
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 13, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

REMARK ON PERIODIC BOUNDARY-VALUE PROBLEM FOR
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Abstract. We establish conditions for the unique solvability of periodic bound-
ary value problem for second-order linear equations. We make more precise a

result proved in [3].

1. Introduction

Consider the periodic boundary-value problem

u′′ = p(t)u+ q(t); u(0) = u(ω), u′(0) = u′(ω), (1.1)

where p, q : [0, ω] → R are Lebesgue integrable functions. By a solution of given
in (1.1) equation, as usual, we understand a function u ∈ AC 1([0, ω]) such that for
almost all t ∈ [0, ω].

Definition 1.1. We say that the function p ∈ L([0, ω]) belongs to the set V −(ω)
(resp. V +(ω)) if for every u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality

u(t) ≤ 0 for t ∈ [0, ω] (resp. u(t) ≥ 0 for t ∈ [0, ω]) (1.2)

is fulfilled.

It is clear that if p ∈ V −(ω) (resp. p ∈ V +(ω)), then the homogeneous problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω)

has no nontrivial solution. Consequently, by virtue of Fredholm’s alternative, the
problem (1.1) is uniquely solvable. Moreover, if q(t) ≥ 0 for t ∈ [0, ω], then the
unique solution u of the problem (1.1) satisfies (1.2).

It is also evident that if p ∈ V −(ω) (resp. p ∈ V +(ω)) and the functions
u, v ∈ AC 1([0, ω]) satisfy differential inequalities

u′′(t) ≥ p(t)u(t), v′′(t) ≤ p(t)v(t) for a.e. t ∈ [0, ω]
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and boundary conditions

u(i)(0)− u(i)(ω) = v(i)(0)− v(i)(ω), i = 0, 1,

then the inequality

u(t) ≤ v(t) for t ∈ [0, ω] (resp. u(t) ≥ v(t) for t ∈ [0, ω])

holds.
Properties of the sets V −(ω) and V +(ω) plays a crucial role in the theory of

periodic boundary value problems for nonlinear equations (see, e. g., [3, 2]). There-
fore, it is desirable to establish sufficient conditions for the inclusion p ∈ V −(ω),
resp. p ∈ V +(ω). One can find several integral conditions in [3].

Theorem 1.2 ([3, Theorem 11.1]). Let p 6≡ 0 and

‖[p]−‖1 ≤
‖[p]+‖1

1 + ω
4 ‖[p]+‖1

. (1.3)

Then p ∈ V −(ω).

The main result of this article makes more precise Theorem 1.2. In particular,
it covers also the case when ‖[p]−‖1 ≥ 4/ω.

Below we use the following notation: R = ] − ∞,+∞[ . For x ∈ R, we put
[x]+ = 1

2 (|x|+ x) and [x]− = 1
2 (|x| − x).

Let ω > 0 and λ ∈ ]0, 1
2 ]. Then

∆ω(λ) :=
[ 1− 2λ
2ω(1− λ)

] 1−λ
λ .

The set AC 1([a, b]) consists of absolutely continuous functions u : [a, b] → R
whose first derivative is also absolutely continuous on [a, b]. The set L([a, b]) consistsI modified this sen-

tence. Please check
it

of Lebesgue integrable functions f : [a, b]→ R. If f ∈ L([a, b]) and λ ∈ ]0, 1
2 ], then

we put

‖f‖λ =
(∫ b

a

|f(s)|λ ds
)1/λ

.

By Lω we denote the set of ω-periodic functions f : R→ R such that f ∈ L([0, ω]).
Now we are able to formulate main results.

Theorem 1.3. Let p 6≡ 0, λ ∈ ]0, 1
2 [ , and

‖[p]−‖1 <
4
ω

+ ∆ω(λ)‖[p]−‖λ, (1.4)

‖[p]−‖1 ≤ ‖[p]+‖1
(

1− ω

4
‖[p]−‖1 +

ω

4
∆ω(λ)‖[p]−‖λ

)
+
ω

4
∆ω(λ)‖[p]+‖λ‖[p]−‖1.

