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Abstract. In this article, we study the nonlinear fractional Schrödinger equa-

tion

(−∆)αu+ V (x)u = f(x, u)

u ∈ Hα(Rn,R),

where (−∆)α(α ∈ (0, 1)) stands for the fractional Laplacian of order α, x ∈ Rn,

V ∈ C(Rn,R) may change sign and f is only locally defined near the origin

with respect to u. Under some new assumptions on V and f , we show that the
above system has infinitely many solutions near the origin. Some examples

are also given to illustrate our main theoretical result.

1. Introduction and statement of main results

This article concerns the existence of infinitely many solutions for the fractional
Schrödinger equation

(−∆)αu+ V (x)u = f(x, u),

u ∈ Hα(Rn,R),
(1.1)

where n ≥ 2, α ∈ (0, 1), x ∈ Rn, V ∈ C(Rn,R) satisfying some new conditions, and
f is only locally defined near the origin with respect to u.

Problem (1.1) is related to the existence of standing wave solutions for fractional
Schrödinger equations of the form

i
∂ψ

∂t
= (−∆)αψ + (V (x) + ω)ψ − f(x, ψ), (1.2)

where i is the imaginary unit, α ∈ (0, 1), ω is a constant, (−∆)α is the fractional
Laplacian operator of order α and ψ : R3 × [0,+∞) → C. We are interested in
looking for a standing wave, namely, waves of the form

ψ(x, t) = eiωtu(x),

where u is a real-valued function, and f is assumed to satisfy f(x, e−iωtu) =
e−iωtf(x, u). Clearly, ψ(x, t) solves (1.2) if and only if u(x) solves (1.1).
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The fractional Schrödinger equation is a fundamental equation of fractional quan-
tum mechanics. It was discovered by Nick Laskin [27, 28] as a result of extending the
Feynman path integral, from the Brownian-like to Lévy-like quantumn mechanical
paths. Equations involving the fractional Laplacian have attracted much atten-
tion in recent years, appear in several areas such as optimization, finance, phase
transitions, stratified material, crystal dislocation, flame propagation, conservation
laws, ultra-relativistic limits of quantum, material science, and water waves, see
e.g. [4, 7, 14, 17] for an introduction to these topics and their applications.

When α = 1, (1.1) becomes the classical Schrödinger equation

−∆u+ V (x)u = f(x, u)

u ∈ H1(Rn,R).
(1.3)

There has been a a lot of studies on existence and multiplicity of solutions of
problem (1.3) under various hypotheses on the potential V (x) and the nonlinearity
f(x, u), see [3, 21, 30, 31] and the references therein. The body of literature for
(1.3) is huge and we do not even try to collect here a detailed bibliography.

Nonlinear equation (1.1) involves the fractional Laplacian (−∆)α, 0 < α < 1,
which is a nonlocal operator. A common approach to deal with this problem was
proposed by Caffarelli and Silvestre in [9], see also [41], allowing to transform
problem (1.1) into a local problem via the Dirichlet-Neumann map. That is, for
u ∈ Hα(Rn) one considers the problem

−div(y1−2α∇v) = 0 in Rn+1
+

v(x, 0) = u, on Rn

from where the fractional Laplacian is obtained as

(−∆)αu(x) = −bα lim
y→0+

y1−2αvy

where bα is a suitable constant. With the aid of the extended techniques [9], some
existence and nonexistence results for Dirichlet problem involving the fractional
Laplacian on bounded domain are obtained, see e.g. [10, 44] and the references
therein. Using the equivalence definition of fractional operator (−∆)α (see Sec-
tion 2), Servadei and Valdinoci [34, 35] also introduced a variational principle and
studied the existence and multiplicity of solutions for non-local equations of elliptic
type.

