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Abstract. We derive an optimal design of a structure that is described by a

Sturm-Liouville problem with boundary conditions that contain the spectral

parameter linearly. In terms of Mechanics, we determine necessary conditions
for a minimum-mass design with the specified natural frequency for a rod of

non-constant cross-section and density subject to the boundary conditions in

which the frequency (squared) occurs linearly. By virtue of the generality
in which the problem is considered other applications are possible. We also

consider a similar optimization problem on a complete bipartite metric graph

including the limiting case when the number of leafs is increasing indefinitely.

1. Introduction

The optimal design of an axially vibrating rod supporting a non-structural point
mass was considered by Turner [13]. He determined an optimal cross-sectional mass
distribution m(x) such that a rod of given principal eigenvalue is designed with the
least possible mass. Such an optimization allows for greater economy in a design
that must meet certain minimum requirements for natural frequency. Due to a
duality principle, Turner’s technique can also be used to determine the optimal
distribution m(x) such that a rod of given total mass is made with the largest
principal eigenvalue. Such an optimization would give the greatest resistance to
resonance. Taylor [12] considered the same problem and proved that the design
of Turner was indeed optimal. Taylor also clearly articulated the duality principle
employed by Turner in a form that assists in generalizing the method.

We begin with a brief review of [13]. The axial displacement of a rod can be
modeled by the wave equation

m
∂2u

∂t2
− E

ρ

∂

∂x

(
m
∂u

∂x

)
= 0, 0 < x < L. (1.1)

1



2 B. P. BELINSKIY, D. H. KOTVAL EJDE-2018/119

Table 1. Physical Interpretation of Parameters

Quantity Interpretation
E Young’s Modulus

u(x, t) Axial Displacement
ρ Density of Rod Material

A(x) Cross-sectional Area
m(x) Mass per Unit Length (=ρA(x))
γ2 ω2ρ/E
ω Angular Frequency
M1 Non-Structural Mass Supported at the End of The Rod

Here and below we use the notation given in Table 1. After separating variables
and removing the harmonic (in time) term, we come up with the following Sturm-
Liouville optimization problem for a rod supporting a non-structural mass M1.

Problem 1.1. Let u(x) be a nontrivial solution of the differential equation
d

dx
(
m

du
dx
)

+ γ2
1mu = 0, 0 < x < L, (1.2)

for specified natural frequency ω1(= γ1

√
E/ρ), subject to the boundary conditions

u(0) = 0, mu′(L) = γ2
1M1u(L). (1.3)

Find the mass distribution m(x) = mopt(x) such that the total mass functional,

M0[m] :=
∫ L

0

mdx (1.4)

attains its minimum value. �

Since the problem is homogeneous, we may normalize the solution as follows

u(L) = 1 so that mu′(L) = γ2
1M1. (1.5)

Note that the spectral parameter γ2
1 appears linearly in the boundary condition.

To determine a solution to this problem, Turner seeks to minimize the following
mass functional in which the equations of motion and the boundary conditions are
introduced as isoperimetric constraints [13, 12]:

Φ[m,u] := M0[m] +
∫ L

0

λ(x)[(mu′)′ + γ2
1mu]dx+ λ1[γ2

1M1 −m(L)u′(L)]. (1.6)

Here the λ’s are Lagrange multipliers. Turner carries out an analysis using the tech-
niques of the Calculus of Variations [8] to find that the optimal mass distribution
mopt(x) is given by

mopt(x) = m(L) cosh2(γ1L)/ cosh2(γ1x) (1.7)

where
m(L) = γ1M1 tanh γ1. (1.8)
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The total mass for this design is then

M0[mopt] = M1 sinh2(γ1L). (1.9)

Formulas (1.7) and (1.8) represent the complete solution of Problem 1.
In this article, rather than working with Problem 1 which models the axial

vibrations of a rod, we consider a general Sturm-Liouville problem with the spectral
parameter that appears linearly in the boundary conditions. For the general theory
of this problem see Hinton [10], Fulton [7, 6], and Walter [14]. This generalization
results in some new phenomena, such as the occurrence of an additional critical
point and some conditions of solvability, that did not occur in the models [13, 12, 3].

We adopt the notation from [10, 7, 6, 14], for dealing with this problem, that is,
we consider

(p(x)y′(x))′ − q(x)y(x) + λp(x)r(x)y(x) = 0, x ∈ (0, 1), (1.10)

cosα y(0) + sinα (p(0)y′(0)) = 0, (1.11)

−β1y(1) + β2p(1)y′(1) = λ[β′1y(1)− β′2p(1)y′(1)], (1.12)

δ := β′1β2 − β1β
′
2 > 0. (1.13)

Here α ∈ [0, π), βk, and β′k, k = 1, 2 and r(x) > 0 are the (known) parameters
and function and the assumption that δ > 0 is required for the problem to be
self-adjoint [10], and therefore for all eigenvalues to be real and bounded below.

It is known (see [4, 1] and the references therein) that problems of this type arise
in the study of many diverse physical models including oscillations of a rotating
string, a Timoshenko-Mindlin beam with a tip mass, a rotating beam with a tip
mass (which models a propeller), and a beam of non-uniform cross section with one
end elastically restrained and the other end carrying a guided mass.

