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MULTIPOINT INITIAL-FINAL VALUE PROBLEMS FOR
DYNAMICAL SOBOLEV-TYPE EQUATIONS

IN THE SPACE OF NOISES

ANGELO FAVINI, SOPHIYA A. ZAGREBINA, GEORGY A. SVIRIDYUK

Abstract. We prove the existence of a unique solution for a linear stochastic

Sobolev-type equation with a relatively p-bounded operator and a multipoint

initial-final condition, in the space of “noises”. We apply the abstract results
to specific multipoint initial-final and boundary value problems for the linear

Hoff equation which models I-beam bulging under random load.

1. Introduction

In the simplest setup, a linear stochastic differential equation is of the form

dη = (Sη + ψ)dt+Adω, (1.1)

where S and A are linear operators specified below, ψ = ψ(t) is a deterministic
load external action and ω = ω(t) is a stochastic external action, η = η(t) is the
required stochastic process. Originally dω stood for the differential of the Wiener
process ω = W (t), whose generalized derivative is traditionally treated as white
noise. Ito began studying the ordinary differential equations of the form (1.1) and
was joined later by Stratonovich and Skorokhod. The Ito-Stratonovich-Skorokhod
approach in the finite-dimensional case is still popular [6]. Moreover, it has been
extended successfully to the infinite-dimensional setup [7], and even to Sobolev-
type equations [13]. In the framework of this direction, the linear stochastic Hoff
equation with the initial-final condition was considered [9].

However, recently a new approach to linear stochastic equations arose [11] and
is actively developing [8] in optimal measurement theory. Namely, instead of (1.1)
we consider the linear stochastic Sobolev-type equation

Lη̊ = Mη +Nω, (1.2)

where η = η(t) is the required stochastic process and ω = ω(t) is a prescribed sto-
chastic process corresponding to external action, η̊ is the Nelson-Gliklikh derivative
[4, 8, 11] of η, the operators L, M , and N are linear and continuous. By way of
example, [4, 11] consider the “white noise” ω = W̊ , while, as shown previously
[8], it is more adequate to the Einstein-Smoluchowski theory of Brownian motion
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than the traditional white noise dω = dW in (1.1). (Here W = W (t) is a Wiener
K-process for a nuclear operator K).

Apart from the introduction, the conclusion, and the list of references, this article
consists of three sections. The first one deals with the deterministic inhomogeneous
linear Sobolev-type equation

Lu̇ = Mu+ f, (1.3)

where the operator M is (L, p)-bounded with p ∈ {0} ∪ N. (Note that we use the
term “Sobolev type equations” [10] as synonymous terms “degenerate equations”
[5] and “equations not solvable with respect to the highest-order derivative” [1]).

We define multipoint initial-final conditions and state a theorem on the existence
of a unique solution. We borrowed all results from [12, 13] and therefore give them
without proofs. The second section extends the deterministic results of the first
one to the stochastic setup by analogy with [11]; sketches of proofs complement the
results. In the third section, by way of example, we consider the linear stochastic
Hoff equation [9] which models I-beam bulging. In closing, we outline possible
directions for further research. The list of references, not intended to be complete,
reflects the authors’ tastes and preferences.

2. Deterministic linear equations

Given two Banach spaces U and F, take two operators: L ∈ L(U; F), that is, a
linear and continuous one; and M ∈ Cl(U; F), that is, a linear, closed, and densely
defined one. Set

ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F; U)}

is called a L-resolvent set of an operator M . The set σL(M) = C \ ρL(M) is
called L-spectrum of an operator M . It is easy to show [12, Chapter 4] that the L-
resolvent set of the operator M is always open, and, consequently, the L-spectrum
of the operator M is always closed. An operator M is called (L, σ)-bounded, if
L-spectrum is a bounded set (for the terminology and results, see [12, Chapter 4]).
So, if the operator M is (L, σ)-bounded, then there exist degenerate analytic groups
of solving operators

