baby-Step Giant-Step algorithm but the
storage is negligible. These algorithms are exponential.
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When the group has the form Z∗p or Z∗2m , where p is a prime integer, there are
sub-exponential algorithms that have a running time upper-bounded by

O(exp((c+ o(1))
√

ln q ln ln q))

group operations, where q is p or 2m and c > 0 is a constant.
Together with the rho algorithm, Pollard also proposed a lambda algorithm.

This algorithm computes discrete logarithms with a parameter-dependent success
probability in O(p

√
w) group operations when the solution lies within a restricted

interval of width w.
The hardness of the discrete logarithm problem depends on the representation

of the group elements. So, there are groups in which the DLP can be easily solved.
Such a group is (Zm,+) where for finding the discrete logarithm of an element a
to a base b we have to solve the equation

bx ≡ a (mod m)

To solve this we have to compute gcd(b,m) which needs O(log2m) group operations
using the extended Euclidean algorithm.

2.2. Factoring large integers. The factoring large integers problem underlies on
the security of the most popular public key cryptosystem: RSA.

Definition 2.2 ([15]). Solving the integer factorization problem means finding the
prime factorization for a given positive integer n.

n = pe11 p
e2
2 . . . pek

k

The algorithms for factoring an integer are classified in:
(1) general purpose algorithms – the running time depends only on the size of

n
(2) special purpose algorithms – the running time depends on a special property

of n; this property can be the size of the largest prime factor.
One of the most popular special purpose algorithms is the trial division. The

worst case of this algorithm consists in trying all primes smaller than
√
n for factor-

ing n. Another exponential algorithm is the Pollard’s rho [35] which has a running
time O(

√
n).

The elliptic curve method finds a small prime factor p in

O
(

exp((1 + o(1))
√

2 ln p ln ln p)
)

time.

The quadratic sieve algorithms and the number field sieve algorithm are general
purpose algorithms. The first one was introduced in [36]. The latter was presented
in [27] and used for breaking the RSA-130 [17].

In contrast with the discrete logarithm problem, when trying to solve a factor-
izing problem it is not clear which kind of algorithm is best when only given the
integer n. However, the special purpose algorithms are recommended whenever
possible. In [30] we can find a possibility for ordering the applying algorithms:

(1) trial division by small primes up to a bound b1
(2) Pollard’s rho algorithm in order to find any small factors than a given bound

b2 > b1
(3) an elliptic curve factoring algorithm in order to find any small factors

smaller than a given bound b3 > b2
(4) a general purpose algorithm.
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3. Public key cryptosystems

In this section we present two public key cryptosystems that are often used in
group signature schemes.

3.1. RSA Cryptosystem. RSA is a public key cryptosystem which was intro-
duced in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman [38].

The algorithm for generating the keys has the following steps:
(1) generate two large primes p and q that are kept secret
(2) compute n = p · q which is made public
(3) compute Φ = (p− 1)(q − 1)
(4) choose an integer e < n and gdc(e,Φ) = 1
(5) choose an integer d such that d · e = 1 mod Φ
(6) the public key is (e, n)
(7) the private key is (d, n)

For encrypting the message m we use

c = me mod n

and for decrypting it
m = cd mod n.

The RSA algorithm is described in algorithm 3.1

Algorithm 1 RSA algorithm

1: generate large primes p and q
2: n = p · q
3: Φ = (p− 1)(q − 1)
4: choose an integer e < n and gdc(e,Φ) = 1
5: choose an integer d such that d · e = 1 mod Φ
6: encrypt the message m

c = me mod n

7: decrypt the encrypted message c

m = cd mod n

To compute d (the private key) we use:

d · e = 1 + t · Φ

where t is an integer.
We can use the Extended Euclidean algorithm to compute the gcd:

ax+ bz = gcd(a, b)

The security of this system relies on the factorization of n. If p and q are found
then the cryptosystem can be broken. To reach a high security level p and q must
be large primes such that the security will rely on the factorizing large numbers
problem (see section 2).

To verify if a large number is prime there can be used different methods. We
will shortly present the Rabin test [37] for prime numbers, which is a probabilistic
test, and Cohen and Lenstra test [11] for prime numbers, which is a deterministic
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one. The probabilistic tests are much faster than the deterministic ones, but the
latter are much more efficient. Both test use Fermat Theorem.

