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INDIRECT METHOD OF EXPONENTIAL CONVERGENCE
ESTIMATION FOR NEURAL NETWORK WITH DISCRETE

AND DISTRIBUTED DELAYS

VASYL MARTSENYUK

Abstract. The purpose of this research is to develop method of calculation of
exponential decay rate for neural network model based on differential equations

with discrete and distributed delays. The method results in quasipolynomial

inequality allowing us to investigate qualitative behavior of model in depen-
dence on parameters. In such way it was shown direct dependency in changes

of exponential decay rate and minimal threshold of distributed time delay.

An example of two-neuron network with four delays is given and numerical
simulations are performed to illustrate the obtained results. It was shown

numerically that distributed delays combined with discrete delays narrow the

interval of parameters admitting exponential convergence.

1. Introduction

This work concerns the neural network modeling and stability investigation with
help of differential equations with delays. Differential equations are found to be of
central importance in many disciplines such as control theory, neural networks, epi-
demiology, etc. [4]. In analyzing the behavior of real populations, delay differential
equations are regarded as effective tools.

Recently there were obtained a series of results that consider discrete delays in
neural network models [5, 7, 14, 15, 16].

When considering results of exponential estimation of neural networks dealing
with distributed delays we should mention the following works.

Most of papers are concerned with application of Lyapunov-Krasovskii func-
tionals resulting in construction of corresponding liner matrix inequalities (LMIs).
So, in [3] by employing a Lyapunov-Krasovskii functional, the LMI approach is
exploited to establish sufficient conditions for the neural networks to be globally
exponentially stable, which are offered to be solved by using the Matlab LMI tool-
box.

In [1] they study the delay-dependent exponential stability for uncertain neural
networks with discrete and distributed time-varying delays. By decomposing the
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delay interval into multiple equidistant subintervals and multiple nonuniform subin-
tervals, a suitable augmented Lyapunov-Krasovskii functionals are constructed on
these intervals. A set of sufficient conditions leading to LMIs are obtained.

In spite of its universal character the approaches based on LMIs do not offer
clear answer in theoretical reasoning if we would like to get clear evidences for
dependencies of decay rates and model parameters.

However there were attempts to develop Lyapunov-Krasovskii functional ap-
proach allowing to get conditions different from LMIs. So, in [9] by constructing
several Lyapunov functionals, some sufficient criteria for the existence of a unique
equilibrium and global exponential stability of the network are derived. These re-
sults are fairly general and can be easily verified because of usage of easily verified
inequalities (not LMIs).

Fewer results were obtained for neural network models with distributed delays
without application of Lyapunov-Krasovskii functionals approach

In [17] they concern the exponential convergence of bidirectional associative
memory (BAM) neural networks with unbounded distributed delays. Sufficient
conditions are derived by exploiting the exponentially fading memory property of
delay kernel functions. The method is based on comparison principle of delay dif-
ferential equations and does not need the construction of any Lyapunov functions
also.

In [2] for a family of non-autonomous differential equations with continuously
distributed delays there were given sufficient conditions for the global exponential
stability including integral inequality of quazipolynomial type to search exponential
rate in the form of continuous functions. The approach that was offered doesn’t
include Lyapunov-Krasovskii functional and is sort of indirect one. But in spite of
this approach generality a solution of inequality mentioned above is not a trivial
problem.

That’s why the purpose of this work is to offer a method of obtaining estimates
for exponential decays for neural networks with discrete and distributed delays
resulting in solution of scalar nonlinear inequality. Such general approach was
stated in [11] and applied in case of discrete delays. The method comes from the
work [12] where it was applied for compartmental systems.

In Section 2 we describe model of neural network with discrete and distributed
delays studied in the paper. In Section 3 we present method of exponential es-
timate construction and demonstrate its application when analysing dependence
of exponential decay rate and time delay. In Section 4 we apply Theorem 3.1 for
two-neuron model with four delays. In this paper we use the following notation:

• the norm of a vector-function |φ(•)|τ = supθ∈[−τ,0],i=1,n |φi(θ)|, where func-
tions φ ∈ C1[−τ, 0] are continuously differentiable on [−τ, 0];
• an arbitrary matrix norm ‖M‖ for matrix M ∈ Rn×n;
• Euclidean norm ‖x‖ for vector x ∈ Rn.

