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Abstract. An existence theorem on periodic solution is established for a

class of nonautonomous discrete system involving the p-Laplacian under a sub-
quadratic growth condition. The conclusion is based on saddle point theorem

and variational methods.

1. Introduction and statement of main results

Let Z be the set of integers. Given a < b in Z, let Z[a, b] = {a, a + 1, . . . , b}
and T > 1 be a positive integer. In this article, we aim at the existence of periodic
solution for the nonlinear discrete system involving the p-Laplacian

∆pu(t− 1) +∇F (t, u(t)) = 0, ∀t ∈ Z (1.1)

where ∆p is the discrete p-Laplacian operator, i.e.,

∆pu(t− 1) := ∆φp(∆u(t− 1)) = φp(∆u(t))− φp(∆u(t− 1)),

φp(s) = |s|p−2s(p > 1), ∆ is the forward difference operator and the function F :
Z×RN → R is continuously differentiable in x for every t ∈ Z, ∇F (t, x) = ∂F (t,x)

∂x .
In recent years, many authors were interested in difference equations involving

the discrete p-Laplacian operator and have obtained many significant conclusions,
see, for instance, the papers [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21].
Various methods have been used to deal with the existence of solutions to the
discrete boundary value problems, we refer to the fixed point theorems in cones
in [14], the lower and upper solution method in [4], the variational method in
[2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 21].

The variational approach represents an important advance as it allows to prove
multiplicity results as well. When p > 1, via dual least principle, system (1.1) under
convex condition was investigated in [13]. Recently, some further improved results
have been made in [22]. Via Linking theorem, the existence of one nonconstant
solutions was established for system (1.1) under superquadratic condition in [16].
In 2007, in [21] the authors constructed a variational setting unlike the one in [11]
to study the discrete system (1.1) with p = 2 under subquadratic condition via
saddle point theorem. The result was obtained under the following assumptions:
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(A1) For a given integer T > 0, F (t+ T, x) = F (t, x) for all (t, x) ∈ Z× RN ;
(A2) There are constants G1 > 0, 0 < β < 2 such that

(x,∇F (t, x)) ≤ βF (t, x)

for all (t, x) ∈ Z[1, T ]× RN and |x| ≥ G1;
(A3) F (t, x)→ +∞ as |x| → ∞ for t ∈ Z[1, T ].

Theorem 1.1 ([21]). Suppose that (A1)–(A3) are satisfied. Then problem (1.1)
possesses at least one periodic solution with period T .

Inspired by [16, 20, 21], in the article, we further investigate periodic solutions
for system (1.1) under a new subquadratic condition which is more general than
(A2). Here H denotes the space of continuous function space such that for any
θ ∈ H there exists constant M1 > 0 for which

(i) θ(t) > 0 for all t ∈ R+,
(ii)

∫ t
M1

1
sθ(s)ds→ +∞ as t→ +∞.

Our main result is stated using the following assumptions:

(A4) There exist a constant M1 > 0 and a continuous function θ(|x|) ∈ H with
0 < 1

θ(|x|) < p such that for all (t, x) ∈ Z[1, T ]× RN and |x| ≥M1 ,

(x,∇F (t, x)) ≤
(
p− 1

θ(|x|)

)
F (t, x);

(A5) F (t, x) ≥ 0 as |x| → +∞ for t ∈ Z[1, T ];
(A6)

∑T
t=1

F (t,x)
θ(|x|) → +∞ as |x| → +∞ for t ∈ Z[1, T ];

Theorem 1.2. Assume that (A1), (A4)–(A6) are satisfed. Then problem (1.1) has
at least one periodic solution with period T which is a positive integer.

Remark 1.3. Set inf |x|≥M1
1

θ(|x|) = l. Here l is a constant. One points out that
(1) Theorem 1.2 extends Theorem 1.1 completely since (A4) is weaker than (A2)

when l = 0 even if p = 2.
(2) Theorem 1.2 generalizes Theorem 1.1 even if l > 0. Indeed, via (A5), when

l > 0, (A6) implies

(A6’)
∑T
t=1 F (t, x)→ +∞ as |x| → +∞.

However, (A5) and (A6’) are weaker than (A3).
(3) There are functions F fulfilling the conditions of Theorem 1.2 but not the

assumptions in [11, 12, 13, 15, 21, 22]. For example,

F (t, x) = g(t)
2 + |x|p

ln(2 + |x|2)
, ∀(t, x) ∈ Z[1, T ]× RN .

Here

g(t) =

{
sin(2πt/T ), t ∈ [0, T/2],
0, t ∈ [T/2, T ].

Put θ(|x|) = ln(2 + |x|2). A simple computation shows that F satisfies (A1) and
(A4)–(A6) in Theorem 1.2, but it does not meet the corresponding conditions of
Theorem 1.1.
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2. Proof of Theorem 1.2

For a given positive integer T , we define

HT = {u : Z → RN : u(t+ T ) = u(t), t ∈ Z}.