Theorem 3.1 (Fermat Theorem [15]). If m is a prime and a an integer then

am ≡ a (mod n)

Rabin test is based on the fact that the following equation

x2 ≡ 1 (mod p)

has only two solutions x ≡ ±1 (mod p). Suppose m is the integer that we want
to test. We assume that m is prime and from Fermat Theorem (Theorem 3.1) we
have that gcd(a,m) = 1 satisfies

am−1 ≡ 1 (mod m) for all integer a

Because m− 1 is even we have:

a(m−1/2) ≡ ±1(mod m)

If a(m−1)/2 = +1 and (m− 1)/2 is even then

a(m−1)/4 ≡ ±1 (mod n)

This is the reasoning used to demonstrate the following lemma.

Lemma 3.2. [31] Let p be a prime number and p − 1 = a · 2f where a is uneven.
Let u be an integer such that 1 < u < p− 1 then we have:

ua ≡ 1 (mod p)

or

ua·2
f

≡ −1 (mod p) ∀0 ≤ i < f

To test if an uneven integer is prime we write m− 1 = a · 2f where a is uneven.
Then we randomly choose an integer u such that 2 ≤ u < m and compute from left
to right

ua, ua·2, ua·2
2
, . . . , ua·2

f

When we have a number that is not equal with -1 or +1 and the one right next to
it is 1, or ua·2

f 6= 1 (mod n) we can say m is compound. The test must pe repeated
for k times where k is a security parameter.

The Cohen and Lenstra test is based on Fermat Theorem stated above. Suppose
m is the number that we want to test. If there exists a single integer a that does
not satisfy the relation am ≡ a (mod n) then m is not prime. Because the reverse
is not true we can also use another Theorem 3.3.

Theorem 3.3 ([30]). An integer m is prime if and only if every divisor of m is a
power of m.

When p and q are chosen correctly the RSA cryptosystem cannot be broken. For
a detailed study on RSA security see [26].
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3.2. ElGamal cryptosystem. Unlike the RSA cryptosystem, the security of the
ElGamal system is based on the discrete logarithm problem. The three algorithms
for the system are described below:

(1) ElGamal Key Generation
• choose a large prime number p such that p−1 has a large prime factor

and a primitive root g ∈ Z∗p
• randomly choose a number x such that 0 ≤ x ≤ p− 2
• compute y = gx (mod p)
• the public key is (p, g, y)
• the private key is (p, g, x)

(2) Elgamal Encryption
• randomly choose k ∈ Z∗p
• compute K = yk (mod p)
• compute

c1 = gk (mod p)

c2 = Km (mod p)

• the encrypted message is (c1, c2)
(3) Elgamal Decryption

• compute K = cx1 (mod p)
• compute m = c2/K (mod p)

Another way to decrypt the message is:

x1 = p− 1− x

cx1
1 c2 = gkx1Km (mod p)

= gk(p−1−x)Km (mod p)

= gk(p−1−x)ykm (mod p)

= (gp−1)(gx)−kykm (mod p)

= y−kykm (mod p)
= m (mod p)

To avoid a plaintext attack for an ElGamal system the values of k must be
changed as often as possible. To exemplify such an attack we assume to use the
same value for k for two times. The messages are m1 and m2. The encrypted
messages will be:

(c(1)
1 , c

(2)
2 ) = (gk (mod p),Km1 (mod p))

and
(c(2)

1 , c
(2)
2 ) = (gk (mod p),Km2 (mod p))

So we have
m1/m2 = c

(1)
1 /c

(2)
2 (mod p)

Thus, if one of the two messages is known, the attacker can easily find out the other
message, too.

As we have already mentioned, the security of the ElGamal system is based on
the discrete logarithm problem. So, we have to carefully choose the primes such
that their discrete logarithm to be difficult to solve.
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4. Digital signature

The concept of digital signature was first presented by Whitfield Diffie and Mar-
tin Hellman in ”New Directions in Cryptography” [18]. A digital signature scheme
consists in three algorithms:

(1) an algorithm for generating keys; this algorithm takes as input a private
key and returns that private key and its public key.

(2) an algorithm for signing the message
(3) an algorithm for verifying the signature

A digital signature scheme must respect at least three properties [28]:
(1) authentication – the receiver must always be able to identify the sender
(2) non-repudiation – the sender cannot later deny the sending and the singing

of the message
(3) integrity – the receiver must be able to verify if the message was modified

during its transmission.

