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ABSTRACT. An existence theorem on periodic solution is established for a
class of nonautonomous discrete system involving the p-Laplacian under a sub-
quadratic growth condition. The conclusion is based on saddle point theorem
and variational methods.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let Z be the set of integers. Given a < b in Z, let Z[a,b] = {a,a + 1,...,b}
and T > 1 be a positive integer. In this article, we aim at the existence of periodic
solution for the nonlinear discrete system involving the p-Laplacian

Apu(t — 1)+ VE(t,u(t)) =0, VtelZ (1.1)
where A, is the discrete p-Laplacian operator, i.e.,
Apult 1) == Agy(Ault — 1)) = dp(Au(t)) — 6p(Dult — 1),

bp(s) = |s[P72s(p > 1), A is the forward difference operator and the function F :
Z x RY — R is continuously differentiable in z for every t € Z, VF(t,x) = %.

In recent years, many authors were interested in difference equations involving
the discrete p-Laplacian operator and have obtained many significant conclusions,
see, for instance, the papers [1} 2 Bl [ (5] [7 8] @) [0 1T, 12} T3] 14, [15] 18], 20} 21].
Various methods have been used to deal with the existence of solutions to the
discrete boundary value problems, we refer to the fixed point theorems in cones
n [I4], the lower and upper solution method in [4], the variational method in
[2, 3, [BL 7, 8, 9, [0} 1T, [12] [14] [15] 18], 20} 21].

The variational approach represents an important advance as it allows to prove
multiplicity results as well. When p > 1, via dual least principle, system under
convex condition was investigated in [I3]. Recently, some further improved results
have been made in [22]. Via Linking theorem, the existence of one nonconstant
solutions was established for system under superquadratic condition in [16].
In 2007, in [2I] the authors constructed a variational setting unlike the one in [I1]
to study the discrete system with p = 2 under subquadratic condition via
saddle point theorem. The result was obtained under the following assumptions:
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(A1) For a given integer T' > 0, F(t + T,z) = F(t,z) for all (t,z) € Z x RY;
(A2) There are constants G; > 0, 0 < 8 < 2 such that

(2, VF(t,z)) < BF(t,x)

for all (t,x) € Z[1,T) x RN and |z| > Gq;
(A3) F(t,z) — 400 as |z| — oo for t € Z[1,T].

Theorem 1.1 ([21]). Suppose that (A1)—(A3) are satisfied. Then problem (1.1)
possesses at least one periodic solution with period T.

Inspired by [16} 20, 2], in the article, we further investigate periodic solutions
for system under a new subquadratic condition which is more general than
(A2). Here H denotes the space of continuous function space such that for any
0 € 'H there exists constant M; > 0 for which

(i) 6(t) >0 forallt € RT,
(ii) f;/h %ds — 400 as t — +00.
Our main result is stated using the following assumptions:
(A4) There exist a constant M; > 0 and a continuous function 6(|z|) € H with

0< 0(|1;z:\) < p such that for all (t,z) € Z[1,T] x RY and |z| > M, ,

(x,VF(t,z)) < (p — m)}?(tx);
(A5) F(t,x) >0 as |z| — +oo for t € Z[1,T};

(A6) 23:1 Z((f;f)) — 400 as |z| — +oo for t € Z[1,T7;

Theorem 1.2. Assume that (A1), (A4)—(A6) are satisfed. Then problem (L.1)) has

at least one periodic solution with period T which is a positive integer.

Remark 1.3. Set inf|, >, ﬁ = (. Here [ is a constant. One points out that

(1) Theorem [1.2|extends Theorem [I.1| completely since (A4) is weaker than (A2)
when [ = 0 even if p = 2.

(2) Theorem generalizes Theorem even if [ > 0. Indeed, via (A5), when
[ >0, (A6) implies

(A6") Y1, F(t,x) — +o0 as |z| — +o0.

