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APPLICATION OF THE STEEPEST DESCENT METHOD TO
SOLVE DIFFERENTIAL INEQUALITIES

ALEXANDER V. FOMINYH, VLADIMIR V. KARELIN, LYUDMILA N. POLYAKOVA

Abstract. In this article we consider the problem of finding the solution of

a system of differential inequalities. We reduce the original problem to the
unconstrained minimization of a functional. We find the Gateaux gradient

for this functional, and then obtain nucessary and sufficient conditions for the

existence of a minimum. Based on these conditions we apply the steepest
descent method, and present a numerical implementation of the method.

1. Introduction

Differential inequalities are widely used in obtaining various estimates. For ex-
ample, the Wintner theorem can be used to determine the intervals of the exis-
tence of solutions of certain differential equations [9]. Various theorems on differ-
ential inequalities can be found in many works on differential equations (see [16]).
Some features of the solutions of differential inequalities were studied in the articles
[8, 10, 14]. The paper [3] contains numerous applications of differential inequali-
ties. The application of the Chaplygin theorem to the proof of the theorem on the
continuation of the solution to a point and the Perron uniqueness theorem [1], as
well as some problems of stability theory [2, 5, 18], are important examples of such
applications. A certain attention has been paid to second order delay differential
inequalities (see [11, 13]).

In this article a problem of finding a solution of the nonlinear system of differ-
ential inequalities is considered.

We use an optimization approach: the original problem is reduced to the un-
constrained minimization of a functional on the functional space. Some numerical
algorithms for solving differential inequalities can be found in the articles [4, 15, 17].
In the work [17] the grid approximation of boundary value problems for differential
inequalities is investigated. The article [4] explores the optimal solution (in the
sense of an integral functional) of a linear system of differential inequalities, and
the original problem is considered in the form of a linear programming problem in
a partially ordered space.
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2. Statement of the Problem

Let us consider a system of differential inequalities

gi(x, ẋ, t) ≤ 0, i = 1, `, t ∈ [0, T ], (2.1)

with the given initial condition
x(0) = x0. (2.2)

In system (2.1) T > 0 is a given moment of time, x is an n-dimensional vector-
function of the phase coordinates, which is supposed to be continuous with con-
tinuous derivatives in the interval [0, T ], gi(x, ẋ, t), i = 1, `, are real continuous
scalar functions, which are supposed to be continuously differentiable at x and at
ẋ. In expression (2.2) x0 ∈ Rn is a given vector. Assume that there exists a so-
lution of system (2.1) with initial condition (2.2). It is required to find a solution
x∗ ∈ C1

n[0, T ] of system (2.1), which satisfies initial condition (2.2).

3. Reduction to the variational problem

Denote z(t) = ẋ(t), z ∈ Cn[0, T ]. Then from (2.2) we get

x(t) = x0 +
∫ t

0

z(τ) dτ. (3.1)

Using this expression, we write gi(x, z, t) instead of gi
(
x0 +

∫ t
0
z(τ) dτ, z, t

)
, i = 1, `,

for brevity.
Let us introduce the functional

I(z) =
∑̀
i=1

∫ T

0

(
max

{
0, gi(x, z, t)

})2
dt. (3.2)

It is easy to see that this functional is nonnegative for all z ∈ Cn[0, T ] and vanishes
at the point z∗ ∈ Cn[0, T ] if and only if the vector-function

x∗(t) = x0 +
∫ t

0

z∗(τ) dτ

is a solution of problem (2.1), (2.2).

4. Necessary conditions for a minimum

Using the same technique as in [7], we can show the following theorem.

Theorem 4.1. The functional I(z) is Gateaux differentiable and its Gateaux gra-
dient at the point z is

∇I(z, t) =
∑̀
i=1

[(
|gi(x, z, t)|+ gi(x, z, t)

)∂gi(x, z, t)
∂z

+
∫ T

t

(
|gi(x, z, τ)|+ gi(x, z, τ)

)∂gi(x, z, τ)
∂x

dτ
]
.

(4.1)

Using that the maximum of convex functions, the square of a nonnegative convex
function, and the sum of convex functions are convex functions, it is not hard to
check that the following lemma holds.

Lemma 4.2. If the functionals gi(x, z, t), i = 1, `, are convex in [x, z], then the
functional I(z) is convex.
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From the known minimum condition [6] we conclude the following theorem.

Theorem 4.3. For the vector-function z∗ to be a minimum point of the functional
I, it is necessary, and in the case of the convexity of the functionals gi(x, z, t),
i = 1, `, in [x, z], also sufficient that

∇I(z∗, t) = 0n, (4.2)

where 0n is a zero element of the space Cn[0, T ].