U t =
1

2πi

∫
γ

RLµ (M)eµtdµ and F t =
1

2πi

∫
γ

LLµ(M)eµtdµ

defined on the spaces U and F respectively; moreover, U0 ≡ P and F 0 ≡ Q are
projections. Here γ is the contour bounding a domain D which contains the L-
spectrum σL(M) of the operator M ; also, RLµ (M) = (µL −M)−1L is the right
L-resolvent of M , while LLµ(M) = L(µL −M)−1 is the left one. For a degenerate
analytic group the concepts of kernel kerU . = kerP = kerU t and the image imU . =
imP = imU t for all t ∈ R are well-defined. Put U0 = kerU ., U1 = imU ., F0 =
kerF ., and F1 = imF .. Then U0⊕U1 = U and F0⊕F1 = F. Denote also by Lk the
restriction of L to Uk and by Mk the restriction of M to domM ∩ Uk, for k = 0, 1.

Theorem 2.1 (Splitting theorem [12, Chapter 4]). If the operator M is (L, σ)-
bounded then

(i) Lk ∈ L(Uk; Fk) for k = 0, 1;
(ii) M0 ∈ Cl(U0; F0) and M1 ∈ L(U1; F1);

(iii) the operators L−1
1 ∈ L(F1; U1) and M−1

0 ∈ L(F0; U0) exist.
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Put H = M−1
0 L0 ∈ L(U0) and S = L−1

1 M1 ∈ L(U1).

Corollary 2.2 ( [12, Chapter 4]). If the operator M is (L, σ)-bounded, then

(µL−M)−1 = −
∞∑
k=0

µkHkM−1
0 (I−Q) +

∞∑
k=1

µ−kSk−1L−1
1 Q

for every µ ∈ C \ D̄.

The operator M is called (L, p)-bounded with p ∈ {0} ∪ N whenever Hp 6= O
but Hp+1 = O.

We introduce the condition
(A1) σL(M) =

⋃m
j=0 σ

L
j (M) for m ∈ N; furthermore, σLj (M) 6= ∅, there exists

a closed contour γj ⊂ C, bounding a domain Dj ⊃ σLj (M), such that
Dj ∩ σL0 (M) = ∅ and Dk ∩Dl = ∅ for all j, k, l = 1,m with k 6= l.

Theorem 2.3 ([12]). If the operator M is (L, σ)-bounded and condition (A1) is
fulfilled then

(i) there exist degenerate analytic groups

U tj =
1

2πi

∫
γj

RLµ (M)eµtdµ, j = 1,m.

(ii) U tUsj = Usj U
t = Us+tj for all s, t ∈ R and j = 1,m;

(iii) U tkU
s
l = Usl U

t
k = O for all s, t ∈ R and k, l = 1,m with k 6= l.

Put U t0 = U t −
∑m
k=1 U

t
k for t ∈ R.

Remark 2.4. Consider the identity elements Pj ≡ U0
j of the constructed degener-

ate analytic groups {U tj : t ∈ R}, for j = 0,m. It is obvious that PPj = PjP = Pj
for j = 0,m, and PkPl = PlPk = O for k, l = 0,m with k 6= l. Similarly, we
can construct projectors Qj ∈ L(F) for j = 0,m (see [12] for details) such that
QQj = QjQ = Qj for j = 0,m and QkQl = QlQk = O for k, l = 0,m with k 6= l.

We refer to Pj and Qj for j = 0,m as relatively spectral projectors.
We introduce the subspaces U1j = imPj and F1j = imQj for j = 0,m. By

construction,
U1 = ⊕mj=0U

1j and F1 = ⊕mj=0F
1j .

We denote by L1j the restriction of L to U1j and by M1j the restriction of M
to domM ∩ U1j , for j = 0,m. It is not difficult to show that Pj ϕ ∈ domM ;
therefore, if ϕ ∈ domM then the domain domM1j = dom M ∩U1j is dense in U1j ,
for j = 0,m.