(1.5)

Then the inclusion p ∈ V −(ω) holds.

Remark 1.4. It is not difficult to verify that if (1.3) holds then (1.4) and (1.5) are
fulfilled. Indeed, it follows from (1.3) that ‖[p]−‖1 < 4/ω. Hence, (1.4) holds. On
the other hand, (1.3) is equivalent to the inequality ‖[p]−‖1 + ω

4 ‖[p]+‖1‖[p]−‖1 ≤
‖[p]+‖1, i. e., ‖[p]−‖1 ≤ ‖[p]+‖1(1− ω

4 )‖[p]−‖1 and consequently, (1.5) holds. Thus,
Theorem 1.3 generalizes Theorem 1.2. On the other hand, since ∆ω(1/2) = 0,
conditions (1.4) and (1.5) with λ = 1/2 are equivalent to (1.3). In other words, one
can regard Theorem 1.2 as “limit case” of Theorem 1.3.
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Corollary 1.5. Let p 6≡ 0 and λ ∈ ]0, 1/2[ . Let, moreover, one of the following
two items be fulfilled:

(i) ‖[p]−‖1 ≤ 4/ω and ‖[p]+‖1‖[p]−‖λ + 4
ω ‖[p]+‖λ ≥

16
ω2∆ω(λ) ;

(ii) ‖[[p]−]‖1 < 4
ω + ∆ω(λ)‖[p]−‖λ and ‖[p]+‖λ ≥ 4

ω∆ω(λ) .

Then the inclusion p ∈ V −(ω) holds.

To be more concrete, put λ = 1/3. Then ∆ω(λ) = 1/(16ω2) and conditions of
Corollary 1.5 reads as follows:

(i) ‖[p]−‖1 ≤ 4/ω and ‖[p]+‖1‖[p]−‖1/3 + 4
ω ‖[p]+‖1/3 ≥ 162;

(ii) ‖[[p]−]‖1 < 4
ω + 1

16ω2 ‖[p]−‖1/3 and ‖[p]+‖1/3 ≥ 64ω.
We postpone the proof of Theorem 1.3 until Section 3, after some auxiliary

propositions stated in Section 2.

2. Auxiliary statements

First of all for convenience of the reader, we recall some known results.

Definition 2.1. We say that the function p ∈ Lω belongs to the set D(ω) if the
problem

u′′ = p(t)u; u(α) = 0, u(β) = 0

has no nontrivial solution for any α < β satisfying β − α < ω.

Proposition 2.2 ([3, Theorem 9.3]). Let p ∈ Lω,such that p 6≡ 0, and
∫ ω

0
p(s) ds ≤

0. Then p ∈ V +(ω) if and only if p ∈ D(ω).

Proposition 2.3 ([3, Lemma 2.7]). Let p ∈ V +(ω), q ∈ L([0, ω]), q(t) ≥ 0 for
t ∈ [0, ω], and q 6≡ 0. Then the (unique) solution u of the problem (1.1) satisfies
u(t) > 0 for t ∈ [0, ω].

Proposition 2.4 ([3, Theorem 8.3]). Let p ∈ L([0, ω]). Then the inclusion p ∈
V −(ω) holds if and only if there exists a positive function γ ∈ AC 1([0, ω]) satisfying

γ′′(t) ≤ p(t)γ(t) for a.e. t ∈ [0, ω], γ(0) ≥ γ(ω),
γ′(ω)
γ(ω)

≥ γ′(0)
γ(0)

,

and

γ(0)− γ(ω) +
γ′(ω)
γ(ω)

− γ′(0)
γ(0)

+ meas{t ∈ [0, ω] : γ′′(t) < p(t)γ(t)} > 0.