The consideration of the more general model was also motivated by the results
of Hinton and McCarthy [9] where the authors consider oscillations of a string
fixed at one end with a mass connected to a spring at the other end. This study
also considered minimizing the principal eigenvalue subject to a fixed total mass
constraint.

We also consider optimization problem on a graph. Our consideration of the
differential equations on a metric graph was motivated by the known extensive study
of the mechanical and electrical networks, such as circuit equations with distributed
parameters, string equations with the tip masses, and systems of beam equations
that model the structural constructions (see [15]). To our best knowledge, only the
direct problem has been studied so far, but we consider optimization. Though we
consider a simple graph, we believe that our research represents just the first step
in this promising direction.

The plan of the paper is as follows. In Section 2.1 we formulate the problem.
In Section 2.2 we formulate our main result. The proof of it occupies Sections 2.3,
3 and 4. In Section 2.3 we use the methods of the Calculus of Variations to find
critical points of the “mass” functional, i.e. functions p(x) and also y(x). These
functions contain several arbitrary constants. In Section 3, we find some conditions
on the parameters that guarantee that the function y(x) satisfies the boundary
conditions. In particular, we discover some zones of existence and non-existence
of the parameters. We find an explicit formula for every critical point p(x). In
Section 4, we derive an explicit expression for the “mass” at each critical point and
compare them. We also show that the result by [13] appears as a particular case
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of our general formulas. In Section 5 we consider the similar optimization problem
on a complete bipartite metric graph (star). In Section 6 we derive the design and
“mass” for a star with identical leafs and discuss the limiting case when the number
of leafs is increasing indefinitely. Section 7 contains a discussion of the results.

2. Calculations

2.1. Statement of the problem. We reduce our consideration to the particular
case q(x) ≡ 0. The reason for this is twofold. First, in many applications of problem
(1.10)-(1.12), there is no term containing the function q(x) (see [12, 13, 2, 3]).
Second, the calculations of the optimal form for q(x) 6≡ 0 seem to be intractable
in the frame of an analytic approach. We briefly outline our plans for this case in
Section 7.

Hence, we consider the Sturm-Liouville problem

(p(x)y′(x))′ + λp(x)r(x)y(x) = 0, (2.1)

cosα y(0) + sinαp(0)y′(0) = 0, (2.2)

−β1y(1) + β2p(1)y′(1) = λ[β′1y(1)− β′2p(1)y′(1)]. (2.3)

Here and everywhere below (1.13) is implicitly assumed. Though we consider an
abstract optimization problem, we prefer to use the physical terminology below, by
interpreting the variables as in Table 2.

Table 2. Interpretation in the Notation in (2.1) - (2.3)

Quantity Interpretation
p(x) Cross-Sectional Area of Rod
y(x) Axial Displacement
r(x) Density of Rod Material
λ ω2/E
ω Angular Frequency

As usual in the general theory of Sturm-Liouville problems, we will make the
following assumption motivated by the physical restrictions of designing a rod.

(A1) The cross-sectional area p(x) is continuous and strictly positive on [0, 1].
Only boundary parameters will be considered admissible which yield a pos-
itive p(x).

Note the difference between (1.2) and (2.1) due to the loss of the assumption
that the density is constant; this is, setting ρ = r(x) does not reduce (1.2) to (2.1)
since r(x) can not be factored out and incorporated into the spectral parameter.
We now formulate our problem.

Problem 2.1. Minimize the “mass” functional,

M [p] :=
∫ 1

0

p(x)r(x)dx (2.4)

associated with the Sturm-Liouville problem (2.1)-(2.3) if the principal eigenvalue,
λ1 > 0, of the problem is given. �

In view of (A1), the design p(x) must be positive. Problem 2.1 is a generalization
of the problems considered in [13, 12, 3].
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2.2. Formulation of the main result. We now formulate our result on minimiz-
ing the “mass” functional (2.4).

Theorem 2.2. For the Sturm-Liouville problem (2.1)-(2.3) subject to the condition
(1.13) and (A1),

(a) If α 6= π/2, then the functional M [p] has the critical point

pI(x) =
B sinh(2

√
λ1%(1) + tanh−1(ζ))

2
√
λ1r(x) cosh2(

√
λ1%(x) + 1

2 tanh−1(ζ))
, (2.5)

and if α 6= 0, π/2, then this functional has a second critical point

pII(x) =
B sinh(2

√
λ1%(1) + tanh−1(ζ))

2
√
λ1r(x) sinh2(

√
λ1%(x) + 1

2 tanh−1(ζ))
. (2.6)

Here

%(x) :=
∫ x

0

√
r(s)ds, (2.7)

B :=
β1 + λ1β

′
1

β2 + λ1β′2
, (2.8)

ζ := − sinh(2
√
λ1%(1))

α̂
B + cosh(2

√
λ1%(1))

, (2.9)

α̂ := cotα. (2.10)

Here we assume that

ζ ∈ (0, 1). (2.11)

(b) For α 6= 0, π/2, the “mass” of the design pI is less than the “mass” of the
design pII .

