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MACLAURIN SERIES FOR sinp WITH p AN INTEGER
GREATER THAN 2

LUKÁŠ KOTRLA

Abstract. We find an explicit formula for the coefficients of the generalized

Maclaurin series for sinp provided p > 2 is an integer. Our method is based

on an expression of the n-th derivative of sinp in the form

2n−2−1X
k=0

ak,n sinp−1
p (x) cos2−p

p (x) , x ∈ (0,
πp

2
),

where cosp stands for the first derivative of sinp. The formula allows us to
compute the nonzero coefficients

αn =
limx→0+ sin

(np+1)
p (x)

(np+ 1)!
.

1. Introduction

Let us consider initial value problem

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0 ,

u(0) = 0 , u′(0) = 1 ,
(1.1)

where p > 1 is a given parameter and u : R→ R is a function such that u ∈ C1(R)
and |u′|p−2u′ ∈ C1(R). It is known that the solution of (1.1) exists and is unique
(see Elbert [9]). Since the pioneering work of del Pino, Elgueta and Manásevich [8],
this solution is usually denoted by sinp. Note that it generalizes the sine function
which is the unique solution of (1.1) for p = 2. Moreover, the function sinp also
satisfies the generalized trigonometric identity

| sinp(x)|p + | cosp(x)|p = 1 , x ∈ R , (1.2)

where cosp(x) := d
dx sinp(x), which resembles the classical trigonometric identity

for p = 2. We also define

πp := 2
∫ 1

0

1
(1− sp)1/p

ds =
2π

p sin(π/p)
.

Let us note that the function sinp is odd, 2πp-periodic, and sinp(x) = sinp(πp−x)
(see, e.g., [9]). These properties are frequently used when the function sinp is
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evaluated numerically. In fact, any evaluation of sinp at an arbitrary point x ∈ R
can be reduced to an evaluation of sinp at a point in the interval [0, πp/2].

It turns out that the system of functions {sinp(kπp x)}+∞k=1 has applications in
approximation theory, see Binding et al. [4] for pioneering work in this direction.
Indeed, there exists p0 > 1 such that, for p > p0, {sinp(kπp x)}+∞k=1 forms a Riesz
basis of L2(0, 1) and a Schauder basis of Lr(0, 1) for any 1 < r < +∞. The
approach from [4] was corrected and improved by Bushell and Edmunds [7] where
the value p0 was established as the solution of the transcendental equation

2π
p0 sin(π/p0)

=
2π2

π2 − 8
.

Boulton and Lord [5] use the basis {sinp(kπp x)}+∞k=1 in their numerical implementa-
tion of the Galerking method for finding an approximate solution to the boundary-
initial value problem

∂u

∂t
(x, t)− ∂

∂x

(∣∣∂u
∂x

(x, t)
∣∣p−2 ∂u

∂x
(x, t)

)
= g(x)

u(x, 0) = 0 , x ∈ (0, 1) ,

u(0, t) = u(1, t) = 0 t > 0 ,

(1.3)

where g ∈ L2(0, 1). It appears that this choice of basis leads to very accurate results
using only few terms of this basis. However, a main drawback of the Galerkin
method in [5] is the evaluation of the values of the function sinp on [0, πp/2]. In [5],
the inverse function of sinp,

arcsinp(x) :=
∫ x

0

1
(1− sp)1/p

ds , x ∈ [0, 1] , (1.4)

is used for that purpose. The function sinp on [0, πp/2] is then evaluated using
numerical inverse of the function arcsinp, which is a very time consuming process.
Since the problem (1.3) and its generalizations appear in various applications, see
e.g. Smreker [23] (bulding of wells), Leibenson [15] (extraction of oil and natural
gas), Wilkins [24] (bulding of rock-fill dams), Aronsson et al. [1], Evans et al. [10]
(sandpile growth), Kuijper [13] (image analysis), and Bermejo et al. [3] (climatol-
ogy), it is important to find a more efficient numerical implementations of sinp. Last
but not least, the generalized Prüfer transform using sinp and its derivative appears
to be a very efficient theoretical tool in studying various initial and/or boundary
value problems for quasilinears equation of the type (or some of its generalization)