There have been many results appeared in the literature for problem (1.1). For
example, Cheng [12] studied problem (1.1) when f(x, u) = |u|p−1u with 1 < p <
4α
n + 1, and found the ground states under a stronger assumption on the potential
V , i.e., lim|x|→∞ V (x) = ∞. Dipierro et al. [18] studied problem (1.1) when the
potential V (x) = 1 and f(x, u) = |u|p−1u, with 1 < p < 2n

n−2α ; in this case, they
established the existence of positive and spherically symmetric solution. Felmer et
al. [21] studied a similar class of equations, in which V (x) = 1, and the nonlinearity
satisfies suitable assumptions, using variational methods, classical positive solutions
are found. Secchi [36] proved some existence results for fractional Schrödinger
equations, under the assumption that the nonlinearity is either of perturbative
type or satisfies the Ambrosetti-Rabinowitz condition. Recently, Teng [44] obtained
infinitely many small energy solutions of (1.1) by variant of the fountain theorem
in [51]. More precisely, they use the following assumptions:

(A1) V ∈ C(Rn,R) and infRn V > 0.
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(A2) For any M > 0 there exists d0 > 0 such that

lim
|y|→∞

meas({x ∈ Rn : |x− y| ≤ d0, V (x) ≤M}) = 0,

where meas denotes the Lebesgue measure in Rn.
(A3) f ∈ C(R × Rn,R), f(x, u)u ≥ 0 for all (x, u) ∈ Rn × R, and there exists a

constant ν ∈ (1, 2) such that

|f(x, u)| ≤ a(x)(1 + |u|ν−1)∀(x, u) ∈ Rn × R

with a positive function a(x) ∈ L
2

2−ν (Rn).
(A4) There exists σ ∈ [1, ν) such that lim inf |u|→∞

F (x,u)
|u|σ ≥ d > 0 uniformly for

x ∈ Rn, where where F (x, u) =
∫ u
0
f(x, s)ds.

(A5) f(x,−u) = −f(x, u) for all (x, u) ∈ Rn × R.
Very recently, Torres [46] studied problem (1.1) and proved the existence of at least
one solutions of equation (1.1) under the assumptions:

(A6) V (x) = λv(x) where λ > 0 is a parameter and v ∈ C(Rn), v(x) ≥ 0 on Rn;
(A7) there exists a constant b > 0 such that the set {v < b} := {x ∈ Rn/v(x) <

b} is nonempty and has finite Lebesgue measure and |{v < b}|
2∗α−2
2∗α < 1

c2∗α
,

where c2∗α is the Sobolev constant (see Lemma 2.1);
(A8) f ∈ C(Rn × R,R) and there exists µ ∈ (2, 2∗) such that

0 < µF (x, u) ≤ f(x, u)u ∀u ∈ R\{0}.

Remark 1.1. There are functions V and F not satisfying the corresponding as-
sumptions of the above papers. For example:

V (x) =


((p2 + 1)2(|x| − p) + c0), if p ≤ |x| < p+ 1

p2+1 ,

(p2 + 1) + c0, if p+ 1
p2+1 ≤ |x| < p+ p2

p2+1 ,

(p2 + 1)2(p+ 1− |x|) + c0, if p+ p2

p2+1 ≤ |x| < p+ 1,

F (x, u) =

{
cos |x||u|s sin 1

|u|ε , if 0 < |u| < 1,

0, if u = 0,

where p ∈ N, c0 ∈ R, ε ∈ (0, 1) and s ∈ (1 + ε, 2). Obviously, F is locally defined
near the origin.

Inspired by the above results, we investigate the situation where the potential V
and F satisfies new assumptions different from those studied previously and covered
some examples as in remark 1.1. Precisely, we suppose that

(A9) There exists a constant a0 > 0 such that V (x)+a0 ≥ 1, and
∫

Rn
1

V (x)+a0
dx <

∞.
(A10) F ∈ C1(Rn× (−ρ, ρ)) is even, and there exists a constant a1 > 0 such that

|f(x, u)| ≤ a1, ∀(x, u) ∈ Rn × (−ρ, ρ),

where ρ > 0.
(A11) There exist x0 ∈ Rn, two sequences of positives numbers εn → 0, Mn →∞

as n→∞ and constants a2, ε, δ > 0 such that

F (x, u) ≥ ε2nMn, for |x− x0| ≤ δ and |u| = εn

F (x, u) ≥ −a2u
2, for |x− x0| ≤ δ and |u| ≤ ε.
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Now we give our main results.