2.3. Solution to Problem 2.1. The proof of Theorem 2.2 is given in this Section
and Sections 3 and 4.

Theorem 2.2 Part I. We follow the development of Turner [13] to find the critical
points. Specifically, we formulate an isoperimetric problem in terms of the “mass”
functional

F [y, p] := M [p] +
∫ 1

0

Λ1(x)
(

(py′)′ + λ1pry
)
dx

+ Λ2

(
cosα y(0)) + sinαp(0)y′(0)

)
+ Λ3

(
[−β1y(1) + β2 p(1)y′(1)]− λ1[β′1 y(1))− β′2 p(1)y′(1)]

)
.

(2.12)
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Here Λ1(x), Λ2, Λ3 are Lagrange multipliers. Similarly to [13] (see also [8], [2], [3])
we compute the first variation of F [y, p]:

δF =
(
Λ1y

′δp
)
|10 +

(
Λ1pδy

′)|10 − (Λ′1pδy)|10
+ Λ2

(
cosα δy(0) + sinαp(0)δy′(0) + δp(0)y′(0)

)
+ Λ3

(
− β1δy(1) + β2(δp(1)y′(1) + δy′(1)p(1))

− λ1[β′1 δy(1)− β′2(δp(1)y′(1) + δy′(1) p(1))]
)

+
∫ 1

0

δy
(

(Λ′1p)
′ + Λ1λ1rp

)
dx

+
∫ 1

0

δp
(
− Λ′1y

′ + Λ1λ1ry + r
)
dx.

(2.13)

To find the stationary points, we set δF = 0 and use the fundamental lemma of
the Calculus of Variations to arrive at the following two differential equations

(pΛ′1)′ + λ1rpΛ1 = 0, (2.14)

−Λ′1y
′ + Λ1λ1ry + r = 0. (2.15)

Furthermore, we determine the following necessary conditions at the boundaries by
considering the terms in which each of the independent variations (δy(0), δy′(0),
δp(0), δy(1), δy′(1), and δp(1)) appears. The boundary conditions are as follows:

δy(0) : Λ2 cosα− Λ′1(0)p(0) = 0,

δy′(0) : p(0)(Λ2 sinα+ Λ1(0)) = 0,

δp(0) : y′(0)(Λ2 sinα+ Λ1(0)) = 0,

(2.16)

δy(1) : Λ′1(1)p(1)− Λ3(β1 + λ1β
′
1) = 0,

δy′(1) : Λ1(1)p(1)− Λ3p(1)(β2 + λ1β
′
2) = 0,

δp(1) : Λ1(1)y′(1)− Λ3y
′(1)(β2 + λ1β

′
2) = 0.

(2.17)

From the set of equations (2.16), we can exclude Λ2 to achieve (2.18) below and
from the set (2.17), we can exclude Λ3 to achieve (2.19),

Λ1(0) cos(α) + Λ′1(0)p(0) sinα = 0, (2.18)

−β1Λ1(1) + β2p(1)Λ′1(1) = λ1[β′1(Λ1(1))− β′2p(1)Λ′1(1)]. (2.19)

We note that the boundary-value problem (2.14), (2.18), (2.19) is the same as (2.1)-
(2.3). For this problem, it is well-known that the eigenspace is one dimensional.
Therefore the multiplicity of the principal eigenvalue λ1 is one, and we may conclude
that Λ1(x) = ky(x) or Λ1(x) = −ky(x) (for a constant k ∈ R \ {0}). Our necessary
conditions (2.14) and (2.15) then become the original ODE (2.1):

(py′)′ + λ1pry = 0 (2.20)

and one of the following non-linear differential equations:

− k(y′)2 + kλ1ry
2 + r = 0 (2.21)

or
k(y′)2 − kλ1ry

2 + r = 0. (2.22)
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We observe that the sign of k is not important and assume further that k > 0.
The solution of the equations (2.21) and (2.22) leads to valid critical points of the
functional (2.12). We find respectively,

y1(x) =
1√
λ1k

sinh(
√
λ1%(x) + C1) (2.23)

and

y2(x) =
1√
λ1k

cosh(
√
λ1%(x) + C2), (2.24)

where %(x) is defined by (2.7).
Note that due to the non-linear nature of (2.21) and (2.22), linear combinations

of these solutions are not necessarily solutions to (2.21) and (2.22).
The original differential equation (2.20) now becomes a first order linear dif-

ferential equation for the unknown design p(x). It may be rewritten in two ways
depending on what function yj(x), j = 1, 2 is used,

(py′1)′ + λ1pry1 = 0, (2.25)

(py′2)′ + λ1pry2 = 0. (2.26)

Solving the differential equation (2.25) gives the design,

p1(x) = C3

√
r(0) cosh2(C1)√

r(x) cosh2(
√
λ1%(x) + C1)

(2.27)

with the arbitrary constants C3 and C1. We note that by (A1) C3 > 0.
Solving (2.26) gives the design

p2(x) = C4

√
r(0) sinh2(C2)√

r(x) sinh2(
√
λ1%(x) + C2)

(2.28)

with the arbitrary constants C4 and C2. We note that by (A1) the design should be
continuous and strictly positive. This requires that C4 > 0 and C2 ∈ (−∞,−

√
λ1%(1))∪

(0,∞). The condition on C2 can be derived by enforcing that the arguments of the
sinh2 functions in both the numerator and the denominator not be equal to zero.
This derivation is as follows:

