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GENERIC REACTION-DIFFUSION MODEL WITH
APPLICATION TO IMAGE RESTORATION AND
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Abstract. This article provides the existence of a global solution to a generic

reaction-diffusion system. The main result is a generalization of the work
presented by [2, 5, 11] in the case of a reaction-diffusion equation. We show

the existence of a global weak solution to the considered system in the case of
quasi-positivity and a triangular structure condition on the nonlinearities [12].

An example of application of our result is demonstrated on a novel bio-inspired

image restoration model [1].

1. Introduction

Nowadays, reaction-diffusion models play an important role in information pro-
cessing. Non-linear reaction-diffusion models can describe many natural phenomena
in a wide range of disciplines. Over the last few years, some amazing results were
observed in engineering applications such as image processing. Among these appli-
cations, we cite Fitzhugh-Nagumo [6] model which allowed the detection of noisy
image contours. We also cite the anisotropic diffusion described by Perona and
Malik which includes local information to reduce noise and enhance contrast while
preserving the edge. From where the idea of Catté et al. [5] to integrate directly the
regularization into the equation by convolving the image with the Gaussian filter
on the gradient of the noisy image to smooth the image first in order to avoid the
dependence of the numerical scheme between the solution and the regularization
procedure, this makes the problem well posed and the existence and uniqueness
of the problem was proven by Catté et al. [5]. Other generalization of this work
were made by Whitaker and Pizer, Li and Chen [8] and Weickert and Benhamouda
[15]. In 2006, Morfu [10] proposed a model performing noise filtering and contrast
enhancement where he combined the nonlinear diffusion process ruled by Fischer
equation that was originally used to describe the spreading process of biological
population without establishing any existence or consistency result. Until the work
of Alaa et al. [2] combining the regularization procedure in Catté with Morfu model,
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the authors were able to demonstrate the existence and consistency of the their pro-
posed model. We build up on their works by providing a generalization to the case
of reaction-diffusion systems. In this paper, we tackle the global existence problem
for a general reaction-diffusion system written in the form

∂tu− div(A(|∇uσ|)∇u) = f(t, x, u, v) in QT ,

∂tv − dv∆v = g(t, x, u, v) in QT ,

∂νu = 0 ∂νv = 0 on ΣT ,

u(0, ·) = u0(·) v(0, ·) = v0(·) in Ω,

(1.1)

where Ω is a smooth bounded domain in Rn and T ∈ (0,∞[, QT =]0, T [×Ω and
ΣT =]0, T [×∂Ω where ∂Ω denotes the boundary of Ω. ν is the outward normal to
the domain and ∂ν is the normal derivative.

Let σ > 0, ∇uσ be a regularization by convolution of ∇u. It is defined as
∇uσ = ∇(Gσ ∗ u) where Gσ is the gaussian function. The anisotropic diffusitivity
A is a smooth non-increasing function such that A(0) = 1 and lims→∞A(s) = 0.

The nonlinear functions f, g : QT×R2 → R are measurable and f(t, x, .), g(t, x, .) :
R2 → R are continuous. In addition the nonlinearities satisfy the positivity prop-
erty

f(t, x, 0, s) ≥ 0 ∀s ≥ 0 and g(t, x, r, 0) ≥ 0 ∀r ≥ 0 (1.2)

and a triangular structure

(f + g)(t, x, r, s) ≤ L1(r + s+ 1) and g(t, x, r, s) ≤ L2(r + s+ 1) (1.3)

where L1 and L2 are positive constant. Furthermore,

sup
|r|+|s|≤R

(|f(t, x, r, s)|+ |g(t, x, r, s)|) ∈ L1(QT ) (1.4)

for R > 0. However there is no further assumption on their growth. The initial
conditions u0, v0 are only assumed to be square integrable.

Before tackling the main problem, we clearly state our definition of weak solution
to the reaction-diffusion system.