Let f ∈ L([a, a+ ω]), then we define

Ga(f)(t) = (a+ ω − t)
∫ t

a

(s− a)f(s) ds

+ (t− a)
∫ a+ω

t

(a+ ω − s)f(s) ds for t ∈ [a, a+ ω].
(2.1)

Proposition 2.5. Let λ ∈ ]0, 1
2 [ , f ∈ L([a, a+ ω]), and f(t) ≥ 0 for t ∈ [a, a+ ω].

Then we have the estimates

Ga(f)(t) ≤ (t− a)(a+ ω − t)
(
‖f‖1 −∆ω(λ)‖f‖λ

)
for t ∈ [a, a+ ω], (2.2)

Ga(f)(t) ≥ (t− a)(a+ ω − t)∆ω(λ)‖f‖λ for t ∈ [a, a+ ω] . (2.3)
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Proof. By Hölder’s inequality, we have∫ t

a

fλ(s) ds =
∫ t

a

[
(s− a)f(s)

]λ(s− a)−λ ds

≤
( 1− λ

1− 2λ

)1−λ
(t− a)1−2λ

(∫ t

a

(s− a)f(s) ds
)λ

for t ∈ [a, a+ ω].

Hence, ∫ t

a

(s− a)f(s) ds ≥
(1− 2λ

1− λ

) 1−λ
λ

(t− a)−
1−2λ
λ

(∫ t

a

fλ(s) ds
)1/λ

for t ∈ [a, a+ ω]. Analogously,∫ a+ω

t

(a+ ω − s)f(s) ds ≥
(1− 2λ

1− λ

) 1−λ
λ

(a+ ω − t)−
1−2λ
λ

(∫ a+ω

t

fλ(s) ds
)1/λ

.

Consequently,

Ga(f)(t) ≥
(1− 2λ

1− λ

) 1−λ
λ

(t− a)(a+ ω − t)
[ 1

(t− a)
1−λ
λ

(∫ t

a

fλ(s) ds
)1/λ

+
1

(a+ ω − t) 1−λ
λ

(∫ a+ω

t

fλ(s) ds
)1/λ]

≥
( 1− 2λ
ω(1− λ)

) 1−λ
λ

(t− a)(a+ ω − t)

×
[( ∫ t

a

fλ(s) ds
)1/λ

+
(∫ a+ω

t

fλ(s) ds
)1/λ]

for t ∈ ]a, a+ ω[ .

(2.4)
On the other hand, it is clear that

x1/λ + (A− x)1/λ ≥ 1

2
1−λ
λ

A1/λ for x ∈ [0, A]. (2.5)

Estimate (2.3) now follows from (2.4) in view of (2.5).
In the same way one can show that

Ha(f)(t) ≥ (t− a)(a+ ω − t)∆ω(λ)‖f‖λ for t ∈ [a, a+ ω], (2.6)

where

Ha(f)(t) := (a+ ω − t)
∫ t

a

(t− s)f(s) ds

+ (t− a)
∫ a+ω

t

(s− t)f(s) ds for t ∈ [a, a+ ω].

By direct calculations one can easily verify that

Ga(f)(t) = (t− a)(a+ ω − t)‖f‖1 −Ha(f)(t) for t ∈ [a, a+ ω].

Hence, in view of (2.6), we get (2.2). �
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3. Proof of main result

Proof of Theorem 1.3. Extend the function p periodically and denote it by the same
letter. Suppose that [p]− 6≡ 0 since otherwise it is known (see, e. g., Theorem 1.2)
that p ∈ V −(ω). In view of (1.4) and [1, Theorem 1.2], we have that −[p]− ∈ D(ω).
Hence, by virtue of Proposition 2.2, the inclusion −[p]− ∈ V +(ω) holds as well.
Denote by γ a solution of the problem

γ′′ = −[p(t)]−γ + [p(t)]+ ; γ(0) = γ(ω), γ′(0) = γ′(ω). (3.1)

In view of (1.5), it is clear that [p]+ 6≡ 0 and consequently, by Proposition 2.3, we
have

γ(t) > 0 for t ∈ [0, ω].
It is also evident that γ 6≡ Const . Now we show that

γ(t) > 1 for t ∈ [0, ω]. (3.2)

Put
m := min

{
γ(t) : t ∈ [0, ω]

}
, M := max

{
γ(t) : t ∈ [0, ω]

}
.