4.1. RSA digital signature scheme. To generate the keys for the RSA digital
signature scheme will be used the same algorithm from the RSA cryptosystem
described in the previous section. Thus, we have the public key (e, n) and the
private key (d, n). The private key will be used for signing the message while the
public one will be used for verifying the signature. The signature is given by

s = RSAd,n(m) = md mod n

where m is the message. To verify the signature s we use

m′ = RSAe,n(s) = se mod n

If m′ = m then the signature is valid.
The security conditions of the RSA digital signature scheme are almost the same

as for the RSA system. So, if n can be easily factorized then an attacker can
discover the signing key. A big disadvantage of the RSA digital signature scheme
is represented by its multiplicative properties. To exemplify this, we take two
messages m1 and m2 with the signatures s1 and s2, respective. Thus, we have:

s = s1s2 = (m1m2)d (mod n)

which is a valid signature for the message m = m1m2 (mod n). Another problem
appears when a message is signed and encrypted with the RSA system. The diffi-
culty is caused by the fact that nobody knows which of these two operations must
be done first. Generally, the answer depends on the cryptographic purpose. How-
ever, usually, is recommended to first sign the document and then encrypt it. In
such a situation the length of the chosen modulus must be carefully treated because
the resulted signature length can be greater than the maximum input accepted by
the RSA encryption algorithm. For further study on this issue and the measures
that must be taken in such a case see [32].

4.2. Schnorr’s digital signature scheme. Schnorr’s digital signature scheme
is based on ElGamal digital signature scheme, the main difference being caused
by the fact that the former uses a much smaller group of primes. This property
does not affect the system’s security which is also based on the discrete logarithm
problem. The Schnorr’s digital signature scheme is considered to be the simplest
digital signature scheme whose security can be proven.
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Usually, for generating the keys is used a Schnorr group.

Definition 4.1. Schnorr Group[[40]] A Schnorr group is a large subgroup of Z∗p of
prime order. To generate such a group there must be chosen p, q, r such that

p = qr + 1

where p and q are primes. Then h is randomly chosen such that 1 < h < p and

Hr 6= 1 (mod p)

A generator of a subgroup of Z∗p has the value

g − hr (mod p)

and x is an element of a Schnorr group if 0 < x < p and

xq = 1 (mod p)

From the above definition it is obvious that every element, except 1, of a Schnorr
group is a generator of the group. All the systems based on a Schnorr group must
use a large p such that the discrete logarithm problem to be difficult to solve. q must
also be large to avoid a birthday attack on the discrete logarithm problem. A big
advantage of the Schnorr group is that such a group has a prime order and because
of that it does not have non-trivial subgroups. Thus, an attack of subgroups is
impossible.

To use the Schnorr digital signature scheme we choose a Schnorr group of order
q and generator g, and a hash function H. Having a private key x the generating
key algorithm will return a public key

y = gx (mod p)

To sign a message m we choose a number k such that 0 < k < q and compute

r = gk (mod p)

e = H(m||r)
s = (k − xe) (mod q)

where || denotes the concatenation operation. So the signature will be (e, s) where
0 ≤ s < q. If The order q of the Schnorr group is smaller than 2160 the signature
will have a maximum length of 40 bytes. To verify the signature we compute:

rc = gsye

ev = H(m||rv)
If ev = e then the signature is valid.

Algorithm 2 Schnorr generating key algorithm

1: generate large primes p
2: g is the group’s generator
3: choose the private key x
4: y = gx (mod p)
5: Φ = (p− 1)(q − 1)
6: the public key is (p, g, y)
7: the private key is (p, g, x)
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Algorithm 3 Schnorr signing algorithm

1: (p, g, x) is the private key
2: randomly choose k such that 0 < k < q
3: r = gk (mod p)
4: e = H(m||r)
5: s = (k − xe) (mod q)
6: the signature is (e, s)

Algorithm 4 Schnorr verifying algorithm

1: (p, g, y) is the public key
2: (e, s) is the signature
3: rv = gsye

4: ev = H(m||rv)
5: if (ev = e) then
6: (e, s) is valid
7: end if

5. Zero knowledge proof

A zero-knowledge proof is a proof of some statement which reveals nothing else
but the veracity of the statement. To define a zero-knowledge proof we first need
to define an interactive proof system.

Definition 5.1 (Interactive proof system). An interactive proof system for a set A
is a process between a verifier which executes a probabilistic polynomial-time strat-
egy and a prover which executes a computationally unbounded strategy satisfying:

• Completeness – the verifier always accepts the common input a ∈ A (after
interacting with the prover).
• Soundness – having some polynomial p, any x /∈ A and any potential

strategy S, the probability that verifier rejects the common input a is at
least 1

p(|a|) (after interacting with S).

So, a proof is considered complete only if an honest verifier is always convinced
of the veracity of a statement from an honest prover. A proof is considered sound
if the probability that a cheating prover can convince an honest verifier that a false
statement is true is very small.

Interactive proof systems were introduced by Babai et al. [2, 3] and by Goldwasser
et al. [21] who also invented the concept of zero-knowledge. In the model used
in these papers, the prover is computationally unbounded, while the verifier is a
probabilistic polynomial-time machine (Definition 5.1).