2. Problem Statement

We consider neural network described by system with mixed delays

ẋ(t) = −Ax(t) +
r∑

m=1

W1,mg(x(t− τm(t))) +
r∑

m=1

W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ (2.1)
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x(t) ∈ Rn is the state vector. A = diag(a1, a2, . . . , an) is a diagonal matrix with
positive entries ai > 0, W1,m = (w1,m

ij )n×n, W2,m = (w2,m
ij )n×n m = 1, r are

the connection weight matrices, g(x(t)) = [g1(x(t)), g2(x(t)), . . . , gn(x(t))]> ∈ Rn
denotes the neuron activation functions which are bounded monotonically nonde-
creasing with gj(0) = 0 and satisfy the condition

0 ≤ gj(ξ1)− gj(ξ2)
ξ1 − ξ2

≤ lj (2.2)

ξ1, ξ2 ∈ R, ξ1 6= ξ2, j = 1, 2, . . . , n. In (2.1) the symbol
∫
g(x(θ))dθ means

[
∫
g1(x(θ))dθ,

∫
g2(x(θ))dθ, . . . ,

∫
gn(x(θ))dθ]> ∈ Rn.

According to the customary, in the system (2.1) we call the second term with dis-
crete time-varying delays and the third term with distributed time-varying delays.
The bounded functions τm(t) represent mixed delays of system with 0 ≤ τm(t) ≤
τM , ˙τm(t) ≤ τD < 1, m = 1, r. The bounded functions hm(t) represent minimal
threshold for distributed delays of system with hmin ≤ hm(t) ≤ τm(t), m = 1, r,
t > 0. Delays hm(t) and τm(t) have physical meaning as “controllable memory” of
the network if neurons effects on network output only during some time interval.
Here we consider the case if we have discrete delays as “maximal” thresholds for
distributed delays. Indeed reasonings of this work can be extended to the case if
we have entirely other “maximal” thresholds.

The initial conditions associated with system (2.1) are of the form

xi(s) = φi(s), s ∈ [−τM , 0], (2.3)

where φi(s) is a continuous real-valued function for s ∈ [−τM , 0]. Then, the solution
of system (2.1) exists for all t ≥ 0 and is unique [4] under assumption (2.2).

3. Main Result

Theorem 3.1. Let system (2.1) be such that
• matrix A satisfies the inequality ‖e−At‖ ≤ ke−αt for t ≥ 0 and some k ≥ 1,
α > 0; Note that in case of diagonal matrix A with positive entries α can
be chosen as α := min1≤i≤n{ai};

• there exists a solution λ > 0 of the quasipolynomial inequality

e−λτM

k
(α− λ) ≥ sup

t≥0

( r∑
m=0

(
‖W1,m‖+ ‖W2,m‖(τm(t)− hm(t))

)
lm

)
. (3.1)

Then the estimate ‖x(t)‖ ≤ k|φ(θ)|τM e−λt holds for the solution of system (2.1) for
any t ≥ 0, where λ > 0 is a number satisfying inequality (3.1).

Note that assumption (3.1) for positive λ implies λ < α obviously.

Proof of Theorem 3.1. For the solution x(t) of the system (2.1) by the Cauchy
formula the equality holds

x(t) = e−Atφ(0) +
∫ t

0

e−A(t−s)
( r∑
m=1

W1,mg(x(s− τm(s)))

+
r∑

m=1

W2,m

∫ s−hm(s)

s−τm(s)

g(x(θ))dθ
)
ds

(3.2)
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Denote
y(t) = ẋ(t) +Ax(t)

=
r∑

m=1

W1,mg(x(t− τm(t))) +
r∑

m=1

W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ
(3.3)

Then

‖x(t)‖ ≤ k‖φ(0)‖e−αt +
∫ t

0

ke−α(t−s)‖y(s)‖ds

≤ k|φ(θ)|τM e−αt +
∫ t

0

ke−α(t−s)‖y(s)‖ds
(3.4)