−(|u′|p−2u′)′ − q(x)|u|p−2u = f(x)

(under various conditions on q and f) see, e.g., [9], Reichel and Walter [21], and/or
Benedikt and Girg [2]. In Brown and Reichel [6], a numerical method based on
the Prüfer transform was proposed. Again the main drawback the method was the
lack of an efficient numerical implementation of sinp. To address the issue in this
paper we obtain explicit formulas for coefficients of the Maclaurin series of sinp.
This is very difficult task in general and we are not able to deal with this problem
for all p > 1. As a starting point for further research in this direction, we provide
such formulas for any integer p bigger than 2. Let us note that even this partial
result can already be used in practical applications, since (1.3) with p → +∞ is
considered as a model for sandpile growth (see [1] and [10] for more details).



EJDE-2018/135 MACLAURIN SERIES FOR sinp 3

More precisely, our goal is to find Maclaurin series for sinp provided p is even
and generalized Maclaurin series for sinp provided p is odd. Generalized Maclaurin
series is defined as

+∞∑
n=0

αnx|x|rn, r ≥ 1 .

Peetre [20] conjectured that the radius of convergence of generalized Maclaurin
series for sinp is πp/2 for any p > 1. Local convergence of generalized Maclaurin
series was studied in Paredes and Uchiyama [19]. Peetre’s conjecture [20] was
proved in Girg and Kotrla [11] for when p > 2 is an integer. It remains to find the
coefficients of the (generalized) Maclaurin series. One can employ (1.4) and follow
the ideas presented in Lang and Edmunds [14]. Since

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds = x 2F1(
1
p
,

1
p
, 1 +

1
p

;xp), x ∈ [0, 1) ,

where 2F1(a, b, c; z) is Gauss’s hypergeometric function,

arcsinp(x) =
+∞∑
k=0

Γ(k + 1
p )

(kp+ 1)Γ( 1
p )
xkp+1

k!
, (1.5)

where Γ stands for the gamma function. We can obtain desired coefficients using
the well-known procedure for inverting power series (see, e.g., Morse and Fesh-
bach [18, p. 411 - 413]). Our aim is to derive the coefficients independently of the
inverse function. It was shown in Girg and Kotrla [12] that the nonzero coefficients
correspond only to the monomials xkp+1, k ∈ N. Then

sinp(x) =
+∞∑
n=0

sin(np+1)
p (0)

(np+ 1)!
xnp+1 x ∈ (−πp

2
,
πp

2
) ,

for p even. In addition, it was proved in [12] that the series
+∞∑
n=0

limx→0+ sin(np+1)
p (x)

(np+ 1)!
xnp+1

coincides on [0, πp/2) with the series obtained by formal inversion of (1.5) provided
p odd. Hence, by the oddness of sinp,

sinp(x) =
+∞∑
n=0

limx→0+ sin(np+1)
p (x)

(np+ 1)!
x|x|np , x ∈ (−πp

2
,
πp

2
).

It remains then to find an explicit formula for

αn :=
1

(np+ 1)!
lim

x→0+
sin(np+1)

p (x), p ∈ N, p > 2 .

Notation: In the presented paper, the symbol
∏

represents the product of a
(possibly finite) sequence of terms as usual. In addition, we define

j2∏
i=j1

bi = 1

for any sequence bi provided j1 = j2 + 1.
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Theorem 1.1. Let p > 2 be an integer and

sinp(x) =
+∞∑
n=0

αnx|x|np , x ∈ (−πp

2
,
πp

2
). (1.6)

Then α0 = 1, α1 = − 1
p(p+1) , and for n ≥ 2,

αn =
(−1)n

(np+ 1)!

p∑
i1=1

i1 6=p−1

2p∑
i2=i1+1
i2 6=2p−1

. . .

