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Abstract. We consider a system of differential equations involving the p-

Laplacian. We prove the existence of oscillatory solutions with prescribed
numbers of zeros, and show that the solutions satisfy the Dirichlet boundary

conditions when the large parameters in the equations are suitable chosen.
Our main tool in this work is a Prüfer-type substitution.

1. Introduction

The p-Laplacian operator ∆pu = div(|∇u|p−2∇u) attracts lots of attention
and arises in various fields, such as non-Newtonian fluids and nonlinear diffu-
sion problems. The quantity p is a characteristic of the medium. Media with
p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics. If
p = 2, they are Newtonian fluids. For the above topics, the readers can refer to
[4, 5, 9, 12, 14, 16, 18] and their bibliographies.

In this note we consider the one-dimensional p-Laplacian system

−(|u′(x)|p−2u′(x))′ = (λ− w(x))|u(x)|p−2u(x)− |v(x)|p−2v(x),

−(|v′(x)|p−2v′(x))′ = λ|v(x)|p−2v(x) + |u(x)|p−2u(x),
(1.1)

with the initial conditions

u(0) = v(0) = 0, u′(0) = λ1/p, v′(0) = µ. (1.2)

Obviously, the first equation in (1.1) with v ≡ 0 can be regarded as a one-dimen-
sional p-Laplacian eigenvalue problem. Recently some results related to p-Laplacian
systems can be found, for example [8, 13, 21, 25]. As a result of that, many
authors have studied the existence of positive solutions for p-Laplacian boundary
value problems, by using topological degree theory, monotone iterative techniques,
coincidence degree theory [7], and the Leggett-Williams fixed point theorem [10] or
its variants; see [1, 2, 17, 22] and the references therein. Note that as p = 2, (1.1)
reduces to

u′′(x) + (λ− w(x))u(x)− v(x) = 0,

v′′(x) + λv(x) + u(x) = 0,
(1.3)
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which is a linear coupled system. One can treat (1.3) as a steady state reaction
diffusion model. Define H(u, v) = (λ−w(x))

2 u2 − λ
2 v

2 − uv. Then

∂H

∂u
= (λ− w(x))u− v, −∂H

∂v
= λv + u.

Equation (1.3) can be viewed as a simple model of diffusion systems with skew-
gradient structure (cf. [23, 24]).

In [21], we first considered a simple case related to a coupled p-Laplacian equa-
tions and developed the existence of oscillatory solutions with prescribed numbers
of zeros. Motivated by [21], we study (1.1) and intend to extend the previous result.
We will show that the solutions with prescribed numbers of zeros solve (1.1) and
satisfy the Dirichlet boundary conditions when the large parameters λ are suitable
chosen. That is, the Dirichlet boundary value problem is solvable. Essentially, the
main method using in this work is a Prüfer-type substitution. Now for a solution
{u, v} we require u, u′, v, and v′ are absolutely continuous. Throughout the paper
we assume the following conditions hold

(A1) p > 1 and λ, µ > 0;
(A2) w ∈ C(R).

Now, we have the following result which is concerned with some oscillation proper-
ties of solutions to (1.1)-(1.2).

Theorem 1.1. Assume the conditions (A1), (A2) hold. Then there exists a se-
quence of positive parameters {λk}∞k=m for the one-dimensional coupled system
(1.1)-(1.2), where m is some positive integer, such that the corresponding solu-
tion u(x;λk) has exactly k − 1 zeros in (0, 1) for k ≥ m. For sufficiently large λk,
u(x;λk) and v(x;λk) have the same number of zeros in (0, 1) and satisfy the right-
endpoint conditions u(1;λk) = v(1;λk) = 0 under a suitable choice of the initial
parameter µ. That is, {u(x, λk), v(x, λk)} solves (1.1) and satisfies the Dirichlet
boundary conditions as µ = λ

1/p
k + o(1).

2. Preliminaries and Proofs

Before to give the proof of Theorem 1.1, we first represent some elementary
results for the solutions of the initial value problem (1.1)-(1.2). Here we need the
following lemma to discuss the uniqueness of the local solution.

Lemma 2.1 ([19, p.180]). Let W ∈ C1(I), x0 ∈ I and W (x0) = 0, where I is a
compact interval containing x0. Denote by ‖W‖x the maximum of W in the interval
from x0 to x. Then |W ′(x)| ≤ K‖W‖x in I implies

W = 0 for |x− x0| ≤
1
K
, x ∈ I. (2.1)

In [21, Proposition 2.2], the proof of the uniqueness gave some inconsistencies.
Here we refine the proof.