5. The steepest descent method

Let us describe the following steepest descent method [12] for finding stationary
points of the functional I.

Fix an arbitrary point z1 ∈ Cn[0, T ]. Assume that the point zk ∈ Cn[0, T ] is
already found. If the necessary minimum condition (4.2) holds, then the point zk is
a stationary point of the functional I, and the process terminates. Otherwise put

zk+1(t) = zk(t)− γk∇I(zk, t),

where ∇I(zk, t) is Gateaux gradient of the functional I at the point zk, and

xk(t) = x0 +
∫ t

0

zk(τ) dτ,

and the value γk is the solution of the one-dimensional minimization problem

min
γ≥0

I(zk − γ∇I(zk, t)) = I(zk − γk∇I(zk, t)). (5.1)

From (5.1) we get
I(zk+1) ≤ I(zk).

If the sequence {zk} is infinite, then it can be shown, that under some additional
assumptions the described method converges [12] in the following sense

‖∇I(zk)‖ =
(∫ T

0

(
∇I(zk, t),∇I(zk, t)

)
dt
)1/2

→ 0, k →∞.

If the sequence {zk} is finite, then its last point is a stationary point of the functional
I by construction.

Note, that if the stationary point z ∈ Cn[0, T ] is obtained, but I(z) 6= 0, then
one has to take the other initial approximation and to repeat the iteration process,
because the point z is not a global minimum of the functional I in this case.

This approach can be applied to the problem considered in the case when the
initial condition and the final position of the object are under the following con-
straints

xi(0) ≤ x0i, i = 1, n, (5.2)

xi(T ) ≤ xTi, i = 1, n, (5.3)

where x0, xT ∈ Rn are the given vectors. Assume that there exists a solution of
system (2.1) with constraints (5.2), (5.3) if such constraints are considered. In this
case define

x(t) = x0 +
∫ t

0

z(τ) dτ, x0i ≤ x0i, i = 1, n,
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and add to the functional I the convex summand
n∑
i=1

(
max

{
0, x0i − x0i

})2 +
n∑
i=1

(
max

{
0, x0i +

∫ T

0

zi(t)dt− xTi
})2

,

which considers constraints (5.2), (5.3). Then besides the vector-function z∗ one
also has to find the vector x∗0 to satisfy conditions (5.2), (5.3).

In this case one should consider the functional

J(z, x0) = I(z) +
n∑
i=1

(
max

{
0, x0i − x0i

})2
+

n∑
i=1

(
max

{
0, x0i +

∫ T

0

zi(t)dt− xTi
})2

(instead of the functional I) and its gradient ∇J (instead of the gradient ∇I).

6. “Normal” form of differential inequalities system

Let us consider the special case when system (2.1) is of the form

ẋi ≤ fi(x, t), i = 1, n, t ∈ [0, T ],

and we have initial condition (2.2). Suppose the vector-function f(x, t) is continuous
and continuously differentiable at x. Using (3.1), we will write f(x, t) instead of
f
(
x0 +

∫ t
0
z(τ) dτ, t

)
for brevity.

In this case functional (3.2) is of the form

I(z) =
n∑
i=1

∫ T

0

(
max

{
0, zi − fi(x, t)

})2
dt. (6.1)

Let us demonstrate how Gateaux gradient (4.1) can be obtained. It is not difficult
to see that functional (6.1) can be presented as

I(z) =
n∑
i=1

I1i(z) +
n∑
i=1

I2i(z)

=
n∑
i=1

∫ T

0

1
2
(
zi − fi(x, t)

)2
dt+

n∑
i=1

∫ T

0

1
2
(
zi − fi(x, t)

)
|zi − fi(x, t)|dt.

Let v ∈ Cn[0, T ]. Let (·)′ denote transposition and ei, i = 1, n, is the canonical
basis in Rn. We calculate

I1i(z + αv)

=
∫ T

0

1
2

(
zi + αvi − fi(x, t)− α

(∂fi
∂x

)′ ∫ t

0

v(τ)dτ + o(α)
)2

dt

= I1i(z) + α

∫ T

0

(
zi − fi(x, t)

)(
vi −

(∂fi
∂x

)′ ∫ t

0

v(τ)dτ
)
dt+ o(α).

(6.2)

We introduce the sets

Ti+(z) = {t ∈ [0, T ] | zi − fi(x, t) > 0},
Ti−(z) = {t ∈ [0, T ] | zi − fi(x, t) < 0},
Ti0(z) = {t ∈ [0, T ] | zi − fi(x, t) = 0}.
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We have

I2i(z) =


∫ T
0

1
2

(
zi − fi(x, t)

)2
dt, t ∈ Ti+(z) ∪ Ti0(z),

−
∫ T
0

1
2

(
zi − fi(x, t)

)2
dt, t ∈ Ti−(z).