(n−1)p∑
in−1=in−2+1

in−1 6=(n−1)p−1

[ i1−1∏
m1=1

(p− 1− (m1 − 1))
](

1− (p− 1− (i1 − 1))
)

×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(1− (2(p− 1)− (i2 − 2))) . . .

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
](

1− ((n− 1)

× (p− 1)− (in−1 − (n− 1)))
)
[n(p− 1)− (in−1 − n+ 1)]!

(1.7)

The proof of Theorem 1.1 is based on a method of rewriting higher derivatives
of sinp introduced in [11]. The method is described again in Section 2 for the
convenience of the reader. Theorem 1.1 is proved in Section 3.

Let us note that the above-mentioned definitions of sinp and cosp are not the
only ones found in the literature (see, e.g., Lindqvist [16]).

2. Higher order derivatives

Let us state some basic notation from formal languages.

Definition 2.1. (Salomaa and Soittola [22], I.2, p. 4, and/or Manna [17], p.
2–3, p. 47, and p. 78) An alphabet (denoted by V ) is a finite nonempty set of
letters. A word (denoted by w) over an alphabet V is a finite string of zero or more
letters from the alphabet V . The word consisting of zero letters is called the empty
word. The set of all words over an alphabet V is denoted by V ∗ and the set of all
nonempty words over an alphabet V is denoted by V +. For strings w1 and w2 over
V , their juxtaposition w1w2 is called catenation of w1 and w2, in operator notation
cat : V ∗ × V ∗ → V ∗ and cat(w1, w2) = w1w2. We also define the length of the
word w, in operator notation len : V ∗ → N ∪ {0}, which for a given word w yields
the number of letters in w when each letter is counted as many times as it occurs
in w. We also use reverse function rev : V ∗ → V ∗ which reverses the order of the
letters in any word w (see [17, p. 47, p. 78]).

We consider the alphabet V = {0, 1} and the set of all nonempty words V +.
Thus words in V + are, e.g.,

“0”, “1”, “01”, “10”, “11” · · · .
For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” , len(“010011000”) = 9 .
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Table 1. Differentiability of sinp(x)

p, k x in (0, πp/2) (−πp/2, πp/2) R
p = 2 C∞ C∞ C∞

p = 2k, k ∈ N \ {1} C∞ C∞ C1

p = 2k + 1, k ∈ N C∞ Cp C1

p ∈ R \ N, p > 2 C∞ Cdpe C1

p ∈ (1, 2) C∞ C2 C2

Let m ∈ N, k ∈ N ∪ {0}, 0 ≤ k ≤ 2m−2 − 1 and (k)2,n−2 be the string of bits of
length m− 2 which represents binary expansion of k (it means, e.g., for k = 3 and
m = 5, (3)2,5−2 = “011”).

The differentiability of sinp(x) at x = 0 was studied in [11] leading to the results
in Table 1.

In particular, sinp(·) ∈ C∞(0, πp/2). Let

T := {a sinq
p(·) cos1−q

p (·) : a, q ∈ R} ,
and Ds : T → T and Dc : T → T be defined as follows:

Ds a sinq
p(·) cos1−q

p (·) =

{
aq sinq−1

p (·) cos1−(q−1)
p (·) , q 6= 0 ,

0 , q = 0 ,
(2.1)

and

Dc a sinq
p(·) cos1−q

p (·) =

{
−a(1− q) sinq+p−1

p (·) cos1−(q+p−1)
p (·) , q 6= 1 ,

0 , q = 1 .
(2.2)

Finally, we define Dk,m in two steps.
Step 1 We create an ordered (m−2)-tuple dk,m−2 ∈ {Ds,Dc}m−2 (cartesian prod-

uct of sets {Ds,Dc} of length m − 2) from rev((k)2,m−2) such that for
1 ≤ i ≤ m − 2, dk,m−2 contains Ds on the i-th position if rev((k)2,n−2)
contains “0” on the i-th position, and dk,m contains Dc on the i-th position
if rev((k)2,m−2) contains “1” on the i-th position (it means, e.g., for k = 3,
and m = 5, we obtain d3,5−2 = (Dc,Dc,Ds)).