Theorem 2.5 (Generalized spectral theorem [12]). Suppose that L ∈ L(U; F) and
M ∈ Cl(U; F), operator M is (L, σ)-bounded, and condition (A1) is satisfied, then

(i) L1j ∈ L(U1j ; F1j) and M1j ∈ L(U1j ; F1j) for j = 0,m;
(ii) the operators L−1

1j ∈ L(F1j ; U1j) exist, for j = 0,m.

Thus, we assume that condition (A1) is fulfilled. Fix τj ∈ R with τj < τj+1,
vectors uj ∈ U for j = 0,m, and vector-function f ∈ C∞(R; F). Consider the linear
inhomogeneous Sobolev-type equation

Lu̇ = Mu+ f. (2.1)



4 A. FAVINI, S. A. ZAGREBINA, G. A. SVIRIDYUK EJDE-2018/128

We refer to a vector-function u ∈ C∞(R; U) satisfying (2.1) as a solution to (2.1).
We refer to a solution u = u(t), for t ∈ R, to (2.1) satisfying the conditions

Pj(u(τj)− uj) = 0, j = 0,m, (2.2)

as a solution to the multipoint initial-final value problem for (2.1).

Theorem 2.6 ([12]). If the operator M is (L, p)-bounded for p ∈ {0} ∪ N and
condition (A1) holds then for all f ∈ C∞(R; F) and uj ∈ U, for j = 0,m, there
exists a unique solution to problem (2.1), (2.2); furthermore, it is of the form

u(t) = −
p∑
q=0

HqM−1
0 (I−Q)f (q)(t)

+
m∑
j=0

U
t−τj

j uj +
m∑
j=0

∫ t

τj

U
t−τj−s
j L−1

1j Qjf(s)ds.

(2.3)

An example is presented in Section 4 of this article.

3. Stochastic linear equations

For a real separable Hilbert space U ≡ (U, 〈·, ·〉), take an operator K ∈ L(U)
whose spectrum σ(K) is nonnegative, discrete, with finite multiplicities and accu-
mulates only to zero. Denote by {λj} the sequence of eigenvalues of K enumerated
in the non-increasing order taking the multiplicities into account. The linear span
of the set {ϕj} of associated orthonormal eigenvectors of K is dense in U. Assume
also that K is a nuclear operator, that is, its trace satisfies TrK =

∑∞
j=1 λj < +∞.

Take a sequence {ηj} of independent stochastic processes ηj : Ω × I → R, a
complete probability space Ω, and an interval I ⊂ R. Equip R with the Borel σ-
algebra. The set of random variables with zero mean and finite variances constitutes
a Hilbert space with the inner product (ξ1, ξ2) = Eξ1ξ2. Denote this Hilbert space
by L2. Assume that the random variables ηj(ω, t) ∈ L2 are Gaussian for all ω ∈ A
and t ∈ I, where A is a σ-algebra on Ω. In addition, the sample trajectory ηj(ω, ·)
is almost surely continuous, that is, ηj ∈ CL2. (For a detailed description of the
spaces ClL2 for l ∈ {0} ∪N, see [4, 11].) Define the U-valued stochastic K-process

ΘK(t) =
∞∑
j=1

√
λjηj(t)ϕj (3.1)

on assuming that the series (3.1) converges uniformly on every compact subset of
I. Observe that if {ηj} ⊂ CL2 then the existence of a stochastic K-process ΘK

implies that its trajectories are almost surely (a.s.) continuous. Introduce the
Nelson-Gliklikh derivatives

Θ̊(l)
K (t) =

∞∑
j=1

√
λj η̊

(l)
j (t)ϕj (3.2)

of the stochastic K-process on assuming that the derivatives in the right-hand side
up to order l exist and all series converge uniformly on every compact subset of
I. (For a detailed description of the Nelson-Gliklikh derivative, see [4, 6, 11]). As
in [4, 11] we introduce the space of differentiable “noises” Cl

KL2 of stochastic K-
processes whose trajectories are a.s. continuously differentiable on I in the sense
of Nelson-Gliklikh up to order l ∈ {0} ∪ N.
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As an example, let us present “black noise”, a stochastic K-process whose tra-
jectories a.s. coincide with the zero (that is, absolute silence), as well as “white
noise”

W̊K(t) =
WK(t)

2t
, (3.3)

the Nelson-Gliklikh derivative of the Wiener K-process

WK(t) =
∞∑
j=1

√
λjβj(t)ϕj , t ∈ R+.