It is necessary to estimate ‖x(t)‖, i.e., to find λ > 0 such that

‖x(t)‖ ≤ k|φ(θ)|τM e−λt . (3.5)

Denote
X(t) = k|φ(θ)|τM e−λt

and let Y (t) be an unknown function such that

‖y(t)‖ ≤ Y (t)

for all [−τM ,∞). Select function Y (t) so that

X(t) = k|φ(θ)|τM e−αt +
∫ t

0

ke−α(t−s)Y (s)ds. (3.6)

Equality (3.6) does not guarantee that the equality ‖y(t)‖ ≤ Y (t) holds if ‖x(t)‖ ≤
X(t).

Let us show that the function Y (s) = |φ(θ)|τM (α− λ)e−λs is a solution of (3.6).
Indeed, we have

k|φ(θ)|τM e−λt

= k|φ(θ)|τM e−αt +
∫ t

0

ke−α(t−s)|φ(θ)|τM (α− λ)e−λsds

= k|φ(θ)|τM e−αt + k|φ(θ)|τM (α− λ)e−αt
∫ t

0

e(α−λs)sds

= k|φ(θ)|τM e−αt + k|φ(θ)|τM (α− λ)e−λt

α− λ
− k|φ(θ)|τM (α− λ)e−αt

α− λ
= k|φ(θ)|τM e−λt =: X(t)

for all t ∈ [0,∞).
Further, it is necessary to find λ > 0 such that ‖x(t)‖ ≤ X(t), ‖y(t)‖ ≤ Y (t),
t ∈ [−τM ,∞).

Let us first consider an interval t ∈ [−τM , 0]. The relation ‖x(t)‖ = ‖φ(t)‖ ≤
k|φ(θ)|τM e−λt = X(t) holds if k ≥ 1 (since eλt ≥ 1 for t ∈ [−τM , 0] for all λ > 0).
On this interval, let us derive a similar inequality for ‖y(t)‖. Since

y(t) =
r∑

m=1

W1,mg(x(t− τm(t))) +
r∑

m=1

W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ,

we should have the value of x(t) on the interval [−2τM ,−τM ].
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For the sake of determinacy, let x(t) = φ(−τM ) for any t ∈ [−2τM ,−τM ]. Then,
taking into account that gj(•), j = 1, n are nondecreasing and denoting

(g1(|φ(θ)|τM ), g2(|φ(θ)|τM ), . . . , gn(|φ(θ)|τM ))> =: g(|φ(θ)|τM )

we obtain

‖y(t)‖ =‖
r∑

m=1

W1,mg(x(t− τm(t))) +
r∑

m=1

W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ‖

≤
r∑

m=1

‖W1,mg(x(t− τm(t)))‖+
r∑

m=1

‖W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ‖

≤
r∑

m=1

‖W1,m‖‖g(|φ(•)|τM )‖+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(|φ(•)|τM )‖dθ

≤
r∑

m=1

‖W1,m‖‖g(|φ(•)|τM )‖+
r∑

m=1

‖W2,m‖(τM − hmin)‖g(|φ(•)|τM )‖

≤
r∑

m=1

‖W1,m‖‖g(|φ(•)|τM )‖+
r∑

m=1

‖W2,m‖(τM − hmin)‖g(|φ(•)|τM )‖

=
r∑

m=1

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) ‖g(|φ(•)|τM )‖ .

Then
r∑

m=1

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) ‖g(|φ(•)|τM )‖

≤
r∑

m=1

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) ‖g(|φ(•)|τM )‖e−λt .

The above inequality holds for t ∈ [−τM , 0] and for all λ > 0. Therefore, to derive
the inequality ‖y(t)‖ ≤ Y (t), it is necessary to choose λ > 0 such that

r∑
m=1

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) ‖g(|φ(•)|τM )‖ ≤ (α− λ)|φ(θ)|τM (3.7)

Then

‖y(t)‖ ≤
r∑

m=1

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) ‖g(|φ(•)|τM )‖e−λt

≤(α− λ)|φ(θ)|τM e−λt = Y (t).