Step 2 We define Dk,m as the composition of operators Ds,Dc in the order they
appear in the ordered m − 2-tuple dk,m−2 (it means, e.g., for k = 3, and
m = 5, we obtain D3,5 = (Dc ◦Dc ◦Ds)).

Let us point out that it is possible to recover the index k from the positions of Dc

in Dk,m. We will denote by j(k) ≥ 0 the number of Dc in Dk,m and, if j(k) 6= 0,
we denote by i1, i2, . . . , ij(k) its positions counted from back (i.e., in the order of
application of Ds and/or Dc). Then

k = 2m−2−(i1−1) + 2m−2−(i2−1) + . . .+ 2m−2−(ij(k)−1) . (2.3)

If j(k) = 0, k = 0.
Definition 2.1 and the definition of Dk,m are taken from [11] in almost unchanged

form for the convenience of the reader who is not familiar with our previous work.
However, the rewriting diagrams in [11], where the construction of Dk,m is visual-
ized, are not included here.
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It follows from the first derivative of the p-trigonometric identity (1.2) that

sin(2)
p (x) = − sinp−1

p (x) cos2−p
p (x) , x ∈ (0,

πp

2
) . (2.4)

Note that sinp(x) > 0 and cosp(x) > 0 for x ∈ (0, πp/2). Hence, we can use Dk,n

to express

sin(m)
p (x) =

2m−2−1∑
k=0

Dk,m sin(2)
p (x)

=
2m−2−1∑

k=0

Dk,m(−1) sinp−1
p (x) cos2−p

p (x) , x ∈ (0,
πp

2
) ,

(2.5)

for m > 2 be a positive integer. Let us explain the procedure for m = 3 at first. In
that case

d
dx

(−1) sinp−1
p (x) cos2−p

p (x)

= (−1)(p− 1) sinp−2
p (x) cos3−p

p (x)

+ (−1)(2− p) sinp−1
p (x) cos1−p

p (x) sin(2)
p (x)

= (−1)(p− 1) sinp−2
p (x) cos3−p

p (x)

+ (−1)(1− (p− 1)) sinp−1+p−1
p (x) cos1−(p−1+p−1)

p (x)

= DS sin(2)
p (x) + Dc sin(2)

p (x)

for any x ∈ (0, πp/2) by the definition of DS and Dc. The proof of (2.5), which
proceeds by induction, can be found in [11, Lemma 4.5, p. 110].

There are two special cases in composing the symbolic operators for p ∈ N, p > 2,
which can be used for reducing of terms in (2.5).
Case 1 Assume that there exists k ∈ N ∪ {0}, k ≤ 2m−2 − 1 such that

Dk,m sin(2)
p (·) = a sinp(·) cos0p(·) . (2.6)

The further application of Dc is meaningless since it produce 0 by (2.2).
The situation (2.6) occurs, e.g., after p− 2 applications of DS on sin(2)

p (·).
Case 2 If there exists k ∈ N, k ≤ 2m−2 − 1, such that

Dk,m sin(2)
p (·) = a sin0

p(·) cos1p(·) , (2.7)

then the application of Ds produces 0, see (2.1). The situation (2.7) occurs,
e.g., after p−1 applications of DS on sin(2)

p (·). This is the essential argument
in the proof that the exponent q is always nonnegative, see [11, Lemma 4.6,
p.113] for more details.