Definition 5.2 (Zero-knowledge). A strategy S is zero-knowledge on the set A if
for any feasible strategy B exists a feasible computation C so that the following
are computationally indistinguishable:

• the output of B after interacting with S on common input a ∈ A
• the output of C on input a ∈ A

Thus, any information obtained by interacting with S on some input a, can also
be obtained from a without interacting with S [20].
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After executing a zero-knowledge protocol between two entities, the verifier must
be convinced of the validity of the statement. A big advantage of the zero-knowledge
protocol is that the verifier is not able to prove the statement to other people.

5.1. Fiat-Shamir identification protocol. Fiat-Shamir identification protocol
represents the basis for the most popular zero-knowledge protocols. The most im-
portant protocols derived from it are Feige-Fiat-Shamir [19] and Guillou-Quisquater.

Algorithm 5 Fiat-Shamir Identification Protocol

1: p and q are generated
2: n = pq is made public
3: the prover selects Se coprime to n such that 1 ≤ Se ≤ n− 1
4: the prover computes v = Se2 mod n which is his public key
5: the prover chooses r such that 1 ≤ r ≤ n− 1
6: the prover computes x = r2 mod n and sends it to the verifier
7: the verifier chooses a bit e ∈ {0, 1} and sends it to the prover
8: if e=0 then
9: the prover computes y = r

10: else
11: the prover computes y = rs mod n
12: end if
13: the prover sends y to the verifier
14: the verifier rejects if y = 0 or y2 6= x ∗ ve (mod n)

This protocol is used in cryptography mostly for authenticating a person. Sup-
pose Alice wants to identify herself to Bob. She has a secret Se known only by
her. To successfully identify herself she has to prove her identity to Bob by proving
that she possesses Se without revealing it. Since the secret is not revealed to Bob,
no adversary can find it from the prover response. For this protocol, is needed a
trusted part which generates two secret prime numbers p and q, and computes the
public value n = pq. The steps that follow this operation are repeated t times, each
time using independent random numbers. If the verifier has repeated the steps t
times then he accepts.

The algorithm for such an identification is described in (5) and the repeating
steps begin with the fifth one. The first two steps are executed by the third trusted
part, while the steps three and four are executed by the prover only one time each.
The number t is chosen by the verifier, if the verifier is easy to convince, t can be
smaller. For further study on this algorithm see [31].

To better understand the algorithm we present a numeric example. Suppose
p = 5 and q = 11 then n = 55 is made public. Suppose Alice (prover) chooses her
secret Se = 12 and computes v = 122 mod 55 = 34. Bob is an easy to convince
verifier and choses t = 2.

(1) Alice chooses r = 9
(2) Alice sends x = 92 mod 55 = 26 to Bob
(3) Bob sends e = 0 to Alice
(4) Alice sends y = r = 9 to Bob
(5) Bob verifies y 6= 0 and 92 mod 55 = (26 ∗ 340) mod 55⇔ 19 = 19
(6) Alice chooses r = 15
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(7) Alice sends x = 152 mod 55 = 5 to Bob
(8) Bob sends e = 1 to Alice
(9) Alice sends y = rs mod 55 = 45 to Bob

(10) Bob verifies y 6= 0 and 452 mod 55 = (5 ∗ 341) mod 55⇔ 45 = 45
The completeness property of this protocol is caused by the fact that the prover

which possesses the secret Se can also compute y = r or y = rs and sends it to the
verifier. Because of that an honest verifier will always complete all t iterations and
accept with the probability 1. The soundness is demonstrated by supposing the
fact that the prover does not possess the secret Se. So, on a given round he cannot
compute y = r or y = rs. Thus, the rejection probability will be 1

2 in each round.
The zero-knowledge is provided by the fact that the only values made public in one
round are x and y. A (x, y) pair can be simulated by choosing a random y and then
computing x = y2 or x = y2

v . We can observe that such pairs are computationally
indistinguishable from the ones computed in the protocol.

5.2. Schnorr’s zero-knowledge protocol. The discrete logarithm problem rep-
resents the base for many cryptosystems’ security. For an authentication protocol
there are often used techniques for proving knowledge and properties of secret keys
without revealing the keys. These are for instance proofs of knowledge of discrete
logarithms.

Schnorr’s zero-knowledge protocol is one of the methods used for proving the
knowledge of discrete logarithms. For this protocol is used a cyclic group Gq of
order q and generator g. The prover knows the secret key x = logg y where y is
public. So, the prover wants to convince the verifier that he knows the value of x
without revealing it. The algorithm for this protocol is described below (6).