Definition 1.1. We call (u, v) a weak solution of the system (1.1) if

• u, v ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), u(0, ·) = u0 and v(0, ·) = v0

• ∀φ, ψ ∈ C1(QT ) such that φ(·, T ) = 0 and ψ(·, T ) = 0 we have∫
QT

−u∂tφ+A(|∇uσ|)∇u∇φ =
∫
QT

f(t, x, u, v)φ+
∫

Ω

u0φ(·, 0)∫
QT

−v∂tψ + dv∇v∇ψ =
∫
QT

g(t, x, u, v)ψ +
∫

Ω

v0ψ(·, 0),
(1.5)

where f(t, x, u, v), g(t, x, u, v) ∈ L1(QT ).

Now, we enunciate the main result of the paper.

Theorem 1.2. Under the assumptions (1.2-1.4) and for a continuous function
A as described above. The reaction-diffusion system (1.1) admits a global weak
solution (u, v) in the sense defined in (1.5) for all u0, v0 ∈ L2(Ω) such that u0, v0

are positive.



EJDE-2018/125 GENERIC REACTION-DIFFUSION MODEL 3

To prove our main result, we will proceed by steps. We truncate the problem and
show that the approximate problem admits weak solutions using a Schauder fixed
point. Afterward, we will provide some essential compactness and equi-integrablity
results in order to pass to the limit and rigourously demonstrate the existence of
global weak solution to the considered model. The layout of the paper is then as fol-
lows. First, the next section deals with an intermediate result where nonlinearities
are bounded. In section two, we analyse the truncated problem, prove necessary
estimations and show the convergence toward a global weak solution. Section three
is a straightforward application of our result in a novel modified Fitz-Hugh-Nagumo
model for image restoration. Lastly, a summary and conclusion are presented.

2. Existence result for truncated nonlinearities

In this presentation, we will first show the existence result for bounded source
terms f, g. Then we will tackle in the next section the case of unbounded nonlin-
earities. For readability purposes, we denote by V = H1(Ω) and H = L2(Ω).

Theorem 2.1. Under the above assumptions on the nonlinearities, if there exist
Mf ,Mg ≥ 0, such that for almost every (t, x) ∈ QT ,

|f(t, x, r, s)| ≤Mf , |g(t, x, r, s)| ≤Mg, ∀(r, s) ∈ R2, (2.1)

then for every u0, v0 ∈ L2(Ω), there exists a weak solution (u, v) to the considered
system (1.1). Moreover there exists C(Mf ,Mg, σ, T, ‖u0‖L2(Ω), ‖v0‖L2(Ω)) such that

‖(u, v)‖L∞(0,T ;H)2 + ‖(u, v)‖L2(0,T ;V)2 ≤ C (2.2)

Furthermore if u0, v0 are positive and f, g are quasi-positive then u(t, x) ≥ 0 and
v(t, x) ≥ 0 for a.e. (t, x) ∈ QT
Remark 2.2. Note that a proof of positivity relies on the quasipostivity of nonlin-
earities. This proof was presented in [2] in the case of reaction-diffusion equation.
For the sake of simplicity we omit its proof here since it can be easily extended
to the case of this system, we refer interested readers to the previously mentioned
paper.

Proof. We will show the existence of a weak solution by the classical Schauder fixed
point theorem. We introduce the space

W(0, T ) = {u, v ∈ L2(0, T ;V) ∩ L∞(0, T ;H) : ∂tu, ∂tv ∈ L2(0, T ;V ′)} (2.3)

Let w = (w1, w2) ∈ W(0, T ) and let (u, v) be the solution of a linearization of
problem (1.1) given by

(u, v) ∈ L2(0, T ;V) ∩ C(0, T ;H)