Observe that if C2 > 0, (A1) is obviously satisfied (see the definition (2.7) of
%(x)). Similarly, if C2 = 0, the denominator is equal to zero at x = 0. Further, if
C2 < −

√
λ1%(1), the arguments of both sinh2 functions are negative and the design

is strictly positive. If 0 > C2 > −
√
λ1%(1), the argument has a unique zero at the

point x0 ∈ (0, 1) where √
λ1

∫ x0

0

√
r(s)ds = −C2. (2.29)

Therefore (A1) is satisfied when C2 ∈ (−∞,−
√
λ1%(1)) ∪ (0,∞). Thus, we have

two distinct stationary points of our variational problem. �

3. Boundary conditions: zones of existence and non-existence

Proof of Theorem 2.2 part II. We use the boundary conditions of our problem,
(2.2) and (2.3), to determine arbitrary constants, as well conditions for which a
solution exists. We discern three cases, shown in Table 3.

First, we consider the solutions stemming from p1.
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Table 3. Summary of Cases

p(x) α Case for Constants and Existence Final Design
p1(x) 0 Case(1) (3.5)

π/2 Case(2) Does Not Exist
6= 0, π/2 Case(3) (3.13)

p2(x) 0 Case(4) Does Not Exist
π/2 Case(5) Does Not Exist
6= 0, π/2 Case(6) (3.22)

Case (1) In this case y = y1 as given by (2.23), p = p1 as given by (2.27), and
α = 0. The boundary condition (2.2) immediately implies

C1 = 0. (3.1)

The boundary condition (2.3), after the long but simple algebraic manipulations
leads to the following

C3 =
B sinh(2

√
λ1%(1))

2
√
λ1r(0)

. (3.2)

Since it is required that p(x) > 0, a solution exists when

B > 0 (3.3)

or equivalently

β′1β
′
2

(
λ1 +

β1

β′1

)(
λ1 +

β2

β′2

)
> 0. (3.4)

Here the final design p1 is

p1;1(x) =
B sinh(2

√
λ1%(1))

2
√
λ1r(x) cosh2(

√
λ1%(x))

. (3.5)

Case (2) Note that for p1, the solution does not exist when α = π/2. To see this,
consider that when α = π/2, (2.2), together with (2.23), (2.7), and (2.27) becomes

C3

√
r(0) cosh(C1) = 0. (3.6)

Due to the condition that C3 > 0 (which follows from (A1)), this boundary condi-
tion cannot be satisfied.
Case (3) In this case y = y1 as given by (2.23), p = p1 as given by (2.27), and
α 6∈ {0, π/2}. The boundary condition (2.2) immediately implies

C3 = − α̂ tanh(C1)√
λ1 r(0)

. (3.7)

Isolating C3 from the boundary condition (2.3) (see also (2.23) and (2.27)) and
equating the result with (3.7) gives the equation

B sinh(2
√
λ1%(1) + 2C1)

2
√
λ1r(0) cosh2(C1)

= C3 = − α̂ tanh(C1)√
λ1r(0)

. (3.8)

After some algebraic manipulations and utilization of the notation (2.9) we arrive
at

tanh(2C1) = ζ. (3.9)
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This results in the following formulas

C1 =
1
2

tanh−1(ζ), (3.10)

C3 =
B sinh(2

√
λ1%(1) + 2C1)

2 cosh2(C1)
√
λ1r(0)

= p1(0), (3.11)

the first of which is well-defined since ζ ∈ (0, 1) by (2.11).
Here a solution exists as long as the resulting design p(x) is positive definite.

The representation (2.27) shows that this is equivalent to the inequality C3 > 0, or
by (3.7), α̂C1 < 0, or by (3.10) α̂ζ < 0, or by (2.11),

α̂ < 0. (3.12)

The final design is given by

p1;3(x) =
B sinh(2

√
λ1%(1) + tanh−1(ζ))

2
√
λ1r(x) cosh2(

√
λ1%(x) + 1

2 tanh−1(ζ))
. (3.13)

We now consider the solution stemming from p2.
Case (4) We note that for α = 0 the solution does not exist. Indeed, for α = 0,
(2.2), together with (2.24) implies

cosh(C2) = 0 (3.14)

which is a contradiction.
Case (5) Likewise, for α = π/2, (2.2) implies

C4

√
r(0) sinh(C2) = 0. (3.15)

If C2 = 0, then p2(x) = 0 for all x ∈ (0, 1) which contradicts (A1). If C4 = 0, then
the same contradiction of (A1) is seen; therefore (3.15) cannot be satisfied, and the
solution does not exist.
Case (6) In this case y = y2 as given by (2.24), p = p2 as given by (2.28), and
α 6∈ {0, π/2}. The boundary condition (2.2) immediately implies that

C4 =
−α̂ coth(C2)√

λ1r(0)
. (3.16)

Isolating C4 from the boundary condition (2.3) (see also (2.24) and (2.28)) and
equating the result with (3.16) gives the equation

B sinh(2
√
λ1%(1) + 2C2)

2
√
λ1r(0) sinh2(C2)

= − α̂ coth(C2)√
λ1r(0)

. (3.17)