Algorithm 6 Schnorr’s zero-knowledge Protocol

1: the prover randomly chooses r
2: t = gy is made public
3: the verifier sends a random number c to the prover
4: the prover computes s = r + cx and sends it to the verifier
5: if gs = tyc then
6: protocol successfully completed
7: end if

For a numeric example we take G11 with g = 7, so x = log7y. We take x = 3,
so y = 73(mod 11) = 343 mod 11 = 2. The prover chooses r = 3 and computes
t = gy = 72 mod 11 = 5. The random number of the verifier, named the challenger,
is c = 5. The prover then computes

s = r + cx = 3 + 5 · 3 = 18 mod 11 = 7

The verifier computes
gs = 77 (mod 1)1 = 6

and
tyc = 5 · 25 (mod 1)1 = 6

So the prover has convinced the verifier that he knows the discrete logarithm with-
out revealing the value of x.
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6. A group signature scheme based on the discrete logarithm
problem

In [4, 23, 1, 12, 14] there are presented some efficient group signature schemes
which are based on the discrete logarithm problem or Elliptic Curves DLP. Some
schemes have been based on a variation of Elgamal encryption system (3.2) and
of Schnorr’s digital signature scheme (4.2). In this section we describe the scheme
with all its phases since it represents the bases for the group signature scheme we
propose.

6.1. Premises. Suppose we have a group with n members M = {M1,M2, . . . ,Mn}
and a group manager MG. Let G be a finite cyclic group of prime order q and
g, g1, . . . , gn ∈ G be generators of G such that computing discrete logarithms to
any of the bases is infeasible. Each member has a private key xi ∈ Zq where
i = 1, 2, . . . , n and a public key yi = gxi . The group manager’s private key is
denoted with ω and the public one is z = gω.

6.1.1. Elgamal variation scheme. Suppose M1 wants to encrypt a message message
and sends it to M2. He uses M2’s public key y2 = gx2 and a random value α ∈ Zq.
He then computes A = y2

α and B = gαmessage. After receiving the pair (A,B),
M2 can decrypt the message by computing:

B

A(x2)−1 =
gαmessage
y2
αx2−1 =

gαmessage
gx2αx2−1 = message

Algorithm 7 Elgamal variation scheme

1: the sender randomly chooses α ∈ Zq
2: the verifier makes public y = gx is made public
3: the sender computes A = yα

4: the sender computes B = gαmessage
5: the sender sends the pair (A,B) to the verifier
6: the receiver computes B

Ax−1 = message

6.1.2. Proving knowledge of discrete logarithms. For proving knowledge of discrete
logarithms the author used Schnorr’s signature but he modified the argument for
the hash function and he named the result signature of knowledge. To compute such
a signature we need a private key x and its public key y = gx and we randomly
choose a value α ∈ Zq. T hen we compute (c, s) as it follows:

c = H(g||y||gr||message)

and
s = r − cx (mod q)

So, we can define the pair (c, s) as a signature which satisfies

c = H(g||y||gsyc||message)

because
gsyc = gr−cx(gx)c = gr−cx+xc = gr

The author denoted this signature SKDL(g, y,message) which proves knowledge
of the discrete logarithm of the public key y to the base g.
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By combining two such signatures we obtain a signature that the logarithms of
two group elements with respect to two different bases are the same. So, suppose
we have SKDL(g, y,message) and SKDL(f, z,message) and we form a signature
SEQDL(g, f, y, z,message). The new signature is a signature of equality of the
discrete logarithm of the group element y with respect to the base g and the discrete
logarithm of the group element z with respect to the base f for the message message.
The pair (c, s) for this new signature is given by

c = H(g||f ||y||z||gsyc||fszc||message).

To compute a signature of knowledge of the discrete logarithm of one group
element out of the list {y1, y2, . . . , yn} to the base g for the message message there
must be known at least one of the secret keys. Assume that this secret key is x1.
Then the prover chooses random values r, s2 . . . , sn, c2 . . . cn ∈ Zq and computes
h1 = gr, hi = gsiyi

ci where i ∈ {2, 3, . . . , n}. Then c1 is given by

c1 = H(g||y1|| . . . ||yn||h1|| . . . ||hn||message)−
n∑
i=2

ci (mod q)

and s1 is given by
s1 = r − x1c1 (mod q).

We denote this signature with

SKDLn1 (g, y1, . . . , yn,message) = (c1, . . . cn, s1, . . . , sn)

We can obtain the signature system SEQDLn1 (g, f, y1, z1, . . . , yn, zn,message) by
using several SKDL in parallel.

6.2. Group signature algorithm. The algebraic settings were described above.
So the group’s public key is formed from all the members’ public key Y = (y1, . . . , yn)
along with the manager’s public key z. The idea behind this algorithm is that if a
member wants to sign a message on behalf of the group he has to encrypt a public
key from Y and to prove that

(1) the encrypted key is from Y
(2) he knows the discrete logarithm of the encrypted key.