HT is equipped with the inner product

〈u, v〉 =
T∑
t=1

(u(t), v(t)), ∀u, v ∈ HT

and the norm

‖u‖ =
( T∑
t=1

|u(t)|p
)1/p

, ∀u ∈ HT .

One can easily see that (HT , 〈·, ·〉) is a finite dimensional Hilbert space and linear
homeomorphic to RNT . Define

‖u‖∞ = max
t∈Z[1,T ]

|u(t)|.

Then there exists a constant c > 0 such that

‖u‖∞ ≤ c‖u‖. (2.1)

For u ∈ HT , set

ũ = u− ū and H̃T = {u ∈ HT : ū = 0}.

Here ū =
∑T
t=1 u(t). Then one knows

HT = H̃T ⊕ RN .

Furthermore, via [16], one gets
T∑
t=1

|u(t)|p ≤ (T − 1)2p−1

T p−1

T∑
t=1

|∆u|p, ∀u ∈ H̃T . (2.2)

From reference [16], it is known that finding T -periodic solution of problem (1.1) is
equivalent to seeking the critical point of the following functional ϕ defined on HT ,

ϕ(u) =
1
p

T∑
t=1

|∆u(t)|p −
T∑
t=1

F (t, u(t)).

Subsequently, two important lemmas are stated for the readers convenience.

Lemma 2.1 (saddle point Theorem [18]). Let X be a Banach space with a direct
sum decomposition X = X1 ⊕X2 with dimX2 < ∞ and let ϕ be a C1 function on
X satisfying the (PS) condition and

(1) there exist a constant r and a bounded neighborhood U of 0 in X2, such
that ϕ(u) ≤ r for u ∈ U ⊂ X2,

(2) there exists a constant α > r, such that ϕ(u) ≥ α for all u ∈ X1.
Then ϕ has at least one critical point.

As we know, a deformation lemma can be proved with Cerami’s condition (C) in
[6] by replacing the usual (PS) condition. Then the saddle point theorem is tenable
under condition (C).
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Lemma 2.2. Under the conditions of Theorem 1.2, we have

F (t, x) ≤ M2

Mp
1

|x|pG(|x|) +M2 (2.3)

for all x ∈ RN and t ∈ Z[1, T ], where

M2 = max{F (t, x) : |x| ≤M1, t ∈ Z[1, T ]}, G(|x|) = exp
(
−
∫ |x|
M1

1
sθ(s)

ds
)
.

Proof. Put

y(s) = F (t, sx), s ≥ M1

|x|
.

Via (A4), a simple computation yields

y′(s) =
1
s

(∇F (t, sx), sx)

≤ 1
s

(p− 1
θ(s|x|)

)F (t, sx)

=
1
s

(p− 1
θ(s|x|)

)y(s)

(2.4)

for all s ≥M1/|x|. Set

h(s) := y′(s)− 1
s

(p− 1
θ(s|x|)

)y(s). (2.5)

Obviously, h(s) ≤ 0 for all s ≥ M1
|x| . Solving the order linear ordinary differential

equation (2.5), together with the fact h(s) ≤ 0, one derives

y(s) ≤
y(M1
|x| )

Mp
1

|x|pspG(s|x|), ∀s ≥ M1

|x|
.

Then, one has

F (t, x) = y(1) ≤
F (t, M1x

|x| )

Mp
1

|x|pG(|x|), ∀|x| ≥M1. (2.6)

Furthermore, one can deduce

F (t,
M1x

|x|
) ≤M2 (2.7)

for all x ∈ RN and t ∈ Z[1, T ]. Then via (2.6) and (2.7), one obtains

F (t, x) ≤ M2

Mp
1

|x|pG(|x|) +M2

for all x ∈ RN and t ∈ Z[1, T ]. �

Remark 2.3. (1) Employing property (ii) of θ, one knows that G(|x|) → 0 as
|x| → +∞.

(2) The function tpG(t) is increasing in t since the range of 1
θ and (tpG(t))′ =

tp−1G(t)(p− 1
θ(t) ) > 0.
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Proof of Theorem 1.2. The proof relies on Lemma 2.1 with X = HT , X1 = H̃T , and
X2 = RN . Firstly, one proves that ϕ satisfies condition (C). Indeed, let {uk} ⊂ HT

be a sequence such that {ϕ(uk)} is bounded and

‖ϕ′(uk)‖(1 + ‖uk‖)→ 0 as k →∞.

Then there exists a constant M3 > 0 for which

|ϕ(uk)| ≤M3, ‖ϕ′(uk)‖(1 + ‖uk‖) ≤M3.