Here βj = βj(t) is the Brownian motion of the form

βj(t) =
∞∑
k=1

ξjk sin
π(2k + 1)

2
t, t ∈ R+,

where ξjk are pairwise independent Gaussian random variables such that Eξjk = 0
and Dξjk = [π(2k+1)

2 ]−2, here ξjk ∈ L2, E is mathematical expectation and D is
dispersion.

Having considered the deterministic equation (1.3) in the previous section, we
now proceed to the stochastic equation (1.2). Assume that the operator M is (L, p)-
bounded, with p ∈ {0} ∪ N, and condition (A1) is satisfied. Consider the linear
stochastic Sobolev-type equation

Lη̊ = Mη +Nω, (3.4)

where η = η(t) is the required stochastic K-process and ω = ω(t) is a known
stochastic K-process, and the operator N ∈ L(U; F).

Take τ0 = 0 and τj ∈ R+ with τj−1 < τj for j = 1,m. Complement (3.4) with
the multipoint initial-final conditions

Pj(η(τj)− ξj) = 0, j = 0,m, (3.5)

where Pj are the relatively spectral projectors from Remark 2.4. Below, in view
of (3.3), we also have to consider the weak (in the sense of S. Krein) multipoint
initial-final conditions

lim
t→τ0+

P0(η (t)− ξ0) = 0, Pj(η(τj)− ξj) = 0, j = 1,m. (3.6)

Here

ξj =
∞∑
k=1

√
λkξjkϕk, j = 0,m, (3.7)

where ξjk ∈ L2 is a Gaussian random variable such that series (3.7) is convergent.
(For instance Dξjk ≤ Cj , k ∈ N, j = 0,m). Call a stochastic K-process η ∈ C1

KL2

a (classical) solution to (3.4) whenever a.s. all its trajectories satisfy (3.4) for some
stochastic K-process ω ∈ CKL2, some operator N ∈ L(U; F), and all t ∈ I. (Here
and henceforth I = (0,+∞)). Call a solution η = η(t) to (3.4) a (classical) solution
to problem (3.4), (3.5) (problem (3.4), (3.6)) whenever in addition condition (3.5)
(condition (3.6)) is satisfied.

Theorem 3.1. For p ∈ {0} ∪ N take an (L, p)-bounded operator M and assume
that condition (A1) holds. Given τj ∈ R+ for j = 1,m, an operator N ∈ L(U; F),
a nuclear operator K ∈ L(U) with real spectrum σ(K), a stochastic K-process
ω = ω(t) such that (I−Q)Nω ∈ Cp+1

K L2 and QNω ∈ CKL2, and random variables
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ξj ∈ L2, for j = 0,m, such that (3.7) are fulfilled, there exists a unique solution
η ∈ C1

KL2 to problem (3.4), (3.5); moreover, it is of the form

η(t) = −
p∑
q=0

HqM−1
0 (I−Q)ω̊(q)(t)

+
m∑
j=0

[
U
t−τj

j ξj +
∫ t

τj

U
t−τj−s
j L−1

1j QjNω(s)ds
]
, t ∈ I.

(3.8)

Let us sketch the proof. It is straightforward to verify that (3.8) is a solution
to problem (3.4), (3.5). To establish the uniqueness, reduce the problem to the
equivalent system

Lη̊ = Mη, Pj η
j(τj) = 0, j = 0,m.

By Theorem 2.1 the first equation here is equivalent to the system

Hη̊0 = η0, η̊1 = Sη1, (3.9)

where η0 = (I − P )η and η1 = Pη. Taking now the Nelson-Gliklikh derivative of
the first equation and multiplying on the left by H we obtain in succession

0 = Hp+1η̊0(p+1) = . . . = H2η̊0(2) = · · · = Hη̊0 = η0.