3. Proof of main result

Proof of Theorem 1.1. It follows from [12, Theorem 6, p. 3] that

αn =
1

(np+ 1)!
lim

x→0+
sin(np+1)

p (x) (3.1)

for p odd, and it is obvious that (3.1) is valid for p even, since sinp(·) belongs to
C∞(−πp/2, πp/2) in this case. We obtain α0 = limx→0+ cosp(x) = 1 for p ∈ N,
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p > 2. Let n ∈ N and x ∈ (0, πp/2). By [11, Lemma 4.5, p. 110]

sin(np+1)
p (x) =

2np−1−1∑
k=0

−Dk,np+1 sinp−1
p (x) cos2−p

p (x)

=
2np−1−1∑

k=0

ak,np+1 sinqk,np+1
p (x) cos1−qk,np+1

p (x) ,

where ak,np+1 ∈ R and qk,np+1 ∈ N ∪ {0}. It follows that

lim
x→0+

sin(np+1)
p (x) =

2np−1−1∑
k=0

ak,np+1 lim
x→0+

sinqk,np+1
p (x) cos1−qk,np+1

p (x)

=
2np−1−1∑

k=0
qk,np+1=0

ak,np+1 .

(3.2)

Our first aim is to describe k ∈ N ∪ {0}, 0 ≤ k ≤ 2np−1 − 1 such that qk,n = 0. We
use the alphabet V = {0, 1} introduced in Definition 2.1 for this purpose and we
employ the formula

qk,np+1 = j(k)(p− 1) + (np− 1− j(k))(−1) + p− 1 (3.3)

proved in [11, Lemma 4.5, p. 11)]. Let us recall that j(k) is the number of occur-
rences of Dc in Dk,np+1. It follows from the condition qk,n = 0 that j(k) = n − 1.
Then k = 0 for n = 1 which implies

lim
x→0+

sin(p+1)
p (x) = − lim

x→0+
D0,p+1 sinp−1

p (x) cos2−p
p (x)

= − lim
x→0+

(p− 1)! sin0
p(x) cos1p(x) = −(p− 1)!

(3.4)

by (2.1), the definition of Ds. Substituting (3.4) into (3.1) we obtain

α1 = − 1
p(p+ 1)

.

We will assume n ≥ 2 in the rest of the proof. Then

k = 2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(in−1−1)

by (2.3). Moreover,
∀s ∈ N, 1 ≤ s ≤ n− 1: is ≤ sp . (3.5)

Indeed, let there exist s0 ∈ N, 1 ≤ s0 ≤ n− 1 : is0 > s0p and let

k1 :=

{
0 for s0 = 1 ,
2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(is0−1−1) for s0 ≥ 2 .

The binary expansion (k1)2,is0−1 of k1 defines Dk1,is0+1 by the composition of the
symbolic operators Ds and/or Dc taking the first is0−1 operators from Dk,np+1 (in
the order of its application). The exponent qk1,is0+1 in Dk1,is0+1 sin(2)

p (·) satisfies

qk1,is0+1 = (s0 − 1)(p− 1) + (is0 − 1− s0 + 1)(−1) + p− 1 = s0p− is0 < 0
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by (3.3) and the assumption is0 > s0p. Since qk,np+1 ≥ 0 for any n ∈ N ∪ {0}
and all 0 ≤ k ≤ 2np−1 − 1 provided p > 1 be an integer, we get the contradiction.
Hence,

αn =
1

(np+ 1)!

p∑
i1=1

2p∑
i2=i1+1

. . .

(n−1)p∑
in−1=in−2+1

ak0,np+1 , (3.6)

where k0 = 2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(in−1−1).
It remains to express ak0,np+1 as the polynomial in p. We will apply Ds and/or

Dc on sin(2)
p (·) recursively. Let us denote by ai the coefficient and qi the exponent

obtained by i steps of recursion. The base cases are a0 = −1 and q0 = p − 1 by
(2.4) and inductive clauses are given by (2.1) and (2.2), i.e.,

ai+1 =

{
qi · ai if Ds is applied ,
−(1− qi)ai if Dc is applied ,

(3.7)

and

qi+1 =

{
qi − 1 if Ds is applied ,
qi + p− 1 if Dc is applied .