∀φ, ψ ∈ C1(QT ) such that ψ(·, T ) = 0 and φ(·, T ) = 0∫
QT

−u∂tφ+A(|∇(w1)σ|)∇u∇φ =
∫
QT

f(t, x, w1, w2)φ+
∫

Ω

u0φ(·, 0)∫
QT

−v∂tψ + dv∇v∇ψ =
∫
QT

g(t, x, w1, w2)ψ +
∫

Ω

v0ψ(·, 0)

(2.4)

The application w ∈ W(0, T ) → (u, v) ∈ W(0, T ) is clearly well defined. In fact,
w1 is in L∞(0, T ;H), Gσ is C∞(QT ) therefore A(|∇(w1)σ|) is C∞(QT ) and since A
is non-increasing it satisfies

a ≤ A(|∇wσ|) ≤ d (2.5)
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where d > 0 and a is a positive constant that depends only on σ and A. This
last property coupled with the fact that nonlinearities are bounded implies that the
differential operators in (2.4) are continous and coercive thus by application of the
standard theory of Partial Differential Equations see [9, 3, 4] we obtain (u, v) the
solution of the linearized problem (2.4).

Now we establish some important estimates to construct the functional setting
where Schauder fixed point theory is applicable. The following result holds for
0 ≤ t ≤ T ,

1
2

∫
Ω

u2(t) +
∫
QT

A(|∇(w1)σ|) |∇u|2 =
1
2

∫
Ω

u0
2 +

∫
QT

u f(t, x, w1, w2)

1
2

∫
Ω

v2(t) + dv

∫
QT

|∇v|2 =
1
2

∫
Ω

v0
2 +

∫
QT

v g(t, x, w1, w2)
(2.6)

Consequently, ∫
Ω

u2(t) ≤Mf +
∫
QT

u2 +
∫

Ω

u0
2∫

Ω

v2(t) ≤Mg +
∫
QT

v2 +
∫

Ω

v0
2

(2.7)

Using Gronwall’s inequality we obtain∫
QT

u2 ≤ (exp(T )− 1)
(
Mf +

∫
Ω

u0
2
)

∫
QT

v2 ≤ (exp(T )− 1)
(
Mg +

∫
Ω

v0
2
) (2.8)

Substituting the expression above in (2.6), we obtain the desired result,

sup
0≤t≤T

∫
Ω

u2(t) ≤Mf +
(

exp(T )− 1
)(
Mf +

∫
Ω

u0
2
)

+
∫

Ω

u0
2 := Cu

sup
0≤t≤T

∫
Ω

v2(t) ≤Mg + (exp(T )− 1)
(
Mg +

∫
Ω

v0
2
)

+
∫

Ω

v0
2 := Cv

(2.9)

Therefore by setting C1 = max(Cu, Cv) we get

‖(u, v)‖L∞(0,T ;H)2 ≤ C1 (2.10)

Using (2.6) and (2.5) we deduce∫
QT

u2 + |∇u|2 ≤
Mf +

∫
QT

u2 +
∫

Ω
u0

2

min( 1
2 , a)

≤ C ′u∫
QT

v2 + |∇v|2 ≤
Mg +

∫
QT

v2 +
∫

Ω
v0

2

min( 1
2 , dv)

≤ C ′v

(2.11)

Setting C2 = max(C ′u, C
′
v), we conclude that

‖(u, v)‖L2(0,T ;V)2 ≤ C2 (2.12)

Next we estimate the ∂tu and ∂tv in L2(0, T ;V ′). We know that

∂tu = div(A(|∇uσ|)∇u) + f(t, x, u, v)

∂tv = dv ∆v + g(t, x, u, v)
(2.13)
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It follows that
‖∂tu‖L2(0,T ;V′) ≤ C ‖∇u‖L2(QT ) +MfT

‖∂tv‖L2(0,T ;V′) ≤ dv‖∇v‖L2(QT ) +MgT
(2.14)

Thereafter,
‖∂tu‖L2(0,T ;V′) ≤ C C1 +MfT

‖∂tv‖L2(0,T ;V′) ≤ dvC1 +MgT
(2.15)