After some algebraic manipulations and utilization of the notation (2.9), we arrive
at

tanh(2C2) = ζ. (3.18)
This results in the formulas

C2 =
1
2

tanh−1(ζ), (3.19)

C4 =
B sinh(2

√
λ1%(1) + 2C2)

2 sinh2(C2)
√
λ1r(0)

= p2(0) (3.20)

provided that ζ ∈ (−1, 0) ∪ (0, 1). Note that formula for C2 in this case coincides
with the formula for C1 in Case(3). A solution exists in this case as long as the



10 B. P. BELINSKIY, D. H. KOTVAL EJDE-2018/119

resulting design is positive definite, again this means that from (2.28), C4 > 0. By
(3.16) α̂C2 < 0 or by (3.18) α̂ζ < 0, or by (2.9),

α̂
α̂
B + cosh(2

√
λ1%(1)

> 0. (3.21)

Note that this condition is exactly the same as (3.12). The final design is given by

p2;6(x) =
B sinh(2

√
λ1%(1) + tanh−1(ζ))

2
√
λ1r(x) sinh2(

√
λ1%(x) + 1

2 tanh−1(ζ))
. (3.22)

So far, the proof does not establish that λ1 > 0 is actually the principal eigen-
value. We establish this with the help of the zero properties of the first eigenfunc-
tion, see [11, Theorem 1, p. 445]. According to this theorem, the first (and only
first) eigenfunction has no zeros in (0, 1). We now analyze the eigenfunctions (2.23)
and (2.24). Obviously the eigenfunction y2(x) > 0. The eigenfunction y1(x) > 0
in (0, 1) if C1 ≥ 0 which takes place because either (3.1) for Case (1) or (3.10) and
(2.11) for Case (3), and this completes the proof of Theorem 2.2 part (a). �

4. “Mass” functional

We now compare the total “mass” of each design (critical point), i.e. (3.13) and
(3.22) for α 6= {0, π/2}, when both designs exist. Hence, we compare both

M [p1;3] =
C3 cosh2(C1)

√
r(0)√

λ1

[tanh(
√
λ1%(1) + C1)− tanh(C1)], (4.1)

and

M [p2;6] =
C4 sinh2(C2)

√
r(0)√

λ1

[coth(C2)− coth(
√
λ1%(1) + C2)], (4.2)

where based on previous considerations

C1 =
1
2

tanh−1(ζ), C2 =
1
2

tanh−1(ζ),

C3 =
B sinh(2

√
λ1%(1) + 2C1)

2 cosh2(C1)
√
λ1r(0)

,

C4 =
B sinh(2

√
λ1%(1) + 2C2)

2 sinh2(C2)
√
λ1r(0)

.

Then it follows that

M [p1;3] =
B sinh(

√
λ1%(1) + C1) sinh(

√
λ1%(1))

λ1 cosh(C1)
, (4.3)

M [p2;6] =
−B cosh(

√
λ1%(1) + C2) sinh(

√
λ1%(1))

λ1 sinh(C2)
. (4.4)

At this point, we note that the total “mass” for design p2;6(x), formally speaking,
may be negative for some combination of parameters. Rather than discuss when
this “mass” is positive, we consider the following quotient∣∣∣M [p1;3]

M [p2;6]

∣∣∣ =
∣∣∣− sinh(

√
λ1%(1) + C1) sinh(C2)

cosh(
√
λ1%(1) + C2) cosh(C1)

∣∣∣. (4.5)
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Noting that C1 = C2, we have∣∣∣M [p1;3]
M [p2;6]

∣∣∣ =
∣∣∣− tanh(

√
λ1%(1) + C1) tanh(C1)

∣∣∣ < 1. (4.6)

So regardless of when p2;6(x) has a positive “mass”, we conclude that the design
corresponding to p1;3(x) will always have less “mass” than the one corresponding
to p2;6(x), and this completes the proof of part (b), and hence the proof of Theorem
2.2.

Remark 4.1. We analyze the design (3.13) as the function of α. It is easy to
check that if α → 0, i.e. α̂ → ∞, then ζ → 0, and the design (3.13) approaches
the design (3.5). Similarly, if α→ π/2, i.e. α̂→ 0, then ζ → − tanh(2

√
λ1%(1)), so

that 2
√
λ1%(1) + tanh−1(ζ)→ 0, and the design (3.13) is not positive (see Case (2)

above).

Remark 4.2. If α = 0 then

M [p1;1] =
C3 cosh2(C1)

√
r(0)√

λ1

[tanh(
√
λ1%(1) + C1)− tanh(C1)], (4.7)

where C1 = 0 as in (3.1) and C3 is given by (3.2). Substituting in these values and
simplifying gives

M [p1;1] =
B sinh2(

√
λ1%(1))

λ1
=
β1 + λ1β

′
1

β2 + λ1β′2

sinh2(
√
λ1%(1))
λ1

.

In this case, we can recover the result of Turner [13]. To see this, set β1 = β2 =
β′2 = 0, β′1 = M1 and r(x) = ρ. This gives

M [p1;1] = M1 sinh2(
√
λ1

∫ 1

0

√
ρdx) = M1 sinh2(

√
λ1ρ). (4.8)

Recall from Table 1 and Table 2 that λ = ω2

E and γ2 = ω2ρ
E . From these two

equations, it follows that √
λ1 =

ω1√
E

(4.9)

and

γ1 =
ω1
√
ρ

√
E

. (4.10)

We see by substituting (4.9) into (4.10) that we have

M [p1;1] = M1 sinh2(γ1). (4.11)

We see complete agreement with the result of Turner in (1.9) since for our problem
L = 1.