Theorem 1.2. Assume that (A9)–(A11) are satisfied. Then, equation (1.1) pos-
sesses a sequence of solutions (uk) such that

1
2

(∫
Rn

∫
Rn

|uk(x)− uk(z)|2

|x− z|n+2α
dz dx+ V (x)u2

k

)
dx−

∫
Rn
F (x, uk)dx→ 0−

as k →∞.

Corollary 1.3. Assume that (A9), (A10) are satisfied and
(A11’) there exist x0 ∈ R and a constant δ > 0, such that

lim inf
|u|→0

inf
|x−x0|≤δ

F (x, u)
|u|2

> −∞,

lim sup
|u|→0

inf
|x−x0|≤δ

F (x, u)
|u|2

= +∞.

Then, equation (1.1) possesses a sequence of solutions (uk) such that

1
2

(∫
Rn

∫
Rn

|uk(x)− uk(z)|2

|x− z|n+2α
dz dx+ V (x)u2

k

)
dx−

∫
Rn
F (x, uk)dx→ 0−

as k →∞.

The remainder part of this article is organized as follows. Some preliminary
results are presented in Section 2. In Section 3, we give the proofs of our main
results.

2. Variational setting and preliminaries

In this section, we recall some preliminary results which will be useful in this
article. First, we will give some facts of the fractional order Sobolev spaces. For
any 0 < α < 1, the fractional Sobolev space Hα(Rn) is defined by

Hα(Rn) =
{
u ∈ L2(Rn) :

|u(x)− u(z)|
|x− z|n+2α

2

∈ L2(Rn × Rn)
}
,

endowed with the natural norm

‖u‖2α =
∫

Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dz dx.

For the reader’s convenience, we review the main embedding result for this class of
fractional Sobolev spaces.

Lemma 2.1 ([17]). Let 0 < α < 1 such that 2α < n. Then there exists a constant
c2∗α , such that

‖u‖L2∗α (Rn) ≤ c2∗α‖u‖α (2.1)

for every u ∈ Hα(Rn), where 2∗α = 2n
n−2α is the fractional critical exponent. More-

over, the embedding Hα(Rn) ⊂ Lp(Rn) is continuous for any p ∈ [2, 2∗α] and is
locally compact whenever p ∈ [2, 2∗α).

Remark 2.2. Consider the fractional Schrödinger equation

(−∆)αu+ V̂ (x)u = f̂(x, u)

u ∈ Hα(Rn,R),
(2.2)
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where V̂ (x) = V (x) + a0 and F̂ (x, u) = F (x, u) + a0
2 u

2. Then (2.2) is equivalent to
(1.1) and it easy to check that the hypotheses (A9) and (A10), (A11) still hold for
V̂ and F̂ provided that those hold for V and F . Hence, in what follows, we always
assume without loss of generality that V (x) ≥ 1 for all x ∈ Rn and

∫
Rn

1
V (x)dx <∞.

In view of Remark 2.2, we consider the space

Hα
V (Rn) =

{
u ∈ Hα(Rn) :

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dz dx

+
∫

Rn
V (x)|u(x)|2dx < +∞

}
;

equipped with the norm

‖u‖2V =
∫

Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dz dx+

∫
Rn
V (x)|u(x)|2dx;

and the inner product

〈u, v〉V =
∫

Rn

∫
Rn

[u(x)− u(z)][v(x)− v(z)]
|x− z|n+2α

dz dx+
∫

Rn
V (x)u(x)v(x)dx.

Then Hα
V (Rn) is a Hilbert space with this inner product.

Lemma 2.3. [46] If V satisfies (A9), then Hα
V is continuously embedded in Hα(R).

Lemma 2.4. If V satisfies (A9), then Hα
V is continuously embedded in L1.