From the second condition it follows that the member has encrypted his own
public key since the secret key is in fact the discrete logarithm. To describe the
algorithm we choose Mi as the signing member from the group. He first chooses a
random value α ∈ Zq. Then he encrypts his own key yi by computing A = zα and
B = yig

α. He computes (c1, . . . , cn, sc, . . . , sn) from

SEQDLn1 (z, g, A,
B

y1
, . . . , A,

B

yn
,message)

Finally, he computes the pair (c̃, s̃ = SKDL(g,B,message)).
So the group signature is (A,B, c1, . . . , cn, sc, . . . , sn, c̃, s̃). To prove that the two

conditions mentioned above are accomplished we discuss the last two signatures.
So, the first signature proves that the member has encrypted a key from Y . To
better understand this we take M3 from a group of 5 members to be the one who
will sign the message. So the first signature will look like this: (c1, . . . c5, s1 . . . s5)
is

SEQDL5
1(z, g, A,

B

y1
, . . . , A,

B

y5
,message).
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So we have

SEQDL5
1(z, g, A,

B

y1
, A,

B

y2
, A,

B

y3
, A,

B

y4
, A,

B

y5
,message).

SEQDL5
1(z, g, A,

y3g
α

y1
, A,

y3g
α

y2
, A,

y3g
α

y3
, A,

y3g
α

y4
, A,

y3g
α

y5
,message).

SEQDL5
1(z, g, zα,

B

y1
, zα,

B

y2
, zα, gα, zα,

B

y4
, zα,

B

y5
,message).

The second signature proves the knowledge of the discrete logarithm, and also the
identity of the member since he encrypted his own key. So

(c̃, s̃ = SKDL(g,B,message))

(c̃, s̃ = SKDL(g, y3g
α,message))

To open a group signature the manager has first to decrypt (A,B).

B

Aω−1 =
y3g

α

zαω−1 =
y3g

α

gωαω−1 = y3

So the manager has easily found out the public key of the signer. Then he
computes the signature of equality

SEQDL(g, z, B/(y3), A,M3)

SEQDL(g, z, y3g
α/(y3), zα,M3)

SEQDL(g, z, gα, zα,M3)

The efficiency of this signature is linear in the number of group members. Only
the algorithm Open is independent of the group’s size but finding the identity of
a signer given his key requires a look up in a database. The group key and the
signatures’ length are also linear in the number of group members. This can be a
big problem if we are dealing with a large group. The author offers a solution for
reducing the size of the group’s public key but he himself mentions the problems
caused by applying it. This technique was proposed by Blom and uses Φ which is a
public generator matrix of an (n, k)MDS code over Zq. So the group’s public key
will be {y1, . . . , yk} and the public key of a member Mi will be:

ỹi =
∏
i=1

ky
φij

i

where φij is the element of Φ in row i and column j. There are two big disadvantages
when using this matrix. First is that there is needed a third party to compute the
public and the private keys, while the second is that if a group of members collude
they can find out all secret keys.

7. Group signature scheme based on elliptic curves

To solve the problem raised above regarding the size of the group’s public key
and, implicitly, the efficiency of the algorithm we chose to modify the Camenisch’s
algorithm using elliptic curves.

7.1. Premises.
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7.1.1. Elliptic Curves Basics. The elliptic curves are an area of mathematics and
have been independently proposed by Neal Koblitz and Victor Miller to be used in
cryptography in 1985. Since then, they are widely studied and the cryptographic
systems based on elliptic curves become more and more popular.

Definition 7.1 (Weierstrass equation [4]). An elliptic curve over a field K is given
by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ K.

Definition 7.2 ([28]). The discriminant of an elliptic curve given in the Weierstrass
form is:

∆ = d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

where:

d2 = a1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and ∆ 6= 0.

For two extension fields of K the points of the curve are:

E(L) = {(x, y) ∈ L× L|E = 0} ∪O

where O is the infinity point.
If K = Fp where p > 3 is a prime the Weierstrass equation can be simplified to:

E : y2 = x3 + ax+ b

The discriminant of this curve is ∆ = −16(4a3 + 27b2). If we have the point
P (x, y) then the inverse will be −P (x,−y). If we have P (x1, y1) and Q(x2, y2) then
P +Q = R(x3, y3) is given by:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1,

where λ = y1−y2
x1−x2

. For doubling a point 2P (x3, y3) we use the formulas:

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ = 3x2
1+a

2y1
.

The elliptic curve cryptosystems are very efficient and they, also, have a high
security level. The efficiency depends the most on the scalar multiplication. This
operation has a high time-consuming. The computational speed of such an opera-
tion is influenced by:

• finite field operations;
• curve point operations;
• representation of the scalar k [44, 22].