For the further reasoning, let us introduce the notation

ρ1(t) = ‖x(t)‖ −X(t), ρ2(t) = ‖y(t)‖ − Y (t), t ∈ [0,∞).

It was shown that on the interval t ∈ [−τM , 0] we have ρ1(t) ≤ 0 and ρ2(t) ≤ 0. Let
us now find λ > 0 such that ‖x(t)‖ ≤ X(t) or ρ1(t) ≤ 0 for t ≥ 0. Let us estimate
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ρ1(t) by subtracting (3.6) from (3.4),

ρ1(t) ≤k|φ(θ)|τM e−αt +
∫ t

0

ke−α(t−s)‖y(s)‖ds

−k|φ(θ)|τM e−αt −
∫ t

0

ke−α(t−s)Y (s)ds

=k
∫ t

0

ke−α(t−s)(‖y(s)‖ − Y (s))ds = k

∫ t

0

e−α(t−s)ρ2(s)ds

(3.8)

Considering (3.8), we can estimate ρ2(s):

ρ2(t) =‖y(t)‖ − Y (t)

=‖
r∑

m=1

W1,mg(x(t− τm(t))) +
r∑

m=1

W2,m

∫ t−hm(t)

t−τm(t)

g(x(θ))dθ‖ − Y (t)

≤
r∑

m=1

‖W1,m‖‖g(x(t− τm(t)))‖+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ − Y (t)

Some identical transformations yield

Y (t) =|φ(θ)|τM (α− λ)e−λt =
e−λτM

k
keλτM |φ(θ)|τM (α− λ)e−λt

=
e−λτM

k
k|φ(θ)|τM e−λ(t−τM )(α− λ) =

e−λτM

k
(α− λ)X(t− τM ).

Then
r∑

m=1

‖W1,m‖‖g(x(t− τm(t)))‖+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ − Y (t)

=
r∑

m=1

‖W1,m‖‖g(x(t− τm(t)))‖

+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ − e−λτM

k
(α− λ)X(t− τM )

Since
∑r
m=1 ‖W1,m‖‖g(x(t− τm(t)))‖ ≥ 0,

∑r
m=1 ‖W2,m‖

∫ t−hm(t)

t−τm(t)
‖g(x(θ))‖dθ ≥

0 and e−λτM
k (α− λ)X(t− τM ) ≥ 0 (assuming (3.1)), their difference only increases

if we assume that λ > 0 satisfies (3.1). We obtain
r∑

m=1

‖W1,m‖‖g(x(t− τm(t)))‖

+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ − e−λτM

k
(α− λ)X(t− τM )

≤
r∑

m=1

‖W1,m‖lm‖x(t− τm(t))‖ −
( r∑
m=1

‖W1,m‖lm
)
X(t− τM )

+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ −
( r∑
m=1

‖W2,m‖lm
)∫ t−hm(t)

t−τm(t)

X(t− τM )dθ.
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Since X(t) is monotonically decreasing,

X(t− τM ) ≥ X(t− τm(t)), m = 1, r.

Therefore, taking into account (2.2),
r∑

m=1

‖W1,m‖lm‖x(t− τm(t))‖ −
( r∑
m=1

‖W1,m‖lm
)
X(t− τM )

+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ −
( r∑
m=1

‖W2,m‖lm
)∫ t−hm(t)

t−τm(t)

X(t− τM )dθ

≤
r∑

m=1

‖W1,m‖lm‖x(t− τm(t))‖ −
r∑

m=1

‖W1,m‖lmX(t− τm(t))

+
r∑

m=1

‖W2,m‖
∫ t−hm(t)

t−τm(t)

‖g(x(θ))‖dθ −
r∑

m=1

‖W2,m‖lm
∫ t−hm(t)

t−τm(t)

X(t− τm(t))dθ

=
r∑

m=1

‖W1,m‖lmρ1(t− τm(t)) +
r∑

m=1

‖W2,m‖lm
∫ t−hm(t)

t−τm(t)

ρ1(θ)dθ,

i.e., we have

ρ2(t) ≤
r∑

m=1

‖W1,m‖lmρ1(t− τm(t))

+
r∑

m=1

‖W2,m‖lm
∫ t−hm(t)

t−τm(t)

ρ1(θ)dθ, t ≥ 0.