Proof. By (A9) and Hölder’s inequality, for all u ∈ Hα
V we have

∫
Rn
|u|dt =

∫
Rn
|(V (x))−1/2(V (x))1/2u|dx

≤
∫

Rn
(V (x))−1/2|(V (x))1/2u|dx

≤
(∫

Rn
(V (x))−1dt

)1/2(∫
Rn
V (x)u2dx

)1/2

≤
(∫

Rn
(V (x))−1dx

)1/2

‖u‖2V .

(2.3)

�

Lemma 2.5. If V satisfies (A9) then Hα
V is compactly embedded in L1.
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Proof. Let (un) ⊂ Hα
V be a bounded sequence such that un ⇀ u in Hα

V . We will
show that un → u in L1. By Hölder inequality, we have∫

Rn
|un − u|dx

=
∫
|x|≤R

|un − u|dx+
∫
|x|>R

|un − u|dx

≤ 2R
(∫
|x|≤R

|un − u|2dx
)1/2

+
∫
|x|>R

|(V (x))−1/2(V (x))1/2(un − u)|dx

≤ 2R
(∫
|x|≤R

|un − u|2dx
)1/2

+
∫
|u|>R

(V (x))−
1
2 |(V (x))1/2(un − u)|dx

≤ 2R
(∫
|x|≤R

|un − u|2dx
)1/2

+
(∫
|x|>R

(V (x))−1dx
)1/2(∫

|x|>R
V (x)(un − u)2dx

)1/2

≤ 2R
(∫
|x|≤R

|un − u|2dx
)1/2

+
(∫
|x|>R

(V (x))−1dx
)1/2

‖un − u‖V ,

(2.4)

where R > 0. Since the embedding is compact on bounded domain then, by (A9)
and (2.4), we have un → u in L1. �

3. Proofs of main resutls

The aim of this section is to establish the proofs of Theorem 1.2 and Corollary
1.3. For this purpose, we need to modify F (x, u) for u outside a neighborhood of
the origin to get a globally defined F̃ (x, u) as follows: Choose a constant t0 ∈ (0, ρ2 )
and define a cut-off function χ ∈ C1(R+,R+) satisfying

χ(t) =

{
1 if 0 ≤ t ≤ t0
0 if t ≥ 2t0

− 2
t0
≤ χ′(t) < 0 for t0 < t < 2t0.

(3.1)

Let F̃ (x, u) = χ(|u|)F (x, u), for all(x, u) ∈ Rn × R. By (3.1) and (A10) we have,
for all (x, u) ∈ Rn × R,

|F̃ (x, u)| ≤ c1|u|, |f̃(x, u)| ≤ c2. (3.2)

Now we consider the modified fractional Schrödinger equation

(−∆)αu+ V (x)u = f̃(x, u),

u ∈ Hα(Rn,R),
(3.3)

Define the functional I : Hα
V → R associated with (3.3) by

I(x) =
1
2

(∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dz dx+

∫
Rn
V (x)|u(x)|2dx

)
−
∫

Rn
F̃ (x, u(x))dx

=
1
2
‖u‖2V −

∫
Rn
F̃ (x, u(x))dx.

(3.4)
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Then, by (A9), (A10) and (3.2), we see that I is a continuously Fréchet-differentiable
functional defined on Hα

V ; i.e., I ∈ C1(Hα
V ,R). Moreover, we have

I ′(u)v =
∫

Rn

∫
Rn

[u(x)− u(z)][v(x)− v(z)]
|x− z|n+2α

dz dx+
∫

Rn
V (x)u(x)v(x)dx

−
∫

Rn
f̃(x, u(x))v(x)dx,

(3.5)

for all u, v ∈ Hα
V . According to [46], we know that in order to find solutions of

(3.3), it suffices to obtain the critical points of I. For this purpose we recall the
following definitions and results (see [26, 30]).

Definition 3.1. Let E be a real Banach space and φ ∈ C1(E,R).
• φ is said to satisfy the (PS) condition if any sequence (xk) ⊂ E for which

(φ(xk)) is bounded and φ′(xk)→ 0 as k → +∞, possesses a convergent subsequence
in E.
• Set Σ = {A ⊂ E\{0} : A is closed and symmetric with respect to the origin}.