Extend the function γ periodically and denote it by the same letter. Then there
exists a ∈ [0, ω[ such that

γ(a) = m, γ(a+ ω) = m.

It is cleat that the function γ is a solution of the Dirichlet problem

γ′′ = −[p(t)]−γ + [p(t)]+ ; γ(a) = m, γ(a+ ω) = m. (3.3)

By direct calculations one can easily verify that

γ(t) = m+
1
ω
Ga([p]−γ)(t)− 1

ω
Ga([p]+)(t) for t ∈ [a, a+ ω], (3.4)

where Ga is defined by (2.1). By Proposition 2.5, we obtain

Ga([p]−γ)(t) ≤MGa([p]−)(t)

≤M(t− a)(a+ ω − t)
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
for t ∈ [a, a+ ω]

and
Ga([p]+)(t) ≥ ∆ω(λ)(t− a)(a+ ω − t)‖[p]+‖λ for t ∈ [a, a+ ω].

Hence, from (3.4) it follows that

γ(t) ≤ m+
(t− a)(a+ ω − t)

ω

(
M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
−∆ω(λ)‖[p]+‖λ

)
for t ∈ [a, a+ ω]. Taking now into account that γ 6≡ Const . we get from the latter
inequality that

M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
−∆ω(λ)‖[p]+‖λ > 0

and consequently

γ(t) < m+
ω

4
(
M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
−∆ω(λ)‖[p]+‖λ

)
(3.5)

for t ∈ [a, a+ ω] \ {t0}, where t0 = a+ ω
2 .

In view of (1.5), it is clear that

m+
ω

4

(
M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
−∆ω(λ)‖[p]+‖λ

)
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= m− 1 + 1− ω

4
∆ω(λ)‖[p]+‖λ +

ω

4
M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
≤ m− 1 +

ω

4
M
(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
+
‖[p]+‖1
‖[p]−‖1

(
1− ω

4
‖[p]−‖1 +

ω

4
∆ω(λ)‖[p]−‖λ

)
.

From (3.5) it follows that

γ(t) < m− 1 +
‖[p]+‖1
‖[p]−‖1

+
ω

4

(
M − ‖[p]+‖1

‖[p]−‖1

)(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

)
(3.6)

for t ∈ [a, a+ ω] \ {t0}. On the other hand, (3.5) implies

m ≥M
(

1− ω

4

(
‖[p]−‖1 −∆ω(λ)‖[p]−‖λ

))
+
ω

4
∆ω(λ)‖[p]+‖λ . (3.7)

From (3.1) it follows that∫ ω

0

[p(s)]+ ds =
∫ ω

0

[p(s)]−γ(s) ds (3.8)

and consequently

M ≥ ‖[p]+‖1
‖[p]−‖1

.

If M > ‖[p]+‖1
‖[p]−‖1 then, in view of (1.4) and (1.5), inequality (3.7) implies that

m > 1 and consequently, (3.2) holds. Let now M = ‖[p]+‖1
‖[p]−‖1 . Then, in view of (3.6),

we have

γ(t) < m− 1 +
‖[p]+‖1
‖[p]−‖1

for t ∈ [a, a+ ω] \ {t0},

which, together with (3.8) and the condition [p]− 6≡ 0, imply

‖[p]+‖1 < (m− 1)‖[p]−‖1 + ‖[p]+‖1.

Hence, m > 1. Thus, we have proved that (3.2) holds.
Now it follows from (3.1), in view of (3.2), that the function γ satisfies conditions

of Propositions 2.4 and therefore, p ∈ V −(ω). �
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E-mail address: dosoudilova@fme.vutbr.cz



EJDE-2018/13 REMARK ON PERIODIC BVPS 7

Alexander Lomtatidze

Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of
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