Eventually,

‖(∂tu, ∂tv)‖L2(0,T ;V′)2 ≤ max(C C1 +Mf T, dv C1 +Mg T ) := C3 (2.16)

Now we are in a position to apply Schauder fixed point in the functional space

W0(0, T ) =
{
u, v ∈ L2(0, T ;V) ∩ L∞(0, T ;H) : ‖(u, v)‖L∞(0,T ;H)2 ≤ C1,

‖(u, v)‖L2(0,T ;V)2 ≤ C2‖(∂tu, ∂tv)‖L2(0,T ;V′)2 ≤ C3,

u(·, 0) = u0, v(·, 0) = v0

} (2.17)

We can easily verify that W0(0, T ) is a nonempty closed convex in W(0, T ). To use
Schauder’s theorem we will show that the application

F : w ∈ W0(0, T )→ F (w) = (u, v) ∈ W0(0, T )

is weakly continuous.
Let us consider a sequence wn ∈ W0(0, T ) such that wn converges weakly in

W0(0, T ) toward w, and let F (wn) = (un, vn). Thus,

∂tun = div(A(|∇w1nσ|)∇un) + f(t, x, un, vn)

∂tvn = dv∆vn + g(t, x, un, vn)
(2.18)

Based on the previous estimations, (un, vn) is bounded in (L2(0, T ;V))2 and (∂tun, ∂tvn)
is bounded in (L2(0, T ;V ′))2 then by Aubin-Simon compactness [14] (un, vn) is rel-
atively compact on (L2(QT ))2; which means we can extract a subsequence denoted
wn = (un, vn) such that

• un ⇀ u in L2(0, T ;V),
• vn ⇀ v in L2(0, T ;V),
• f(t, x, wn) −→ f(t, x, w) in L2(QT ),
• g(t, x, wn) −→ g(t, x, w) in L2(QT ),
• un −→ u in L2(0, T ;H) and a.e in QT ,
• vn −→ v in L2(0, T ;H) and a.e in QT ,
• ∇un ⇀ ∇u in L2(0, T ;H),
• ∇vn ⇀ ∇v in L2(0, T ;H),
• wn −→ w in L2(0, T ;H) and a.e in QT ,
• A(|∇w1nσ|) −→ A(|∇w1σ|) in L2(0, T ;V),
• ∂tun ⇀ ∂tu in L2(0, T ;V ′),
• ∂tvn ⇀ ∂tv in L2(0, T ;V ′),

Using these convergences, we can pass to the limit in (2.19) and show that the limit
u and v are solutions of the problem

∂tu = div(A(|∇w1σ|)∇u) + f(t, x, w1, w2)

∂tv = dv ∆v + g(t, x, w1, w2)
(2.19)

Thus F (w) = (u, v) then F is weakly continuous which proves the desired results.
�
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3. Existence result for unbounded nonlinearities

In this case, we truncate f and g using truncation function Ψn ∈ C∞c (R), such
that 0 ≤ Ψn ≤ 1 and

Ψn(r) =

{
1 if |r| ≤ n
0 if |r| ≥ n+ 1

(3.1)

Thus, we can state that the approximate problem
∂tun = div(A(|∇unσ|)∇un) + fn(t, x, un, vn)

∂tvn = dv ∆vn + gn(t, x, un, vn)
(3.2)

where fn(t, x, un, vn) = Ψn(|un|+|un|) f(t, x, un, vn) and gn(t, x, un, vn) = Ψn(|un|+
|un|) g(t, x, un, vn) admits a weak solution by means of theorem 2.1. In what fol-
lows, C will often be reused to represent a constant independent of n. Now we show
that up to a subsequence, (un, vn) converges to the weak solution (u, v) of problem
(1.1). For this we need to prove the following results.