5. Optimization problem on a metric graph

We now consider the similar optimization problem on a complete bipartite metric
graph K1,n, n > 1 that we will call the star for brevity. We denote J := {1, . . . , n}
and equip every leaf ej , j ∈ J of the graph with the coordinate xj ∈ [0, aj ], where
xj = 0 is the common vertex of all leafs. The wave type partial differential equations
on a metric graph appear naturally in engineering problems relating to mechanical
and electrical networks [15]. One of the models is a system of strings (or rods) with
the tip masses. After separating variables and removing the harmonic (in time)
factor, we come up with a Sturm-Liouville problem on the system of strings (see
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Fig. 1). We assume that the displacements are continuous at the common point
of all string and this point is attached to an elastic string, so that Hook’s law is
satisfied. Further, we assume that some masses are attached to the other end points
of the strings (see the boundary condition (1.3)). Hence, we come to the following
problem.

x0x1

x2
x4

x3

x5

xjxn

e1

e2

e3
e4

e5

ejen

Figure 1. Graph K1,n

We consider the Sturm-Liouville problem on the metric graph

(pj(x)y′j(x))′ + λ1pj(x)rj(x)yj(x) = 0, 0 < xj < aj , j ∈ J ; (5.1)

yj(0) = yk(0) for all j, k ∈ J, j 6= k; (5.2)

cosα yj(0) + sinα
∑
J

(pj(0)y′j(0)) = 0, (5.3)

− β1,jyj(aj) + β2,jpj(aj)y′j(aj) = λ1[β′1,jyj(aj)− β′2,jpj(aj)y′j(aj)], j ∈ J. (5.4)

Here and below we use the abbreviation
∑
J :=

∑
j∈J .

The boundary condition (5.2) allows us to let yj(0) := 1, j ∈ J . We note that
the condition (5.3) has the meaning of Hook’s law, and that allows us to view the
graph K1,n as a mechanical construction. Hence, it is natural to introduce the
following simplifying assumption

pj(0) = pk(0) := p(0), rj(0) = rk(0) := r(0) ∀j, k ∈ J, (5.5)

which means that the cross-sectional area of the rods and their densities are con-
tinuous at the common knot x = 0.

Our goal is to optimize the “mass” functional

M :=
∫
K1,n

rp dx. (5.6)
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We introduce the functional similar to (2.12),

F [p1, . . . , pn, y1, . . . , yn] :=
∫
K1,n

(
rp+ Λ1

(
((py′)′ + λ1rpy

))
dx

+
∑
J

Λ2

(
− β1y + β2py

′ − λ1[β′1y − β′2py′]
)
.

(5.7)

Here and below we use the abbreviations∫
K1,n

fdx :=
∑
J

∫ aj

0

fjdx,
∑
J

f :=
∑
J

fj(aj).

As in Section 2, we use the optimality condition δF = 0. We skip cumbersome
calculations that are philosophically similar to once in Section 2 and allow us to
find two types of critical point on each of the leafs ej ,

y+
j (x) =

cosh(
√
λ1%j(x) + C+

j )

cosh(C+
j )

, p+
j (x) =

C
√
r(0) sinh2(C+

j )√
rj(x) sinh2(

√
λ1%j(x) + C+

j )
,

y−j (x) =
sinh(

√
λ1%j(x) + C−j )

sinh(C−j )
, p−j (x) =

C
√
r(0) cosh2(C−j )√

rj(x) cosh2(
√
λ1%j(x) + C−j )

,

(5.8)

where

%j(x) :=
∫ x

0

√
rj(s)ds (5.9)

and C±j , C are arbitrary constants, so that C = p±j (0). We note that the constant
C is indeed the same for all j in view of (5.5).

Since any of the critical points may be chosen on the j−th leaf, the total number
of critical points for the optimization problem on the graph K1,n is 2n. We denote
the set of leafs where the point (y±j , p

±
j ) is chosen on the j−th leaf as J±, so that

J+ ∪ J− = J . We do not exclude that one of the sets J± is empty. The boundary
condition (5.3) implies

cosα+ sinαC
√
λ1r(0)

(∑
J+

tanh(C+
j ) +

∑
J−

coth(C−j )
)

= 0, (5.10)

so that

C = − α̂√
λ1r(0)

(∑
J+ tanh(C+

j ) +
∑
J− coth(C−j )

) , (5.11)

where α̂ is defined by (2.10). The boundary conditions at the vertices x = aj , j ∈ J
of the leafs lead to the equations

(a) If j ∈ J+, then

− β1,j cosh
(√

λ1%j(ai) + C+
j

)
+ β2,jC

√
λ1r(0)

sinh2(C+
j )

sinh
(√
λ1%j(ai) + C+

j

)
= λ1

[
β′1,j cosh

(√
λ1%j(ai) + C+

j

)
− β′2,jC

√
λ1r(0)

sinh2(C+
j )

sinh
(√
λ1%j(ai) + C+

j

)].
(5.12)
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(b) If j ∈ J−, then