However, (A5) and (A6’) are weaker than (A3).
(3) There are functions F' fulfilling the conditions of Theorem but not the
assumptions in [IT], T2 T3] [15], 211 22]. For example,

2+ |z|P

S el ZI1,T] x RY.
metEE b 2L T]x

F(t,z) = g(t)

Here

_Jsin(2nt/T), t€0,7/2],
9(t) = {0, te|T/2,T).

Put §(|z|) = In(2 + |z|?). A simple computation shows that F satisfies (A1) and
(A4)—(A6) in Theorem but it does not meet the corresponding conditions of
Theorem [L1]
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2. PROOF OF THEOREM
For a given positive integer T', we define
Hr={u:Z —RN :u(t+T)=u(t), t € Z}.
Hr is equipped with the inner product
T

(u,v) = Z(u(t),v(t)), Yu,v € Hp

t=1

and the norm

ul| = (XT: ) " e Hy.

One can easily see that (Hr, (-,-)) is a finite dimensional Hilbert space and linear
homeomorphic to RVT. Define

Julloe = e u(t)].

Then there exists a constant ¢ > 0 such that
[ulloo < cflul- (2.1)
For w € Hp, set
@=u—u and Hp={u€ Hy:u=0}
Here @ = Y., u(t). Then one knows
Hr = Hr o RY.
Furthermore, via [16], one gets
)2p

_ -1 N
Z u(t)[P < Z |AulP, Vu € Hy. (2.2)

From reference [16], it is known that finding T-periodic solution of problem (1.1 is
equivalent to seeking the critical point of the following functional ¢ defined on Hr,

= LS au - S F( )
pi3 t=1

Subsequently, two important lemmas are stated for the readers convenience.

Lemma 2.1 (saddle point Theorem [18]). Let X be a Banach space with a direct
sum decomposition X = X1 @ X, with dimXy < oo and let ¢ be a C' function on
X satisfying the (PS) condition and
(1) there exist a constant r and a bounded neighborhood U of 0 in X, such
that o(u) <r foru e U C Xa,
(2) there exists a constant o > r, such that p(u) > «a for all u € X;.

Then ¢ has at least one critical point.
As we know, a deformation lemma can be proved with Cerami’s condition (C) in

[6] by replacing the usual (PS) condition. Then the saddle point theorem is tenable
under condition (C).
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Lemma 2.2. Under the conditions of Theorem|1.9, we have
M.
F(t,2) < 5 2PG(|z]) + My (2.3)
My
for all z € RN and t € Z[1,T), where

o}
My = max{F(t,2) : 2] < My, t € Z[LT]}, Gla]) = exp (- /M f(s)ds).

Proof. Put
M,y

y(s) = F(t,sx), s> ER

Via (A4), a simple computation yields

V() = (T, 50),50)
gé@—aiﬁﬂw»m (2.4)
= L= g
for all s > M, /|z|. Set
() 1= /() = 0= G (o) (25)

Obviously, h(s) < 0 for all s > 24 Solving the order linear ordinary differential

|z]

equation ([2.5]), together with the fact h(s) < 0, one derives

(%) My
y(s) < DB oporGslal), vs > 2
MY |z|

Then, one has

P58
F(t,z) =y(1) < AP lzPG(|z]), V|| = M. (2.6)
Furthermore, one can deduce
M
T

for all x € RY and ¢ € Z[1,T]. Then via (2.6) and (2.7)), one obtains
M.
F(t,) < TolalPG(j2]) + My
My
for all z € RY and t € Z[1,T). O
Remark 2.3. (1) Employing property (ii) of ¢, one knows that G(|z|) — 0 as
|z] — +o0.