Via (A4), a straightforward computation yields

−M4 + (x,∇F (t, x)) ≤ (p− 1
θ(|x|)

)F (t, x)

for all x ∈ RN and t ∈ Z[1, T ]. Here M4 > 0. Thus, one has

(p+ 1)M3 ≥ ‖ϕ′(uk)‖(1 + ‖uk‖)− pϕ(uk)

≥ 〈ϕ′(uk), uk〉 − pϕ(uk)

=
T∑
t=1

(pF (t, uk(t))− (∇F (t, uk(t)), uk(t)))

≥
T∑
t=1

F (t, uk(t))
θ(|uk|)

−M4T

for all k ∈ N. Then it holds
T∑
t=1

F (t, uk(t))
θ(|uk|)

≤M5 (2.8)

for all k ∈ N. Here M5 = M4T + (p + 1)M3. In addition, employing (2.3), (2.1)
and (2) in Remark 2.3, one has

M3 ≥ ϕ(uk) =
1
p

T∑
t=1

|∆uk(t)|p −
T∑
t=1

F (t, uk(t))

≥ 1
p

T∑
t=1

|∆uk(t)|p −
T∑
t=1

(M2

Mp
1

|uk(t)|pG(|uk(t)|) +M2

)
≥ 1
p

T∑
t=1

|∆uk(t)|p − M2

Mp
1

T∑
t=1

‖uk‖p∞G(‖uk‖∞)−M2T

≥ 1
p

T∑
t=1

|∆uk(t)|p −M6‖uk‖pG(‖uk‖)−M2T

(2.9)

for all k ∈ N and some M6 > 0. Thus by (2.9), for all k ∈ N, it holds:

M3

‖uk‖p
≥ ϕ(uk)
‖uk‖p

≥ 1
p

T∑
t=1

|∆uk(t)|p

‖uk‖p
−M6G(‖uk‖)−

M2T

‖uk‖p
. (2.10)

Then one claims that {uk} is bounded. Otherwise, there exists a subsequence of
{uk}, also denoted by {uk}, such that

‖uk‖ → ∞ as k → +∞. (2.11)
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Put vk = uk/‖uk‖. Obviously, ‖vk‖ = 1 and {vk} is bounded in the finite dimen-
sional space HT . Thus there exist a point v ∈ HT and a subsequence of {vk}, say
{vk}, such that

vk → v in HT .

Then in light of (2.10), (2.11) and (2) of Remark 2.3, one deduces that

T∑
t=1

|∆vk|p →
T∑
t=1

|∆v|p = 0 as k → +∞. (2.12)

This means |∆v(t)| = 0. Consequently, one has |v(t)| is a constant for all t ∈ Z[1, T ].
Then one easily gets

T |v|p =
T∑
t=1

|v|p = ‖v‖p = 1.

Thus, it holds |uk(t)| → +∞ as k → +∞ for t ∈ Z[1, T ]. Then via (A6), one
deduces

T∑
t=1

F (t, uk(t))
θ(|uk(t)|)

→ +∞ as |uk(t)| → +∞.

This is a contradiction to (2.8). Thus {uk} is bounded. In finite dimensional space
HT , {uk} has a convergent subsequence. Thus ϕ satisfies condition (C).

Secondly, one proves that ϕ satisfies (1) and (2) in Lemma 2.1. For u ∈ RN ,
since 0 < 1

θ(t) < p, one obtains

ϕ(u) = −
T∑
t=1

F (t, u(t)) ≤ −1
p

T∑
t=1

F (t, u(t))
θ(|u(t)|)

→ −∞ as |u| → ∞.

Thus one concludes that ϕ(u)→ −∞ as ‖u‖ → ∞ in RN . Thus (1) in Lemma 2.1
is satisfied.

Then, in a similar way to (2.9), from (2.1), (2.2) and (2.3), for any u ∈ H̃T , one
gets

ϕ(u) =
1
p

T∑
t=1

|∆u(t)|p −
T∑
t=1

F (t, u(t))

≥ 1
p

T∑
t=1

|∆u(t)|p −
T∑
t=1

(M2

Mp
1

|u(t)|pG(|u(t)|) +M2

)
≥ 1
p

T p−1

(T − 1)2p−1

T∑
t=1

|u(t)|p − M2

Mp
1

T∑
t=1

‖u‖p∞G(‖u‖∞)−M2T

≥ T p−1

p(T − 1)2p−1
‖u‖p −M6‖u‖pG (‖u‖)−M2T

=
{ T p−1

p(T − 1)2p−1
−M6G(‖u‖)

}
‖u‖p −M2T.

(2.13)

By (2) in Remark 2.3, one obtains

G(‖u‖)→ 0 as ‖u‖ → +∞.
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Then it is easy to get

T p−1

p(T − 1)2p−1
−M6G(‖u‖) > 0 as ‖u‖ → +∞.

Hence by (2.13), we get ϕ(u)→ +∞ as ‖u‖ → +∞. Thus (2) in Lemma 2.1 holds.
In light of Lemma 2.1, Theorem 1.2 is proved. �
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