For A ∈ Σ, we say genus of A is n (denoted by κ(A) = n), if there is an odd map
ϕ ∈ C(A,Rn\{0}), and n is the smallest integer with this property.

Lemma 3.2 ([26, Theorem 1]). Let φ be an even C1 functional on E with φ(0) = 0.
Suppose that φ satisfies the (PS) condition and

(1) φ is bounded from below.
(2) For each k ∈ N, there exists an Ak ∈ Σk such that supx∈Ak φ(x) < 0, where

Σk = {A ∈ Σ : κ(A) ≥ k}.
Then either (i) or (ii) below holds.

(i) There exists a sequence (xk) of critical point such that φ(xk) < 0 and
limk→∞ xk = 0.

(ii) There exists two sequences of critical points (xk) and (yk) such that φ(xk) =
0, xk 6= 0, limk→∞ xk = 0, φ(yk) < 0, limk→∞ φ(yk) = 0, and (yk) con-
verges to a non-zero limit.

Lemma 3.3. If (A9), (A10) are satisfied, then I is bounded from below and satisfies
the (PS) condition.

Proof. By (A10), (2.3), (3.2) and the Hölder inequality, we have, for all u ∈ Hα
V ,

I(u) ≥ 1
2
‖u‖2V − c3

∫
Rn
|u|dx

≥ 1
2
‖u‖2V − c3

(∫
Rn

(V (x))−1dx
)1/2

‖u‖V .
(3.6)

Then it follows that I is bounded from below. Moreover, if we take (un) ⊂ Hα
V be

a (PS)-sequence, then by (3.2) and (3.4), we have

c4 ≥
1
2
‖un‖2V − c5

(∫
Rn

(V (x))−1dx
)1/2

‖u‖V

This implies that (un) is bounded in Hα
V . Thus there exists a subsequence (unk)

such that unk ⇀ u0 as k →∞ for some u0 ∈ Hα
V . By Lemma 2.5, it holds that

unk → u0 in L1 as k →∞.
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This together with (3.2) yields∣∣ ∫
Rn

(f̃(x, unk)− f̃(x, u0))(unk − u0)dx
∣∣ ≤ c6 ∫

Rn
|unk − u0|dx→ 0 (3.7)

as k →∞.
Noting that (un) is a bounded (PS)-sequence, we have

(I ′(unk)− I ′(u0))(unk − u0)→ 0 as k →∞. (3.8)

Combining (3.5), (3.7) and (3.8), we obtain

‖unk − u0‖2V = (I ′(unk)− I ′(u0))(unk − u0)

+
∫

Rn
(f̃(x, unk)− f̃(x, u0)).(unk − u0)dx→ 0.

�

Proof of Theorem 1.2. For simplicity, we assume that x0 = 0 in (A11). For r > 0,
let

D(r) := {(x1, x2, x3, . . . , xn) : 0 ≤ xi ≤ r, i = 1, 2, 3, . . . , n}.
Fix r > 0 small enough such that D(r) ⊂ B(0, δ), where δ is the constant given in
(A11). For arbitrary k ∈ N, we construct an Ak ∈

∑
k satisfying supu∈AK I(u) < 0.

Indeed, we follow the idea of dealing with elliptic problems in Kajikiya [26]. Let
m ∈ N be the smallest integer such that mn ≥ k. We divide D(r) equally into mn

small cubes by planes parallel to each face of D(r) and denote them by Di with
1 ≤ i ≤ mn. We consider a cube Ei ⊂ Di (i = 1, 2, . . . , k) such that Ei has the
same center as that of Di, the faces of Ei and Di are parallel and the edge of Ei
has length a

2 . Define ξ ∈ C∞0 (R, [0, 1]) such that ξ(t) = 1 for t ∈ [a4 ,
3a
4 ], ξ(t) = 0

for t ∈ (−∞, 0] ∪ [a,+∞). Define

ζ(x) = ξ(x1)ξ(x2)ξ(x3) . . . ξ(xn), (x1, x2, x3, . . . , xn) ∈ Rn.