By Theorem 2.3 and the initial-final conditions (3.5), the second equation of (3.9)
yields η1 =

∑m
j=0 U

t−τj 0 = 0.
In view of (3.3), problem (3.4), (3.5) is not solvable when the right-hand side of

(3.4) is the “white noise” ω(t) = W̊K(t). In this case instead of conditions (3.5) we
should consider conditions (3.6).

Corollary 3.2. If all the hypotheses of Theorem 3.1 hold and ω(t) = W̊K(t) then,
given random variables ξj ∈ L2 as in (3.7), there exists a unique solution to problem
(3.4), (3.6); furthermore, it has the form

η(t) =
m∑
j=0

[
U
t−τj

j ξj − SjPj
∫ t

τj

U
t−τj−s
j L−1

1j QjNWK(s)ds

+ L−1
1j QjNWK(t)

]
−

p∑
q=0

HqM−1
0 (I−Q)

◦
W

(q+1)
K (t), t ∈ R+.

(3.10)

The proof of the above corollary is similar to that of Theorem 3.1. The difference
in the additive terms is caused by an application of integration “by parts”,∫ t

τj

U
t−τj−s
j L−1

1j QjNW̊K(s)ds

= L−1
1j QjN(WK(t)−WK(τj))− SjPj

∫ t

τj

U
t−τj−s
j L−1

1j QjNWK(s)ds,

which follows from the properties of Nelson-Gliklikh derivative. Here Sj = L−1
1j M1j

for j = 0,m.
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4. Linear Hoff equation with additive “white noise”

Consider a bounded domain D ⊂ Rd (d ∈ N) with boundary ∂D of class C∞.
Denote by U and F the function spaces U = {u ∈ W l+2

2 (D) : u(x) = 0, x ∈ ∂D}
and F = W l

2(D), where l ∈ {0} ∪ N. Evidently, U is a real separable Hilbert
space densely and continuously embedded into F. Fixing α, µ ∈ R, construct the
operators L = µI + ∆ and M = αI, where ∆ is the Laplace operator, and the
symbol I stands for the embedding operator I : U ↪→ F; we also emphasize that here
M is not invertible. Consider also the spectral problem

−∆u = νu in D and u(x) = 0 for x ∈ ∂D. (4.1)

Its solution is a family {νj} ⊂ R+ of eigenvalues enumerated in the nondecreasing
order taking their multiplicities into account and accumulating only to +∞, as well
as the associated orthonormal (in the sense of U) family of eigenfunctions {ϕj}. It
is not difficult to show (see [9] for instance) that for all µ ∈ R and α ∈ R \ {0} the
operator M is (L, 0)-bounded; moreover, its L-spectrum is

σL(M) =
{
µk =

α

µ− νk
, k ∈ N \ {l : µ = νl}

}
∪ {0}. (4.2)

Furthermore, for m ∈ N construct the operator Λ = (−∆)m with

dom Λ = {u ∈W l+2m
2 (D) : ∆ku(x) = 0, x ∈ ∂D, k = 0,m− 1}.

The family of eigenfunctions of Λ coincides with the family {ϕj}, while its family
of eigenvalues is {νmj }. Since their asymptotics is νmj ∼ j

2m
d → ∞ as j → ∞,

we can choose m ∈ N so that, firstly, the dimension d of the domain D has some
acceptable physical meaning, and secondly, the series

∑∞
j=1 ν

−1
j converges. Then

the Green operator of Λ is nuclear, and we take it as K. Therefore, consider the
linear stochastic Hoff equation in the form

Lη̊ = Mη + W̊K , (4.3)

where L and M are defined above, while N is the embedding operator I : U ↪→ F and
W̊K = W̊K(t) is the Nelson-Gliklikh derivative of the U-valued Wiener K-process
WK = WK(t), for t ∈ R+.