(2) The function tPG(t) is increasing in ¢ since the range of 5 and (tPG(t))’ =
LG (0 — i) > 0.
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Proof of Theorem[I.3. The proof relies on Lemma.\mth X = Hp, X; = Hy, and
Xy =RV, Flrstly, one proves that ¢ satisfies condition (C). Indeed, let {ux} C Hr
be a sequence such that {p(ux)} is bounded and

[l (we) (1 + [lugl]) — 0 as k& — oo.
Then there exists a constant M3 > 0 for which
lp(ue)| < Mz, o' (w) (1 + [Jux]l) < Ms.
Via (A4), a straightforward computation yields

~ My + (2, VF(t,2)) < (p— mw,x)

for all z € RY and ¢ € Z[1,T]. Here My > 0. Thus, one has

(p+ )Mz > || (ur) |(1 + llurl]) — pe(ur)
> (@' (uk), ur) — pp(uy)

T
= S WF (L wn(t) — (VE(tun(t)), us(1)))

T
Zth,Uk M4T

for all £ € N. Then it holds
T

F(t,
Z w®) (2.8)
t=1 |uk|

for all k£ € N. Here My = MyT + (p + 1)M3. In addition, employing (2.3]), (2.1)
and (2) in Remark [2.3] one has

T
M3 > <p uk Z \Auk Z (t ug(t))
t=1
1 T T
> =3 [Au(t) Z( (O G(u(t)]) + My )
pt:l t=1
T (2.9)
> =2 | Znuknpc Juglloo) — MaT
t=1
1 T

> = ST Au()[” — MellurlPG(lux]]) — MoT

t=1

for all k € N and some Mg > 0. Thus by (2.9), for all k£ € N, it holds:

’B

T
Ms o(ug) 1 | Aug(t)|P M,T
> > -y " = MgG(|lux|) — - (2.10)
fluel? — |lugll? — p ; (||| [l |7

Then one claims that {ux} is bounded. Otherwise, there exists a subsequence of
{ux}, also denoted by {uy}, such that

|lug|| — oo as k — +o0. (2.11)
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Put vr, = ug/||uk||.- Obviously, ||vg|| = 1 and {vx} is bounded in the finite dimen-
sional space Hr. Thus there exist a point v € Hy and a subsequence of {vy}, say
{vi}, such that

v, — v in Hyp.
Then in light of (2.10]), (2.11) and (2) of Remark one deduces that

T T
D AvP = > AvP =0 as k — +oc. (2.12)
t=1 t=1
This means |Av(t)| = 0. Consequently, one has |v(t)| is a constant for all ¢ € Z[1,T).
Then one easily gets

T
TP = |of” = [lo]? = 1.
t=1
Thus, it holds |ux(t)] — 400 as k — +oo for t € Z[1,T]. Then via (A6), one
deduces

— 400 as |ug(t)| — +oc.

This is a contradiction to (2.8). Thus {ux} is bounded. In finite dimensional space
Hyp, {uy} has a convergent subsequence. Thus ¢ satisfies condition (C).

Secondly, one proves that ¢ satisfies (1) and (2) in Lemma For u € RV,
since 0 < ﬁlt) < p, one obtains

T T
1 F( 157 (t

Thus one concludes that ¢(u) — —oo as ||u| — oo in RY. Thus (1) in Lemma
is satisfied.

Then, in a similar way to (2.9)), from (2.1]), (2.2)) and (2.3)), for any v € Hr, one
gets

1 T T
plu) = - DT Au(t)P — 3 F(t.u(t)
t=1 t=1
> S AuOP = Y (FROPG(u(o) + M)
t=1 t=1 1
> i 20 WO = 3 S G ulle) VT 219
vt P P
> eyl — MollulP G (Jul) — 2T
TP )
= {W — MeG(||ull) }[ull? —

By (2) in Remark one obtains

G([ul) = 0 as ful] = +oo.
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Then it is easy to get

TPt

STyt~ MeG(llul) >0 as fjull — +oo.

Hence by (2.13)), we get p(u) — +00 as |lu|| — +oco. Thus (2) in Lemma [2.1] holds.
In light of Lemma Theorem is proved. O
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