Then supp ζ ⊂ [0, a]n. Now for each 1 ≤ i ≤ k, we can choose a suitable yi ∈ Rn
and define

ζi(x) = ζ(x− yi), for all x ∈ Rn;

such that
supp ζi ⊂ Di, supp ζi ∩ supp ζj = ∅ (i 6= j), (3.9)

and
ζi(t) = 1, ∀x ∈ Ei, 0 ≤ ζi(x) ≤ 1, ∀x ∈ Rn

Set
Θk ≡

{
(l1, l2, . . . , lk) ∈ Rk; max

1≤i≤k
|li| = 1

}
,

Sk ≡
{ k∑
i=1

liζi; (l1, l2, . . . , lk) ∈ Θk

}
.

(3.10)

Then Θk is homeomorphic to the unit sphere in Rk by an odd mapping. Thus
κ(Θk) = k. If we define the following odd and homeomorphic mapping: ψ : Θk →
Sk by

ψ(l1, l2, . . . , lk) =
k∑
i=1

liζi, ∀(l1, l2, . . . , lk) ∈ Θk,
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Then κ(Sk) = κ(Θk) = k. Moreover, it is evident that Sk is compact and hence
there is a constant λk > 0 such that

‖u‖V ≤ λk, ∀u ∈ Sk. (3.11)

For any s ∈ (0, ε), u =
∑k
i=1 liζi ∈ Sk and by (3.2) and (3.4), we have

I(su) ≤ s

2
‖x‖2V −

∫
Rn
F
(
x, s

k∑
i=1

liζi

)
dx

≤ s2λ2
k

2
−

k∑
i=1

∫
Di

F (x, sliζi)dx.

(3.12)

By (3.10), there exists an integer i0 ∈ [1, k] such that |li0 | = 1. Then it follows that

k∑
i=1

∫
Di

F (x, sliζi)dx =
∫
Ei0

F (x, sli0ζi0)dx+
∫
Di0\Ei0

F (x, sli0ζi0)dx

+
∑
i 6=i0

∫
Di

F (x, sliζi)dx.
(3.13)

Noting that |li0 | = 1, ζi0 ≡ 1 on Ei0 , and F (x, u) is even in u, we get∫
Ei0

F (x, sli0ζi0)dx =
∫
Ei0

F (x, s)dx. (3.14)

By (A10), ∫
Di0\Ei0

F (x, sli0ζi0)dx+
∑
i 6=i0

∫
Di

F (x, sliζi)dx ≥ −cks2. (3.15)

Here ck > 0 depends only on k. Combining (3.11)-(3.15), one has

I(su) ≤ s2λ2
k

2
+ cks

2 −
∫
Ei0

F (x, s)dx.

Substituting s = εn and using (A11), we obtain

I(εnu) ≤ ε2n
(s2λ2

k

2
+ ck − (

a

2
)2Mn

)
.

Since εn → 0+ and Mn → ∞, we choose n0 large enough such that the right side
of the last inequality is negative. Define

Ak = {εn0u;u ∈ Sk}.

Then, we have

κ(Ak) = κ(Sk) = k and sup
x∈Ak

I(x) < 0.

Consequently, by Lemma 3.3, there exist a sequence of nontrivial critical points
(uk) of I such that I(uk) ≤ 0 for all k ∈ N and uk → 0 in Hα

V as k → ∞. Hence,
(uk) is a sequence of solutions of (3.3). Therefore, for k large enough, they are
solutions of (1.1). �
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Proof of Corollary 1.3. By (A11’), there exist a constant x0 ∈ Rn, two sequences
of positives numbers εn → 0, Mn → ∞ as n → ∞ and constants a2, ε, δ > 0 such
that

F (x, u) ≥ ε2nMn, for |x− x0| ≤ δ and |u| = εn,

F (x, u) ≥ −a2u
2, for |x− x0| ≤ δ and |u| ≤ ε,

which implies the condition (A11). An easy application of Theorem 1.2 shows that
Corollary 1.3 holds. This completes the proof. �

Acknowledgments. The author would like to thank the anonymous referees for
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