Lemma 3.1. Under the assumptions of the main result and for (un, vn) a weak
solution of the truncated problem, there exists C > 0 such that

‖un + vn‖L2(QT ) ≤ C(1 + ‖vn‖L2(QT )) (3.3)

Proof. This estimate relies on the duality method see [12]. Let θ ∈ C∞c (QT ) be
such that θ ≥ 0 and let φ be a solution of

−∂tφ− div(A(|∇unσ|) un∇φ) = θ,

∂nφ = 0,

φ(T, ·) = 0
(3.4)

We know that there exists C > 0 such that ‖φ‖H2(QT ) ≤ C‖θ‖L2(QT ) see [7, 13]. We
set W = exp(−L1t)(un + vn), by the mass control the following inequality holds,∫
QT

∂tWφ+
∫
QT

exp(−L1 t)(div(A(|∇unσ|) un) + dv∆vn)φ ≤
∫
QT

L1 exp(−L1 t)φ

Integrating by parts and using (3.4) we get∫
QT

Wθ ≤
∫
QT

exp(−L1 t)(dv∆φ−A(|∇unσ|)∆φ−∇A(|∇unσ|) ∇φ)vn

+
∫
QT

L1 exp(−L1 t)φ+
∫

Ω

(u0 + v0)φ(0, ·),

where A(|∇unσ|) and ∇A(|∇unσ|) are bounded independently of n in L∞(QT );
hence ∫

QT

Wθ ≤ C[1 + ‖u0 + v0‖L2(Ω) + ‖vn‖L2(QT )]‖φ‖H2(QT )

≤ C(1 + ‖vn‖L2(QT ))‖θ‖L2(QT )

which by duality completes the proof. �

Lemma 3.2. Let (un, vn) be the solution of the approximate problem (3.2). Then
(1) There exists a constant M depending only on

∫
Ω
u0,
∫

Ω
v0, L1, T and |Ω|

such that ∫
QT

(un + vn) ≤M ∀t ∈ [0, T ] (3.5)
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(2) There exists C1 > 0 such that∫
QT

|∇un|2 + |∇vn|2 ≤ C1 (3.6)

(3) There exists C2 > 0 such that∫
QT

|fn|+ |gn| ≤ C2 (3.7)

Proof. (1) The triangular structure of problem (1.1) implies that

(un + vn)t − div(A(|∇unσ|)∇un)− dv ∆vn ≤ L1(un + vn + 1) (3.8)

integrating over Qt, 0 < t ≤ T leads to∫
Ω

(un + vn)(t) ≤
∫

Ω

(u0 + v0) + L1

∫
Qt

(un + vn + 1) (3.9)

using a standard Gronwall argument we get∫
QT

(un + vn)(t) ≤
[ ∫

Ω

(u0 + v0) + L1|QT |
]

exp(L1 T ) (3.10)

and therefore the desired result is proven.
(2) We have ∂tvn − dv∆vn = gn ≤ L2(1 + un + vn),

1
2

∫
QT

(v2
n)t + dv

∫
QT

|∇vn|2 ≤ L2

∫
QT

(1 + un + vn) vn (3.11)

using Young’s inequality and Lemma 3.1 we get
1
2

∫
Ω

v2
n + dv

∫
QT

|∇vn|2 ≤
1
2

∫
Ω

(v2
0) + L2(C

∫
QT

v2
n +

∫
QT

(un + vn)2)

≤ 1
2

∫
Ω

(v2
0) + C

∫
QT

v2
n

and by Gronwall’s lemma we deduce that∫
QT

v2
n ≤ C (3.12)

which in return assures that
∫
QT
|∇vn|2 and

∫
QT

u2
n are bounded. Now let us show

that
∫
QT
|∇un|2 is bounded. We have un + vn satisfies

∂t(un + vn)− div(A(|∇(un)σ|))− dv∆vn = fn + gn ≤ L1(1 + un + vn) (3.13)