To state initial-final conditions, we need relatively spectral projectors. In this
example we confine the discussion, for the sake of simplicity, to just two initial-
final conditions. Furthermore, here we present the initial-final conditions satisfying
condition (A1), while in Remark 4.2 below we verify that in this case, thanks to the
structure of σL(M) in (4.2), we can avoid condition (A1). Thus, take the projectors

P (Q) =

{
IU(IF) if µ 6= νj ∀j ∈ N;

IU −
∑
j:µ=νj

〈·, ϕj〉Uϕj
(
IF −

∑
j:µ=νj

〈·, ψj〉Fψj
)
,

where {ψj} is a family of eigenfunctions {ϕj} orthonormal in the sense of the inner
product 〈·, ·〉F in F. Furthermore, choose h ∈ R+ with h < maxj∈N{|νj |} and
construct the projectors

P1 = IU −
∑
h<|νj |

〈·, ϕj〉Uϕj , Q1 = IF −
∑
h<|νj |

〈·, ψj〉Fψj ;

P0 = P − P1, Q0 = Q−Q1.

(4.4)

Observe that in the construction of these projectors condition (A1) holds because
σL0 (M) = {µj ∈ σL(M) : |νj | ≤ h} and σL1 (M) = {µj ∈ σL(M) : |νj | > h}; hence,
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σL0 (M)∩σL1 (M) = ∅. Finally, choose τ1 ∈ R+ as well as random variables ξ0 and ξ1
independent of each other and of stochastic K-processes η and pose the initial-final
conditions

lim
t→0+

P0(η (t)− ξ0) = 0, P1(η(τ1)− ξ1) = 0, (4.5)

where

ξ0 =
∞∑
k=1

√
νkξ0kϕk, ξ1 =

∞∑
k=1

√
νkξ1kϕk. (4.6)

Applying the results of Section 2 to problem (4.3), (4.5), we obtain the following
theorem.

Theorem 4.1. If condition (A1) is satisfied then for all numbers µ ∈ R, α ∈ R\{0}
and τ1 ∈ R+, as well as random variables ξ0k andξ1k such as Dξ0k ≤ C0 and
Dξ1k ≤ C1 for some C0, C1 ∈ R+ there exists a unique solution η = η(t), for
t ∈ R+, to problem (4.3), (4.5); furthermore, it is of the form

η(t) = (L−1
10 Q0 + L−1

11 Q1)WK(t)− L−1
11 Q1WK(τ1)

− S0P0

∫ t

0

U t−s0 L−1
10 Q0WK(s)ds+ U t0ξ0 + U t−τ11 ξ1

− S1P1

∫ t

τ1

U t−τ1−s1 L−1
11 Q1WK(s)ds−M−1

0 (I−Q)N
◦

WK (t),

(4.7)

for t ∈ R+.

Here

U t0 =
∑

νj∈σL
0 (M)

etµj 〈·, ϕj〉Uϕj , U t1 =
∑

νj∈σL
1 (M)

etµj 〈·, ϕj〉Uϕj ,

L−1
10 =

∑
νj∈σL

0 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

L−1
11 =

∑
νj∈σL

1 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

S10 = α
∑

νj∈σL
0 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

S11 = α
∑

νj∈σL
1 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

M−1
0 = α−1

∑
νj=µ

〈·, ψj〉Fψj .

(4.8)

Remark 4.2. Verify that in this concrete case condition (A1) could not be satisfied;
however, Theorem 4.1 remains valid. Let all eigenvalues be simple, put σL0 (M) =
{µj ∈ σL(M) : j = 2n} and σL1 (M) = {µj ∈ σL(M) : j = 2n − 1}, n ∈ N. Then
σL0 (M)∩σL1 (M) = ∅. Nevertheless, (4.4) and (4.8) remain valid, and so (4.7) holds.
The uniqueness of this solution is proved in the standard fashion (see Section 2).

Conclusion. The next stage of our studies is to carry over the ideas and methods
of the theory of multipoint initial-final problems for linear Sobolev-type equations
from relatively p-bounded setup to relatively p-sectorial setup by analogy with
[3, 11]. In addition, it would be interesting to extend these ideas and methods to
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Sobolev-type equations of high order [4], and also apply them to inverse problems
as in [2].
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