EJDE-2017/237 ELLIPTIC CURVES DIFFERENTIATION 17

The scalar multiplication kP , is in fact the adding of the point P to itself k
times. That means

kP = P + P + P + . . .+ P︸ ︷︷ ︸
k times

and −kP = k(−P ).
ECDH. Like some classic cryptosystems’ security is based on the DLP (discrete log-
arithm problem), the elliptic curve cryptosystems’ security is based on the ECDLP
(elliptic curve discrete logarithm problem). This states that given P ∈ E and
Q = kP ∈ E, k is very hard to find (almost impossible)[13]. For some curves the
ECDLP has been solved efficiently [41]. To avoid this problem the elliptic curve
must be chosen carefully. NIST recommends fifteen elliptic curves. Specifically,
FIPS 186-3 has ten recommended finite fields. There are five prime fields Fp for
p = 192, 224, 256, 384, 521. For each of the prime fields one elliptic curve is recom-
mended. There are five binary fields F2m for 2163, 2223, 2283, 2409, 2571. For each of
the binary fields one elliptic curve and one Koblitz curve was selected. The curves
were chosen for optimal security and implementation efficiency [43, 7]. The main
reason for using elliptic curve cryptography instead of classic systems is because
resolving ECDLP implies the same complexity even if the keys are much smaller
than the ones used in DLP. This is a big advantage because operating with smaller
numbers increases the performance of the algorithm and decreases the amount of
storage resources.

7.2. Algebraic settings. The algebraic settings are almost the same as the previ-
ous algorithm the only difference being the domain parameters of the elliptic curve.
Suppose we have a group with n members M = {M1,M2, . . . ,Mn} and a group
manager MG. For every elliptic curve cryptosystem we have to declare the domain
parameters, similarly with [16]. We choose a nonsupersingular elliptic curve E de-
fined over a prime field. The domain parameters are (F, p, aE , bE , G, n, h) where Fp
is the prime field, aE , bE define the curve E : y2 = x3 + aEx+ bE , P ∈ E is a point
of order n (this means that n is the smallest positive number for which nG = O),
h = |E(Fp)|/n is the cofactor. To meet the above conditions it is recommended for
|E(Fp)| to be prime or |E(Fp)| = h · n where n is a large prime and h ∈ {1, 2, 3, 4}
[15]. Each member has a private key xi ∈ Zp where i = 1, 2, . . . , n and a public key
yi = xiP . The group manager’s private key is denoted with ω and the public one
is z = ωP .

7.2.1. Proving knowledge of elliptic curve discrete logarithms. The two signature
schemes used remain the same with the exception that y is computed by multiplying
the public point P with the secret key x. So we have:

SKECDL(P, y,message) = SKECDL(P, xP,message)

SEQECDLn1 (P,Q, y1, z1, . . . , yn, zn,message)

where Q is also a point from the curve E. Thus, the pair (c, s) is given by

c = H(P ||y||rP ||message)

where r is a random scalar from Zp and s = r − cx. So the definition of (c, s)
becomes

c = H(P ||y||sP + yc||m)
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because
sP + yc = (r − cx)P + xPc = RP − cxP + xPc = rP.

Analogously, the equality signature becomes

SEQECDLn1 (P,Q, y1, z1, . . . , yn, zn,message).

7.3. Elliptic curve group signature algorithm. The group public key is Y =
(y1, . . . , yn) along with z, the manager’s public key. Suppose Mi is the member
which will sign the message on behalf of the group. The two conditions stated
above remain valid even if we use elliptic curves. First he chooses a random value
α ∈ Zp and he encrypts his public key yi by computing

A = αz

B = αPyi.

He finds (c1, c2 . . . cn, s1, s2, . . . sn) from

SEQECDLn1 (z, P,A,
B

y1
, . . . A,

B

yn
,message)

and (c̃, s̃) = SKECDL(P,B,message).
To open the elliptic curve signature (A,B, c1, . . . , cn, s1 . . . , sn) the group man-

ager first decrypts (A,B) by computing
B
1
ωA

=
yiαP
1
ωαωP

= yi

Then he opens the signature

SKECDL(P, z,B/yi, A,Mi)

SKECDL(P, z, αPyi/yi, αz,Mi)

SKECDL(P, z, αP, αz,Mi)

Thus, the manager can be sure on the validity of the signature and on the identity
of the signer.