Letting w = exp(−L1 t)(un + vn),∫
QT

∂tw w+ I+
∫
QT

exp(−L1 t)dv∇vn ∇(un+vn) ≤
∫
QT

exp(−L1 t)L1w, (3.14)

where

I =
∫
QT

exp(−L1 t)A(|∇(un)σ|)∇un∇(un + vn)

=
∫
QT

exp(−L1 t)A(|∇(un)σ|)|∇(un + vn)|2

−
∫
QT

exp(−L1 t)A(|∇(un)σ|)∇vn∇(un + vn)
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Since A(|∇(un)σ|) ≥ a, we have

I ≥ a
∫
QT

|∇(un + vn)|2 −
∫
QT

exp(−L1 t)A(|∇(un)σ|)∇vn∇(un + vn) (3.15)

Substituting in (3.14)
1
2

∫
Ω

w2(T ) + a

∫
QT

|∇(un + vn)|2

≤ C +
∫
QT

exp(−L1 t)(dv −A(|∇(un)σ|))∇vn∇(un + vn)

Young’s inequality on |∇vn ∇(un + vn)| implies

a

∫
QT

|∇(un + vn)|2 ≤ C
(

1 + C(ε)
∫
QT

|∇vn|2 + ε

∫
QT

|∇(un + vn)|2
)

Hence by choosing a suitable ε we deduce that
∫
QT
|∇(un + vn)|2 is bounded and

because
∫
QT
|∇(vn)|2 is bounded,

∫
QT
|∇(un)|2 is bounded as well.

(3) For vn solution of

∂tvn − dv ∆vn = gn ≤ L2(1 + un + vn) (3.16)

we can write

∂tvn − d∆vn + L2(1 + un + vn)− gn = L2(1 + un + vn), (3.17)

which implies∫
QT

∂tvn +
∫
QT

(L2(1 + un + vn)− gn) ≤
∫
QT

L2(1 + un + vn), (3.18)

then∫
ω

vn(T )−
∫
ω

vn(0) +
∫
QT

(L2(1 + un + vn)− gn) ≤
∫
QT

L2(1 + un + vn), (3.19)

we know that
∫
QT

L2(1 + un + vn) is bounded, which follows that

‖L2(1 + un + vn)− gn‖L1(QT ) ≤ C, (3.20)

therefore
‖gn‖L1(QT ) ≤ Cg. (3.21)

Since L1(1 + un + vn)− fn − gn ≥ 0, we obtain the same for fn + gn, hence

‖fn‖L1(QT ) ≤ Cf . (3.22)

�

Now we deduce the result of the main theorem 1.2. According to lemma 3.2,
(un, vn) is bounded in (L2(0, T,V))2 and (∂tun, ∂tvn) is bounded in (L2(0, T,V ′) +
L1(QT ))2. Therefore by Aubin-Simon, (un, vn) is relatively compact in (L2(QT ))2,
then we can extract a subsequence (un, vn) in (L2(QT ))2 such that

• un ⇀ u in L2(QT ) and a.e in QT ,
• vn ⇀ v in L2(QT ) and a.e in QT ,
• ∇Gσ ∗ un ⇀ ∇Gσ ∗ u in L2(QT ) and a.e in QT ,
• A(|∇u1nσ|) −→ A(|∇u1σ|) in L2(QT ),
• fn(t, x, un, vn) −→ f(t, x, u, v) for a.e in QT ,
• gn(t, x, un, vn) −→ g(t, x, u, v) for a.e in QT .
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To prove that (u, v) is a weak solution of system (1.1), almost everywhere con-
vergence is not sufficient. We actually need to prove that fn(t, x, un, vn) converges
strongly toward f(t, x, u, v) in L1(QT ) and this convergence is given by the following
Lemma.

Lemma 3.3. Under the additional assumption that, for R > 0,

sup
|r|+|s|≤R

(|f(t, x, r, s)|+ |g(t, x, r, s)|) ∈ L1(QT ) (3.23)

(1) There exists C > 0 such that∫
QT

(un + 2 vn)(|fn|+ |gn|) ≤ C (3.24)

(2) fn and gn converges strongly toward f and g in L1(QT ).