Proposition 2.2. For any fixed λ, µ ∈ R+, problem (1.1)-(1.2) has a unique pair
of solutions which exist on an open interval I containing zero.
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Proof. System (1.1) can be written as

u′ = |U |p
∗−2U,

U ′ = |v|p−2v − (λ− w(x))|u|p−2u,

v′ = |V |p
∗−2V,

V ′ = −|u|p−2u− λ|v|p−2v,

(2.2)

with u(0) = v(0) = 0, U(0) = λ1/p∗ and V (0) = µ1/p∗ , where p∗ = p
p−1 is the

conjugate exponent of p. Then the local existence of a solution is valid by the
Cauchy-Peano theorem. For the uniqueness, we define M ≡ max{λ1/p, µ}. By
(1.2), we may find an interval I containing zero such that

M

2
|x− 0| < |u(x)|, |v(x)| < 2M |x− 0| for x ∈ I. (2.3)

Suppose that {u1(x), v1(x)} and {u2(x), v2(x)} are two distinct local solutions
of (1.1)-(1.2). For x ∈ I we can assume that

‖v1 − v2‖x ≤ c1‖u1 − u2‖x (2.4)

for some constant c1, where the notation ‖·‖x is defined in the statement of Lemma
2.1 with x0 = 0.

Then, for x ∈ I one has

|u′1(x)|p−2u′1(x)− |u′2(x)|p−2u′2(x)

=
∫ x

0

[|v1(t)|p−2v1(t)− |v2(t)|p−2v2(t)]dt

−
∫ x

0

(λ− w(t))[|u1(t)|p−2u1(t)− |u2(t)|p−2u2(t)]dt.

The following is a version of the mean value theorem, that for a1 and a2 of the
same sign

|a1|p−2a1 − |a2|p−2a2 = (p− 1)(a1 − a2)|ā|p−2,

where ā lies between a1, a2. So, for x ∈ I one can obtain

[u′1(x)− u′2(x)]|ū′|p−2

=
∫ x

0

[v1(t)− v2(t)]|v̄|p−2dt−
∫ x

0

(λ− w(t))[u1(t)− u2(t)]|ū|p−2dt,

for some ū′, v̄ and ū. By (2.3)-(2.4), for x ∈ I one can get

c2|u′1(x)− u′2(x)| ≤
(

(c1 + λ+ ‖w‖x)‖u1 − u2‖x
∫ x

0

(2M)p−2tp−2dt
)
,

where c2 is some constant. Now, set W (x) = u1(x) − u2(x). By Lemma 2.1, one
can obtain that W (x) = 0 near x = 0. Applying the similar arguments on v′1 − v′2,
one can prove the uniqueness for v(x). �

Now we introduce a Prüfer-type substitution for the solution of (1.1)-(1.2) by
using the generalized sine function Sp(x). The generalized sine function Sp has
been well studied in the literature (see Lindqvist [11] or [3, 6, 15] with a minor
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difference in setting). Here we outline some properties for the readers’ convenience.
The function Sp satisfies

|S′p(x)|p +
|Sp(x)|p

p− 1
= 1, (2.5)

(|S′p|p−2S′p)
′ + |Sp|p−2Sp = 0. (2.6)

Moreover,

πp ≡ 2
∫ (p−1)1/p

0

dt

(1− tp

p−1 )1/p
=

2(p− 1)1/pπ
p sin(π/p)

is the first zero of Sp in the positive real axis. Similarly, one has

Sp(
πp
2

) = p
√
p− 1, S′p(0) = 1 and S′p(

πp
2

) = 0.

With the help of the generalized sine function and denoting ′ = d
dx , we introduce

phase-plane coordinates R, r > 0 and θ, φ for the solution {u(x;λ), v(x;λ)} as
follows:

u(x;λ) = R(x;λ)Sp(λ1/pθ(x;λ)), u′(x;λ) = λ1/pR(x;λ)S′p(λ
1/pθ(x;λ)), (2.7)

v(x;λ) = r(x;λ)Sp(λ1/pφ(x;λ)), v′(x;λ) = λ1/pr(x;λ)S′p(λ
1/pφ(x;λ)). (2.8)

with θ(0;λ) = φ(0;λ) = 0. Then

λR(x;λ)p =
λ|u(x;λ)|p

p− 1
+ |u′(x;λ)|p, λr(x;λ)p =

λ|v(x;λ)|p

p− 1
+ |v′(x;λ)|p (2.9)

with R(0;λ) = 1 and r(0;λ) = µ
λ1/p . Moreover,

|u′(x;λ)|p−2u′(x;λ)
|u(x;λ)|p−2u(x;λ)

=
λ

p−1
p |S′p(λ1/pθ(x;λ))|p−2S′p(λ

1/pθ(x;λ))
|Sp(λ1/pθ(x;λ))|p−2Sp(λ1/pθ(x;λ))

,

|v′(x;λ)|p−2v′(x;λ)
|v(x;λ)|p−2v(x;λ)

=
λ

p−1
p |S′p(λ1/pφ(x;λ))|p−2S′p(λ

1/pφ(x;λ))
|Sp(λ1/pφ(x;λ))|p−2Sp(λ1/pφ(x;λ))

.