(3.9)

Since the integral is monotonic, substituting estimate (3.9) into (3.8) yields

ρ1(t) ≤ k
∫ t

0

e−α(t−s)ρ2(s)ds

≤ k
∫ t

0

e−α(t−s)
( r∑
m=1

‖W1,m‖lmρ1(s− τm(s))

+
r∑

m=1

‖W2,m‖lm
∫ s−hm(s)

s−τm(s)

ρ1(θ)dθ
)
ds,

(3.10)

Consider inequality (3.10) on the interval t ∈ [0, hmin]. Since ρ1 ≤ 0 for t ∈ [−τM , 0],
we obtain based on (3.10) that ρ1(t) ≤ 0 for all t ∈ [0, hmin].

Let us consider t ∈ [hmin, 2hmin]. Since ρ1(t) ≤ 0 for all t ∈ [0, hmin], from (3.10)
ρ1(t) ≤ 0 for all t ∈ [hmin, 2hmin]. Whence we may conclude that ρ1 ≤ 0, t ∈ [0,∞).
This completes the proof. �

Remark 3.2. Theorem 3.1 can be proved even for the case if we have functions
different from τm(t) describing distributed delays in model (2.1).

Corollary 3.3. In practice instead of (3.1) we may use “rougher” quasipolynomial
inequality

e−λτM

k
(α− λ) ≥

r∑
m=0

(‖W1,m‖+ ‖W2,m‖(τM − hmin)) lm. (3.11)
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Remark 3.4. The positive solution λ of quasipolynomial inequalities (3.1) or (3.11)
exists only if α > λ.

Theorem 3.1 gives us a clear estimate for lower memory threshold allowing ex-
ponential convergence due to (3.11). Analysing inequality (3.11) we can see general
relations between estimates of model characteristics.

Corollary 3.5. The value of hmin admitting local exponential stability with decay
rate because (3.11) can be estimated from inequality

hmin ≥
( r∑
m=0

‖W2,n‖lm
)−1

×
( r∑
m=0

(‖W1,m‖+ ‖W2,m‖τM )lm −
e−λτM

k
(α− λ)

) (3.12)

The above corollary follows directly from (3.11).

Corollary 3.6. Under the assumption of Theorem 3.1 there exists direct depen-
dency between hmin and λ. That is, when increasing in model (2.1) the value of
hmin we increase the estimate of exponential decay rate λ and vice versa.

Proof. The corollary follows immediately when considering dependency

hmin(λ) :=
( r∑
m=0

‖W2,n‖lm
)−1

×
( r∑
m=0

(‖W1,m‖+ ‖W2,m‖τM )lm −
e−λτM

k
(α− λ)

)
and calculating its derivative

dhmin

dλ
=
( r∑
m=0

‖W2,n‖lm
)−1 e−λτM

k
[τm(α− λ) + 1] ≥ 0 .

�

Corollary 3.7. For arbitrary m ∈ 1, r exponential decay rate estimate λ calculated
based on the Theorem 3.1 is symmetric with respect to Wi,m, i = 1, 2, i.e.

λ(Wi,m) = λ(−Wi,m)

Moreover, the estimate depends exceptially on the matrix norm ‖Wi,m‖, i = 1, 2.

The above corollary follows immediately from inequality (2.2) including matrix
norms ‖Wi,m‖.

4. Illustrative Example

For the numerical experiment, simple example is presented here to illustrate the
usefulness of our main result. The model comes from [6, p. 808], where they
considered the simple two-neuron network with four delays (n = 2, r = 4) for some
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constant rates b and c:

A =
(
−1 0
0 −1

)
, W11 =

(
b 0
0 0

)
, W12 =

(
0 b
0 0

)
W13 =

(
0 0
b 0

)
, W14 =

(
cc0 0
0 b

)
, W21 =

(
c 0
0 0

)
,

W22 =
(

0 c
0 0

)
, W23 =

(
0 0
c 0

)
, W24 =

(
0 0
0 c

)
g1(x) = g2(x) = tanh(x) for x ∈ R2,

τ1 =
13
12
π, τ2 =

11
12
π, τ3 =

7
12
π, τ4 =

5
12
π,

h1 = h2 = h3 = h4 =
1
12
π

(4.1)

Considering the initial conditions x1(t) ≡ 0.001, x2(t) ≡ 0.004, t ∈ [−τM , 0] and
applying Theorem 3.1 we can calculate the value of exponential decay λ. It can be
readily solved by using the numerically efficient R package.