Proof. We will present a sketch of the proof.
(1) Let Rn = L1(un + vn + 1)− fn− gn ≥ 0 and Sn = L2(un + vn + 1)− gn ≥ 0.

We have
(2vn + un)−Bn = fn + 2gn, (3.25)

where Bn = 2d∆vn + div(A(|∇(un)σ|)∇un). Then

(2vn + un)−B = −Rn + L1(un + vn + 1)− Sn + L2(un + vn + 1). (3.26)

Multiplying (3.26) by 2vn + un and integrating over QT , we obtain∫
QT

(2vn + un)(Rn + Sn) ≤ C. (3.27)

Since
∫
QT

(vn + un)2 is bounded, we obtain the inequality∫
QT

(2vn + un)(|fn|+ |gn|) ≤ C. (3.28)

(2) We know that fn, gn converge almost everywhere toward f, g. We will show
that fn and gn are equi-integrable in L1(QT ). The proof will be given for fn,
however the same result holds for gn. For this, we let ε > 0 and prove that there
exists δ > 0 such that |E| < δ implies that

∫
E
fn < ε. We have∫

E

|fn| =
∫
E∩[un+2vn≤k]

|fn|+
∫
E∩[un+2vn>k]

|fn|

≤ 1
k

∫
E

(un + 2 vn)|fn|+ |E| sup
|un|+|vn|≤k

|fn(t, x, un, vn)|
(3.29)

and since (3.24) ensures that
∫
E

(un + vn)|fn| is bounded. We can choose δ small
enough and a larger k such that

∫
E
|fn| ≤ ε. The same thing holds for gn as

well. �

4. Applications

An interesting example of application is the Modified Fitz-Hugh-Nagumo Model
for image restoration [1] where the source terms have the form

f(u, v) =
1
τ
u (u− a)(1− u) + µv

g(u, v) = u− bv
(4.1)
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Remark 4.1. When µ ≥ 0, the nonlinearities satisfy quasipostivity, mass control,
and the triangular structure and therefore by direct application of the main result
we can deduce global existence. It is also worth noting that there is no restriction
on the growth of f, g Consequently other types of non-polynomial nonlinearities
can be handled.

If µ < 0, the expression above do not satisfy the quasipostivity. However we can
use the fact that

uf(u, v) ≤ L1(1 + u2 + v2)

uf(u, v) + vg(u, v) ≤ L2(1 + u2 + v2) .
(4.2)

Multiplying each equation by its respective unknown in the truncated problem and
summing up we directly obtain the following estimations:

sup
t∈[0,T ]

∫
Ω

u2
n + v2

n ≤ C∫
QT

|∇un|2 + |∇vn|2 ≤ C∫
QT

|un|4 ≤ C

(4.3)

where C depends only on T , |Ω|, and initial conditions on L2(Ω), which are sufficient
to pass to the limit and obtain the result of the main theorem. In both cases, the
modified Fitz-Hugh-Nagumo model admits a weak solution for initial conditions
u0, v0 in L2(Ω).

To illustrate the performance of the studied model we present in this paragraph
some numerical results. The modified Fitz-Hugh-Nagumo can be approximate by
the explicit scheme bellow:

un+1
i,j − uni,j

dt
− div(An∇uni,j) =

1
τ
uni,j(u

n
i,j − a)(1− uni,j) + µ vni,j ,

vn+1
i,j − vni,j

dt
− dv∆vni,j = uni,j + b vni,j ,

An = A(|∇(Gσ ∗ uni,j)|, λn),

λn = 1.4826 median(|∇un| −median(|∇un|))/
√

2

where median represents the median of an image over all its pixels and A is a
function that lowers the diffusion rate du over regions of high gradients. An example
of such function is given by A(s, λ) = du/