Differentiating both sides of the above two identities with respect to x and em-
ploying (1.1), one can obtain the following result.

Lemma 2.3. For the sake of simplicity, write θ(x) = θ(x;λ), φ(x) = φ(x;λ),
R(x) = R(x;λ) and r(x) = r(x;λ). Then, for x ∈ I,

θ′(x) = 1− w(x)
(p− 1)λ

|Sp(λ1/pθ(x))|p

− 1
(p− 1)λ

[ r(x)
R(x)

]p−1|Sp(λ1/pφ(x))|p−2Sp(λ1/pφ(x))Sp(λ1/pθ(x)),
(2.10)

φ′(x)

= 1 +
1

(p− 1)λ
[R(x)
r(x)

]p−1|Sp(λ1/pθ(x))|p−2Sp(λ1/pθ(x))Sp(λ1/pφ(x)),
(2.11)

R′(x)

=
w(x)R(x)

(p− 1)λ1−1/p
|Sp(λ1/pθ(x))|p−2Sp(λ1/pθ(x))S′p(λ

1/pθ(x))

+
1

(p− 1)λ1−1/p

[ r(x)p−1

R(x)p−2

]
|Sp(λ1/pφ(x))|p−2Sp(λ1/pφ(x))S′p(λ

1/pθ(x)),

(2.12)
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r′(x)

= − 1
(p− 1)λ1−1/p

[R(x)p−1

r(x)p−2

]
|Sp(λ1/pθ(x))|p−2Sp(λ1/pθ(x))S′p(λ

1/pφ(x)).
(2.13)

Applying Lemma 2.3, we find that {u(x;λ), v(x;λ)} is a solution of (1.1)-(1.2) if
and only if {θ(x;λ), R(x;λ), φ(x;λ), r(x;λ)} is a solution of (2.10)-(2.13) coupled
with the following conditions

θ(0;λ) = φ(0;λ) = 0, and R(0;λ) = 1, r(0;λ) =
µ

λ1/p
. (2.14)

Next we derive some properties for the radial functions R(x;λ) and r(x;λ).

Lemma 2.4. Write R(x) = R(x;λ) and r(x) = r(x;λ).
(i) For x ∈ I, the radial functions satisfy(

1 +
µp−1

λ
p−1

p

)
exp[−c1λ

1−p
p x] ≤ R(x)p−1 + r(x)p−1

≤
(

1 +
µp−1

λ
p−1

p

)
exp[c1λ

1−p
p x],

(2.15)

where c1 is a positive constant.
(ii) For fixed x ∈ I and sufficiently large λ, we can choose µ = λ1/p and obtain

that
r(x)
R(x)

= 1 + o(1). (2.16)

Proof. (i) By (2.12)-(2.13), there exists some positive constant c1 such that

−c1λ
1−p

p [R(x)p−1 + r(x)p−1] ≤ (p− 1)
[
R(x)p−2R′(x) + r(x)p−2r′(x)

]
≤ c1λ

1−p
p [R(x)p−1 + r(x)p−1].

Solving the above differential inequality and applying the initial condition (2.14),
we obtain the inequality (2.15).

(ii) As in (i), there exists a positive constant c2 such that

R(x)r′(x)− r(x)R′(x)
R(x)2

≤ c2λ
1−p

p
[R(x)p−2

r(x)p−2
+
r(x)
R(x)

+
r(x)p

R(x)p
]
.

Letting y(x) = r(x)
R(x) , we have

y′(x) ≤ c2λ
1−p

p [y(x)2−p + y(x) + y(x)p].

Note that
dy

dx
≤ c2λ

1−p
p (

1 + yp−1 + y2p−2

yp−2
), i.e.,

yp−2dy

1 + yp−1 + y2p−2
leqc2λ

1−p
p dx.

Letting z = yp−1 and integrating the above inequality, we obtain

2√
3

[
tan−1 2z + 1√

3

]y(x)p−1

y(0)
≤ (p− 1)c2λ

1−p
p x.

i.e.,
2√
3

[
tan−1 2z + 1√

3

]y(x)p−1

y(0)
= o(1).
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Then,

0 < tan−1 2y(x)p−1 + 1√
3

=
π

3
+ o(1).