In [11] model (4.1) was studied when we do not have distributed delays, i.e.,
c = 0. In this case Table 1 shows the dependence of λ on the value of b.

Table 1. Dependence of value of b and λ > 0 calculated for the
example without distributed delays

b -0.25 -0.2 -0.1 -0.05 0.1 0.2 0.25
λ 0 0.0503686 0.2026738 0.3474646 0.2026738 0.0503686 0

If we have distributed delays with parameter c = 0.005, then the resulting values
of λ are presented in the Table 2.

Table 2. Dependence of value of b and λ > 0 calculated from
(3.11) for Example 1 at c = 0.005. Symbol ”-” means absence of
positive solutions of (3.11).

b -0.25 -0.2 -0.1 -0.05 0.1 0.2 0.25
λ - 0.03337481 0.171189 0.2914205 0.171189 0.03337481 -

For the reasons given we conclude that distributed delays combined with discrete
delays narrow the interval of parameters b admitting exponential convergence.

As a supplement, Figure 1 shows the time response of state variables x1(t), x2(t)
in this example with b = −0.1 and initial vector (0.001, 0.004)>. Figure 2 shows
exponential estimate constructed in this model at b = −0.1.

The dependence of hmin on λ due to (3.12) is presented on the Table 3
As it was shown in [6, Theorem 2.1] that the equilibrium (0, 0) of system (4.1)

with discrete delays only is delay-independently locally asymptotically stable if b ∈
(−0.5, 0.5). Here from Table 1 we can see that for network with both discrete and
distributed delays, positive estimate of exponential decay rate based on Theorem
3.1 can be calculated for b ∈ [−0.2, 0.2]. That is in this case the equilibrium (0, 0)
of system (4.1) is delay-dependently locally exponentially stable
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Figure 1. State trajectories in example 1 with b = −0.1 and c = 0.005

Figure 2. Exponential estimate and norm of the solution of Ex-
ample 1 with b = −0.1 and c = 0.005

Conclusions. Investigation of exponential stability for neural network models re-
quire decay estimates that can be obtained from clear dependences (not LMIs).
Earlier we have done some attepts to construct exponential estimates for linear
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Table 3. Dependence of value of hmin and λ > 0 calculated from
(3.12) for Example 1 at c = 0.005.

hmin 0.2616517 0.26168 0.2627265
λ 0.03337481 0.171189 0.2914205

systems with delay. In [8, 10, 13] such clear estimates are obtained for Lyapunov-
Krasovskii functionals satisfying to some difference-differential inequalities. As a
rule they try to apply such techniques for real application like neural networks
models. Unfortunately, it requires decay rates that can be calculated as a result
of clear dependencies between model parameters. It stimulated development of
indirect method.

The term “indirect method” in title of this work is used in order to contrast
with methods of obtaining exponential estimates based on application of Lyapunov
functions (or “direct” method)

As compared with Lyapunov-Krasovskii functional approach method offered here
does not have such flexible possibilities for optimization of estimates and estimates
obtained with help of developed approach are likely more rough and less accurate.

The “price” of this inaccuracy and roughness is comparatively clear form of
expression for decay rate (as compared with multidimensional LMIs). This expres-
sion is quasipolynomial inequality which is well-known in stability analysis of delay
differential equations.

Such simplicity of expressions is of importance in practical application like neural
networks for obtaining analytical results. Namely, it allows to study dependencies
of neural network exponential stability and changes in model parameters

It should be noted that estimates obtained here are compatible in some special
cases with the results of application of comparison principle.

Acknowledgement. The author would like to express his gratitude to the re-
viewer for the valuable comments.
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