√
1 + (s/λ)2. Simulations done on a

standard noisy image using the parameters a = 0.5, τ = 10−3, du = 150, dv = 250,
dt = 1e−2 are represented in Figure 1. To quantitatively measure the performance
of the model we illustrate in Table 1 two indicators:

(1) The measure of enhancement(EME) measure the quality improvement of the
image. It is defined by : Let an image u(N,M) be split into k1k2 blocks wk,l of
sizes l1l2 then we define

EME =
1

k1k2

k1∑
l=1

k2∑
k=1

20 log(
uwmax;k,l

uwmin;k,l

)

where uwmax;k,l and uwmin;k,l are respectively maximum and minimum values of the
image u(N,M) inside the block wk,l.
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(2) The peak signal-to-noise ratio (PSNR) evaluates the performance of noise
filtering. It is obtained by

PSNR = 10 log10(
2552

SNR
) (4.4)

with

SNR =
1

MN

M∑
i=1

N∑
j=1

[ui,j − urefi,j ]2 (4.5)

A higher value of EME and PSNR indicates that the image is well filtered and
well enhanced.

Table 1. EME and PSNR values for the noisy image eight.tif for
two different set of parameters

Parameters PSNR EME
b = 1, µ = 1 25.0153 12.7673
b = 1, µ = −1 25.0482 14.1897

(a) (b) (c)

Figure 1. Restoration of a noisy image using the modified Fitz-
Hugh-Nagumo: (a) noisy image, (b) b = −1 and µ = −1, (c) b = 1
and µ = 1

Conclusions. As a summary, we demonstrated the existence of a global weak
solution of the considered model. Also, we proved that the truncated problem
admits a weak solution according to Schauder fixed point theorem. For unbounded
nonlinearities satisfying suitable conditions, we established equi-integrablity and
we derived a compactness results to be able to pass to the limit to get the desired
result. To showcase the importance of the obtained result, a new application in the
field of image restoration was given however its usefullness is not limited to this
application and can be extended to resolve a range of problems in other fields.

References

[1] Nour Eddine Alaa and Mariam Zirhem; Bio-inspired reaction diffusion system applied to

image restoration, Int. J. of Bio-Inspired Computation (2018), (Accepted).
[2] Noureddine Alaa, Mohammed Aitoussous, Walid Bouarifi, Djemaia Bensikaddour; Image

restoration using a reaction-diffusion process, Electronic Journal of Differential Equations
2014 (2014), no. 197, 1–12.



12 A. AARAB, N. E. ALAA, H. KHALFI EJDE-2018/125

[3] Herbert Amann et al.; Dynamic theory of quasilinear parabolic equations. ii. reaction-

diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13–75.

[4] Philippe Benilan, Haim Brezis; Solutions faibles déquations dévolution dans les espaces de
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[5] Francine Catté, Pierre-Louis Lions, Jean-Michel Morel, Tomeu Coll; Image selective smooth-

ing and edge detection by nonlinear diffusion, SIAM Journal on Numerical analysis 29 (1992),
no. 1, 182–193.

[6] Mayumi Ebihara, Hitoshi Mahara, Tatsunari Sakurai, Atsushi Nomura, Hidetoshi Miike; Im-

age processing by a discrete reaction-diffusion system, Proceeding of Visualization, Imaging,
and Image Processing 396 (2003), 145–150.

[7] OA Ladyzhenskaya, VA Solonnikov, NN Ural’tseva; Lineinye i kvazilineinye uravneniya

parabolicheskogo tipa (linear and quasilinear equations of parabolic type), moscow, 1967,
Google Scholar.

[8] Xiaoping Li, Tongwen Chen; Nonlinear diffusion with multiple edginess thresholds, Pattern
Recognition 27 (1994), no. 8, 1029–1037.

[9] Jacques Louis Lions; Equations differentielles operationnelles: et problémes aux limites, vol.
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