Algorithm 8 Elliptic Curve Group Signature

1: the signer randomly chooses α ∈ Zp
2: the manager makes public z = ωP
3: the signer computes A = αz
4: the signer computes B = yαP
5: the signer computes (c1, c2 . . . cn, s1, s2, . . . sn)
6: the signer computes (c̃, s̃)
7: the signature is (A,B, c1, c2 . . . cn, s1, s2, . . . sn, c̃, s̃)

8. Conclusions and comparison

The group signature schemes become more and more popular mainly because
companies tend to allow a trusted employee to sign documents on behalf of the
institute in order to save time and resources. Various schemes have been proposed
most of them using classic cryptography. We have described such a scheme and
modified it in order to obtain a more efficient one using elliptic curves. This fact
provides a methodology for obtaining high-speed implementations of authentication
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protocols and encrypted message techniques while using fewer bits for the keys. In
the last years, the cryptosystems based on elliptic curves are increasingly used.
This is because their security level and the efficiency one are very high. While the
complexity of the classic scheme described depends on the number of the group
members, the complexity of our elliptic curve scheme depends the most on the
scalar multiplications. In future we intend to study various methods for computing
point multiplications on elliptic curves and to choose the most suitable one for the
proposed group signature scheme.

Acknowledgments. The authors acknowledges the support through Grant of
The Executive Council for Funding Higher Education, Research and Innovation,
Romania-UEFISCDI, Project Type: Advanced Collaborative Research Projects -
PCCA, Number 23/2014.

References

[1] Ramzi Alsaedi, Nicolae Constantinescu, Vicentiu Radulescu; Nonlinearities in Elliptic Curve
Authentication, Entropy, Vol. 16(9), pp. 5144–5158, 2014.

[2] L. Babai; Trading group theory for randomness, ACM Symposium on Theory of Computing,

pp. 421–429, Providence, Rhode Island, 6-8 May 1985.
[3] L. Babai, S. Moran; Arthur - Merlin games: A randomized proof system, and a hierarchy of

complexity classes, Journal of Computer and System Sciences, Vol. 36, 1988.

[4] J. Camenisch; Effcient and generalized group signatures, In Advances in Cryptology EURO-
CRYPT ’97, Vol. 1233 of Lecture Notes in Computer Science, Springer-Verlag, pp. 465–479,

1997.

[5] J. L. Camenisch; Group Signature Schemes and Payment Systems Based on the Discrete
Logarithm Problem, PhD thesis, ETH Zurich, Diss. ETH No. 12520, Hartung Gorre Verlag,

Konstanz, 1998.
[6] J. Camenisch, M. Stadler; Efficient group signatures schemes for large groups, Advances in

Cryptology-Crypto 1997, Vol. 1294 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 410–424, 1997.
[7] Certicom Research; SEC 2: Recommended Elliptic Curve Domain Parameters, Standards for

efficient Cryptography, Version 1.0, Sep. 2000

[8] D. Chaum, E. van Heyst; Group signatures, Advances in Cryptology EUROCRYPT ’91, Vol.
547 of Lecture Notes in Computer Science, Springer-Verlag, pp. 257–265, 1991.

[9] L. Chen, T. P. Pedersen; New group signature schemes, Advances in Cryptology - EURO-

CRYPT ’94, Vol. 950 of Lecture Notes in Computer Science, Springer-Verlag, pp. 171–181,
1995.

[10] H. Cohen; A Course in Computational Algebraic Number Theory, No. 138 in Graduate Texts

in Mathematics, Springer-Verlag, Berlin, 1993.
[11] H. Cohen, H. W. Lenstra jr.; Primality Testing and Jacobi Sums, Mathematics of Computa-

tion, Vol. 42(165), pp. 297–330, 1984.
[12] Nicolae Constantinescu; Authentication ranks with identities based on elliptic curves, Annals

of the University of Craiova, Mathematics and Computer Science Series, Vol. XXXIV(1),

pp. 94–99, 2007.
[13] Nicolae Constantinescu; Security System Vulnerabilities, Proceedings of the Romanian Acad-

emy Series A-Mathematics Physics Technical Sciences Information Science, Vol. 13(2), pp.
175–179, 2012.

[14] Nicolae Constantinescu; Authentication hierarchy based on blind signature, Journal of
Knowledge Communication and Computing Technologies, Vol. 1(1), pp. 77–84, 2010.

[15] N. Constantinescu; Criptografie, Ed. Academiei Romane, Bucuresti, 2009.
[16] Nicolae Constantinescu, George Stephanides, Mirel Cosulschi, Mihai Gabroveanu; RSA-

Padding Signatures with Attack Studies, International Conference on Web Information

Systems and Technologies: Internet Technology/Web Interface and Applications, Portugal,
ISBN 978-972-8865-46-7, pp. 97–100, 2006.



20 A. I. GOLUMBEANU, O. A. ŢICLEANU EJDE-2017/237
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