− β1,j sinh
(√

λ1%j(ai) + C−j
)

+ β2,jC
√
λ1r(0)

cosh2(C−j )

cosh
(√
λ1%j(ai) + C−j

)
= λ1

[
β′1,j sin

(√
λ1%j(ai) + C+

j

)
− β′2,jC

√
λ1r(0)

cosh2(C−j )

cosh
(√
λ1%j(ai) + C−j

)].
(5.13)

Using notation similar to (2.8),

Bj :=
β1,j + λ1β

′
1,j

β2,j + λ1β′2,j
, j ∈ J (5.14)

in equations (5.12) and (5.13) we find two expressions for C:

C =
Bj

2
√
λ1r(0)

sinh(2
√
λ1%j(aj) + 2C+

j )

sinh2(C+
j )

if j ∈ J+;

C =
Bj

2
√
λ1r(0)

sinh(2
√
λ1%j(aj) + 2C−j )

sinh2(C−j )
if j ∈ J+.

(5.15)

Combining the formulas (5.11), (5.15) we get the system of n equations for n con-
stants C±j , j ∈ J similar to (3.8) and (3.17),

Bj sinh(2
√
λ1%j(aj) + 2C+

j )

sinh2(C+
j )

= − α̂∑
J+ tanh(C+

j ) +
∑
J− coth(C−j )

if j ∈ J+;

Bj sinh(2
√
λ1%j(aj) + 2C−j )

cosh2(C−j )

= − α̂∑
J+ tanh(C+

j ) +
∑
J− coth(C−j )

if j ∈ J−.

(5.16)

It may be shown that if J+ = ∅, J− = {1} or J− = ∅, J+ = {1}, the system (5.16)
results in (3.8) or (3.17). We are not optimistic though about possibility to solve
the system (5.16) in the general case.

6. Optimization problem on a star graph with identical leafs. The
limiting case

Instead of the general star, we consider a particular case when all leafs are of
the same length and the pj , rj , Bj are the same on all leafs, so that we may skip
the index j. We also let aj := 1 as in Sections 2-4. We assume J+ = ∅. This
choice is based on the observation that the design p1;3 in Theorem 2.2 (Section 4)
results in the minimal “mass”. Correspondingly, we assume α 6= π/2. Following
these Sections, we denote C−j := C1.

Theorem 6.1. For a star graph with identical leafs, the following statements hold.
(a) The “mass” (5.6) has the form

M =
nB sinh(

√
λ1%(1) + C1) sinh(

√
λ1%(1))

λ1 cosh(C1)
. (6.1)
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(b) If the parameter κ := nB is large and α ∈ (0, π/2), then the asymptotic
representation holds

M =
α̂

λ1
sinh2(

√
λ1%(1)) +O

( 1
κ

)
. (6.2)

Proof. Instead of the system (5.16) we have

B sinh(2
√
λ1%(1) + 2C1)

2 cosh2(C1)
= − α̂

n cothC1
, (6.3)

so that similarly to (3.10) and (2.9),

C1 =
1
2

tanh−1(ζn) (6.4)

where

ζn := − sinh(2
√
λ1%(1))

α̂
Bn + cosh(2

√
λ1%(1))

. (6.5)

Here %(x) is defined as in (2.7) and (5.9).
The design (5.8) implies

p(x) =
B sinh(2

√
λ1%(1) + tanh−1(ζn))

2
√
λ1r(x) cosh2(

√
λ1%(x) + 1

2 tanh−1(ζn))
, (6.6)

which is similar to (3.13).
We finally evaluate the “mass” (5.6),

M =
∫
K1,n

rpdx = n

∫ 1

0

rpdx =
nB sinh(

√
λ1%(1) + C1) sinh(

√
λ1%(1))

λ1 cosh(C1)
(6.7)

and this completes the proof of Theorem 6.1 (a). We note that the representation
(6.7) is similar to (4.3).

We further consider the limiting case n → ∞, that may be interpreted as opti-
mization problem for a star with infinitely many leafs. More specifically, we assume
that the parameter κ = Bn is large, i.e.

κ := nB � 1. (6.8)

Our goal is to find the leading terms of the asymptotic representation for the “mass”
as κ→∞. Firstly, we find from (6.5)

ζn = − tanh(2
√
λ1%(1)) +

α̂

κ

sinh(2
√
λ1%(1))

cosh2(2
√
λ1%(1))

+O
( 1
κ2

)
. (6.9)

Further, from (6.4) we derive

2C1 = tanh−1(ζn) = −2
√
λ1%(1) +

α̂

κ
· sinh(2

√
λ1%(1)) +O

( 1
κ2

)
, (6.10)

so that √
λ1%(1) + C1 =

α̂

κ

sinh(2
√
λ1%(1))

2
+O

( 1
κ2

)
.
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Based on (5.8), (5.15), (6.10), we now can find the asymptotic representation for
y(x) and p(x). We skip calculations and only give the results

y(x) =
sinh(

√
λ1(%(1)− %(x)))

sinh(
√
λ1%(1))

+O
( 1
κ

)
,

p(x) =
sinh(2

√
λ1%(1))α̂

2n
√
λ1r(x) cosh2(

√
λ1(%(1)− %(x)))

+O
( 1
κ2

)
.