(3.8)

It follows from the definition of Dk0,np+1 that the operator Ds is applied in the first
i1 − 1 steps of recursion. It means that

ai1−1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2)) and qi1−1 = p− 1− (i1 − 1) .

by (2.1). Applying the operator Dc on the next position we have

ai1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1))),

qi1 = 2(p− 1)− (i1 − 1) .

Applying i2 − 1− i1 times the operator Ds and we obtain

ai2−1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1)))

× (2(p− 1)− (i1 − 1)) · · · (2(p− 1)− (i2 − 3))

and
qi2−1 = 2(p− 1)− (i2 − 2)

(provided i2 > i1 + 1). The application of Dc leads to

ai2 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1)))

× (2(p− 1)− (i1 − 1)) · · · (2(p− 1)− (i2 − 3))(−1)(1− (2(p− 1)− (i2 − 2)))

and
qi2 = 3(p− 1)− (i2 − 2) .

It follows by the recursive application of Ds and/or Dc that

ain−1 = (−1)
[ i1−1∏

m1=1

(p− 1− (m1 − 1))
]
(−1)

(
1− (p− 1− (i1 − 1))

)
×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(−1)(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
]
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× (−1)(1− ((n− 1)(p− 1)− (in−1 − (n− 1))))

and
qin−1 = n(p− 1)− (in−1 − n+ 1) ,

where in−1 is the last position of Dc. Since the remaining symbolic operators in
Dk0,np+1 are Ds and qk0,np+1 = 0 by (3.2), we finally get

ak0,np+1

= (−1)
[ i1−1∏

m1=1

(p− 1− (m1 − 1))
]
(−1)

(
1− (p− 1− (i1 − 1))

)
×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(−1)(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
]

× (−1)(1− ((n− 1)(p− 1)− (in−1 − (n− 1))))

×
[
n(p− 1)− (in−1 − n+ 1)

]
!

(3.9)

Substituting (3.9) into (3.6) we obtain desired formula (1.7). The positions is = sp−
1 are excluded in (1.7) since it produce zero due to the terms 1−(s(p−1)−(is−s))
in product (3.9) (see Case 1 in Section 2). �

4. Concluding remarks

Remark 4.1. The proof of Theorem 1.1 provides a procedure to generate any
coefficient αn, n ≥ 2 of Maclaurin series (1.6) for sinp, when p > 2 is an integer. It
is convenient to generate all vectors v ∈ {0, 1}np−1 with exactly n− 1 occurrences
of “1”s, which satisfy condition (3.5), i.e.,

∀s ∈ N, 1 ≤ s ≤ n− 1 : is ≤ sp .

Let us note that is is the position of “1” in v. Then the recursions (3.7) with
a0 = −1 and (3.8) with q0 = p − 1 can to applied by all possible vectors v to
obtain the coefficient av ∈ R. Let us remind that zero and one means that Ds and
Dc is applied, respectively, and the order of application Ds and/or Dc is reversed.
Finally, the resulting coefficient αn is given as sum of all av which is divided by
(np+ 1)!.

Remark 4.2. The coefficients αn, n ≥ 2, can be also computed recursively by the
formula

αn+1 = (−1)
[ (p− 1)!

((n+ 1)p+ 1)((n+ 1)p) · · · (np+ 2)

]
αn

+
(−1)n+1

((n+ 1)p+ 1)!

p∑
i1=1

i1 6=p−1

2p∑
i2=i1+1
i2 6=2p−1

· · ·

np−2∑
in−1=in−2+1

[ i1−1∏
m1=1

(p− 1− (m1 − 1))
](

1− (p− 1− (i1 − 1))
)
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×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1∏

mn=in−1+1

(n(p− 1)− (mn − n))
]

× (1− (n(p− 1)− (in − n))))[n(p− 1)− (in − n)]!

with α1 = −1/(p(p+ 1)).
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