So y(x)p−1 = 1 + o(1) as λ is sufficiently large. This completes the proof. �

Remark 2.5. From the proof of Lemma 2.4 (ii), one can obtain the boundedness
of r(x)

R(x) and R(x)
r(x) . Then, the right-hand sides of (2.10)-(2.13) satisfy the generalized

Lipschitz continuous in θ, φ, R and r respectively. Thus, the existence of the
unique absolutely continuous solutions is valid. The above can be referred to [20]
(pp.121-123).

Remark 2.6. For sufficiently large λ, one can choose µ closed to λ1/p; that is,
µ = λ1/p + o(1), and the asymptotic estimate (2.16) is still valid.

From Proposition 2.2 and Lemma 2.4 (i), we have the following result.

Proposition 2.7. For fixed λ, µ > 0, the uniquely local solution {u(x;λ), v(x;λ)}
can be extended to the whole real axis.

Now we derive some properties related to the phase functions θ(x;λ) and φ(x;λ).

Lemma 2.8. For λ > 0, the phase functions θ(x;λ) and φ(x;λ) satisfy the follow-
ing properties.

(i) θ(·;λ) and φ(·;λ) are continuous in λ and satisfy θ(0;λ) = φ(0;λ) = 0.
(ii) If λ1/pθ(xn;λ) = nπp for some xn ∈ (0, 1), then λ1/pθ(x;λ) > nπp for

every x > xn.
(iii) For sufficiently large λ,

λ1/pθ(1;λ) = λ1/p +O(
1

λ1− 1
p

). (2.17)

Moreover, λ1/pφ(1;λ) has the same estimate as (2.17).
(iv) For sufficiently large λ, a suitable initial parameter µ = λ1/p + o(1) can be

chosen such that θ(1;λ) = φ(1;λ).

Proof. Item (i) is valid by (2.10)-(2.11) and (2.14). For (ii), if λ1/pθ(xn;λ) = nπp
for some xn ∈ (0, 1), then by (2.10) and Lemma 2.4 (ii), we have

θ′(xn;λ) = 1 > 0. (2.18)

For (iii), integrating (2.10) and (2.11) over [0, 1] and applying (i) and Lemma 2.4
(ii), one can obtain the asymptotic estimates (2.17) as λ is sufficiently large. This
proves (iii). Besides, write θ′(x;λ) = F (x;λ; θ;φ) and φ′(x;λ) = H(x;λ; θ;φ).
Then, for x ∈ [0, 1],

θ(x;λ)− φ(x;λ)

=
∫ x

0

(F (t;λ; θ;φ)−H(t;λ; θ;φ))dt

=
∫ x

0

[
F (t;λ; θ;φ)− F (t;λ; θ; θ) + F (t;λ; θ; θ)−H(t;λ; θ; θ)

+H(t;λ; θ; θ)−H(t;λ; θ;φ)
]
dt

=
∫ x

0

∂

∂φ
F (t;λ; θ; ξ)[φ(t;λ)− θ(t;λ)]dt− 1

(p− 1)λ

∫ x

0

w(t)|Sp(λ1/pθ(t;λ))|pdt
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− 1
(p− 1)λ

∫ x

0

([ r(x)
R(x)

]p−1 +
[R(x)
r(x)

]p−1
)
|Sp(λ1/pθ(t;λ))|pdt

+
∫ x

0

∂

∂φ
H(t;λ; θ; η)[φ(t;λ)− θ(t;λ)]dt,

where ξ(t;λ) and η(t;λ) are between φ(t;λ) and θ(t;λ). Note that | ∂∂φF (t;λ; θ; ξ)|
and | ∂∂φH(t;λ; θ; η)| are uniformly bounded by some constant K for all t ∈ [0, 1].
Then, by Lemma 2.4 (ii) for any δ > 0 there exists sufficiently large λ such that

|θ(x;λ)− φ(x;λ)| ≤ δ +
∫ x

0

2K|φ(t;λ)− θ(t;λ)|dt.

By the Gronwall inequality, we obtain

|θ(x;λ)− φ(x;λ)| ≤ δe2K . (2.19)

By (2.10)-(2.11), Remark 2.6 and (2.19), one can choose suitable µ satisfying µ =
λ1/p+o(1) such that the two Prüfer phases are identical at the right end-point as λ is
sufficiently large. That is, θ(1;λ) = φ(1;λ). Now the proof of (iv) is complete. �

Proof of Theorem 1.1. By Lemma 2.8 (i) and (iii), the modified phase λ1/pθ(1;λ)
tends to infinity as λ → ∞. Hence, for every sufficiently large k ∈ N there exists
λk > 0 satisfies λ1/p

k θ(1;λk) = kπp. This implies that there exists m ∈ N such that
λ

1/p
k θ(1;λk) = kπp for every k ≥ m. Furthermore, the remaining results are valid

by Lemma 2.8 (iii) and (iv). �
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