Then

I2i(z + αv) = I2i(z) + α

∫ T

0

(
zi − fi(x, t)

)(
vi −

(∂fi
∂x

)′ ∫ t

0

v(τ)dτ
)
dt

+ o(α), t ∈ Ti+(z) ∪ Ti0(z),

I2i(z + αv) = I2i(z)− α
∫ T

0

(
zi − fi(x, t)

)(
vi −

(∂fi
∂x

)′ ∫ t

0

v(τ)dτ
)
dt

+ o(α), t ∈ Ti−(z).

From the above two equations we obtain

I2i(z +αv) = I2i(z) +α

∫ T

0

|zi − fi(x, t)|
(
vi −

(∂fi
∂x

)′ ∫ t

0

v(τ)dτ
)
dt+ o(α). (6.3)

From (6.2), (6.3) we get

∇I(z, t) =
n∑
i=1

[(
|zi − fi(x, t)|+ zi − fi(x, t)

)
ei

−
∫ T

t

(
|zi − fi(x, τ)|+ zi − fi(x, τ)

)∂fi(x, τ)
∂x

dτ
]
.

Formula (4.1) can be proved analogously.

7. Numerical examples

Let us consider some examples of the described method. By an error on the k-th
iteration we will understand the difference I(zk)− I(z∗) = I(zk).

Consider the differential inequality

ẋ ≤ −x2 + t, t ∈ [0, 1],

with the initial condition x(0) = 1.
Table 1 shows the steepest descent method results. Here we put z(t) = 0 as

initial approximation, then x(t) = 1. The results show that one of the solutions
has been obtained on the 2-nd iteration.

Table 1.

k I(zk) zk xk ‖∇I(zk)‖
1 0.(3) 0 1 2.0331
2 0 −1 + 1.5t− 0.5t2 1− t+ 0.75t2 − 0.1(6)t3 0

Let us consider one more example [4]. It is required to find the vector-function
x, which satisfies the constraints

ẍ ≤ 1, ẋ ≥ 0, t ∈ [0, 10],

with the initial condition
x(0) = 1, ẋ(0) = 5,
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and the final state x(10) ≥ 19.
This mathematical formulation has the following physical interpretation: if x

is the height of the aircraft, it is required from the initial state, having given ini-
tial speed, to fly up to a sufficient height under the assumption that the device
acceleration does not exceed the set value.

Put
x1 = x, x2 = ẋ.

Then the constraints can be written as

ẋ1 ≤ x2, −ẋ1 ≤ −x2,

ẋ2 ≤ 1, x2 ≥ 0,

x1(0) = 1, x2(0) = 5,

−x1(10) ≤ −19.

Table 2 shows results obtained by using the steepest descent method. Here we
put z(t) = [5, 0] as initial approximation, then x(t) = [1 + 5t, 5]. The results show
that on the 15-th iteration the error does not exceed 5× 10−3.

Table 2.

k J(zk) ‖zk − zk−1‖ ‖xk − xk−1‖ ‖∇J(zk)‖
1 16 25.2982
2 1.6 1.26491 7.30297 14.8234
5 0.1601 0.09786 0.40068 2.1766
10 0.0237 0.01227 0.07436 0.409
15 0.0042 0.04468 0.06138

As a final example we consider the system

ẋ1 ≤ (0.01− 0.05x2)x1,

ẋ2 ≤ (−0.01 + 0.02x1)x2

with the initial state
x1(0) = 40, x2(0) = 20

and the final condition
x1(1) ≥ 15, x2(1) ≤ 30.

To this problem we can given the following biological interpretation. If x1 denotes
the number of victims and x2 denotes the number of predators, then it is required
that the number of victims does not fall below a certain value, and the population
of predators does not exceed a predetermined amount at the set moment of time.
Herewith the speed of the of victims extinction and the predators increasing are
bounded above.

Table 3 shows the steepest descent method results. Here we put z(t) = [0, 0]
as initial approximation, then x(t) = [40, 20]. The results show that on the 4-th
iteration the error does not exceed 5× 10−3.
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Table 3.

k J(zk) ‖zk − zk−1‖ ‖xk − xk−1‖ ‖∇J(zk)‖
1 1568.16 151.3121
2 0.9498 32.38078 20.12449 1.8403
3 0.0054 2.39244 0.51905 0.09609
4 0.0047 0.0349 0.02015

Conclusion. Thus, in this article the problem of solving a system of differential
inequalities is reduced to a variational problem of minimizing a functional on the
whole space. For this functional Gateaux gradient is found, necessary and sufficient
conditions for a minimum are obtained. On the basis of these conditions the method
of steepest descent is described. Numerical examples of the method realization are
presented.
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