Joao Vitor da Silva, Julio D. Rossi, Ariel M. Salort
Abstract:
In this note we analyze how perturbations of a ball
behaves in terms of their first
(non-trivial) Neumann and Dirichlet
-eigenvalues
when a volume
constraint
is imposed.
Our main result states that
is uniformly close to a ball when
it has first Neumann and Dirichlet eigenvalues close to the ones for the
ball of the same volume
.
In fact, we show that, if
then there are two balls such that
In addition, we obtain a result concerning stability of the Dirichlet
-eigenfunctions.
Submitted September 9, 2017. Published January 6, 2018.
Math Subject Classifications: 35B27, 35J60, 35J70.
Key Words: Infinity-eigenvalues estimates; infinity-eigenvalue problem;
approximation of domains.
Show me the PDF file (326 KB), TEX file for this article.
João Vitor da Silva Departamento de Matem ática FCEyN - Universidad de Buenos Aires, Argentina email: jdasilva@dm.uba.ar | |
Julio D. Rossi Departamento de Matem ática FCEyN - Universidad de Buenos Aires, Argentina email: jrossi@dm.uba.ar | |
Ariel M. Salort Departamento de Matem ática FCEyN - Universidad de Buenos Aires, Argentina email: asalort@dm.uba.ar |
Return to the EJDE web page