(6.11)

The asymptotic representation for the “mass” (6.7) appears based on the asymp-
totic representation (6.4). After some algebraic manipulations we find

M =
α̂

λ1
sinh2(

√
λ1%(1)) +O

( 1
κ

)
. (6.12)

The answer makes sense if α ∈ (0, π/2). This completes the proof of part (b), and
hence the proof of Theorem 6.1 is complete. �

Remark 6.2. Comparison of the formulas (6.5) and (2.9) shows that the formu-
las for one interval and the star with identical leafs are quite similar except the
parameter α̂ is changed for α̂/n.

Remark 6.3. (a) The leading terms of the asymptotic representation for y(x), p(x)
and M do not depend on the parameters βk, β′k, k = 1, 2.

(b) It is rather easy to check that the leading terms of the asymptotic represen-
tation (6.11) for y(x) and p(x) satisfy the boundary conditions at the vertex x = 0
exactly and the boundary conditions at the vertices xj = 1 within an error O

(
1
κ

)
.

Remark 6.4. We suggest the following interpretation of our asymptotic formulas.
(a) The boundary condition (5.3) at the vertex x = 0 of the graph has the form

cosα y(0) + sinα · n p(0)y′(0) = 0. (6.13)

It may be viewed as “almost” Neumann condition for the Sturm-Liouville problem
on a single interval (0, 1),

p(0)y′(0) = − α̂
n

(6.14)

where we use our usual normalization y(0) = 1 and the notation α̂ = cotα (2.10).
Hence, for n → ∞, the star is split into n disconnected leafs with the boundary
condition at x = 0 that “approaches” Neumann condition. It is not too complex
to check the following. If we take the formula for the optimal “mass” M [p] for
the Sturm-Liouville problem on one interval (4.3) with α̂ formally substituted by
α̂/n (see Remark 6.2), then multiply this “mass” by n, and find the first term of
asymptotic representation as n→∞, then we get the leading term of the formula
for the “mass” of the star (6.12). We skip this calculation since it almost repeats
calculation (6.9)-(6.12).
(b) It is interesting to note that if we consider the limiting case of the boundary
condition (6.14), i.e. y′(0) = 0, then, in terms of the boundary condition (1.11), we
need to let α = π/2, and, as we show in Section 3, the corresponding critical point
does not exist. Simultaneously, the leading term of the asymptotic representation
(6.12) for the “mass” of the star vanishes. That shows that indeed the value of the
parameter α = π/2 should be excluded from consideration.
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7. Conclusion and discussion

We consider the optimal design problem modeled by a Sturm-Liouville problem
on an interval or a complete bipartite graph and find the explicit formulas for the
optimal design. We analyze the intervals of the parameters where such a design ex-
ists. We are motivated by the known publications on (a) the Sturm-Liouville prob-
lem with the spectral parameter that appears in the boundary conditions linearly;
(b) optimization problem for an elastic rod with an attached mass; (c) differential
equations describing mechanical and electrical networks.
1. There are two surprises the authors discovered in this study. (a) The existence
of a solution corresponding to the design p2(x), not only to p1(x) as in [13], [12], [3].
(b) The existence of the limit of the “mass” functional for the star as the number of
leafs increases indefinitely. As for (a), this other solution was not expected, though
the fact that it does not exist for either α = 0 or α = π/2 explains, to some extent,
why it was elusive. In this work, it appears unfruitful since it does not lead to a
minimum “mass” design, yet we feel it is important to include since this critical
point might be of interest for other optimization problems. It is also intriguing
that this solution does not exist for both α = 0 and α = π/2. As for (b), we
interpret this phenomenon in terms of the split of the star into disconnected leafs
with “almost” Neumann condition at the vertex x = 0. Generally speaking, for a
mechanical construction, disconnection of the leafs may result in a destruction of
this construction. Both phenomena (a) and (b) may give an interesting chance for
further studies.
2. In the case α = 0, the functional M [p] has only one critical point, and based on
the duality that was derived in [12], we may expect that the following two problems
have the same optimal solution p(x):

(I) Given r(x), β1, β2, β′1, β′2, and λ1, find p(x) such that M [p] → min.
(II) Given r(x), β1, β2, β′1, β′2, and M , find p(x) such that λ1[p] → max.
We have solved Problem (I) but may hope that the optimal p(x) from solving

(I) is the same as the optimal p(x) from solving (II). The validity of this duality in
the case of multiple critical points should be studied further.
3. We have made some restrictions on the data in the process of the construction of
the optimal solution. Removing them would represent a challenging problem. (a)
We assumed q(x) ≡ 0. The reason for this is twofold. First, in many applications
of the problem (1.10)-(1.12), there is no term containing the function q(x). Second,
the calculations of the optimal form for q(x) 6≡ 0 seem to be intractable in the frame
of an analytic approach. Yet, the complete analysis here is probably possible at
the numerical level. For example, an alternative approach for a similar but simpler
problem based on the discretization is developed in [5], [2], [3]. (b) We assumed
r(x) > 0. Removing this condition is non-trivial since even to analyze the Sturm-
Liouville problem itself, before solving optimization problem, it is necessary to work
in a space with indefinite metric [16].
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