Electron. J. Differential Equations, Vol. 2018 (2018), No. 137, pp. 1-14.

Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in exterior domains

Habib Maagli, Abdulah Khamis Alzahrani, Zagharide Zine El Abidine

In this article, we study the existence, uniqueness and the asymptotic behavior of a positive classical solution to the semilinear boundary value problem
 -\Delta u=a(x)u^{\sigma }\quad \text{in }D, \cr
  u|_{\partial D}=0,\quad   \lim_{|x|\to \infty}u(x) =0.
Here D is an unbounded regular domain in $\mathbb{R} ^n$ ($n\geq 3$) with compact boundary, $\sigma<1$ and the function a is a nonnegative function in $C_{\rm loc}^{\gamma}(D)$, $0<\gamma<1$, satisfying an appropriate assumption related to Karamata regular variation theory.

Submitted September 20, 2017. Published July 1, 2018.
Math Subject Classifications: 34B16, 34B18, 35B09, 35B40.
Key Words: Positive solutions; asymptotic behavior; Dirichlet problem; subsolution; supersolution.

Show me the PDF file (282 KB), TEX file for this article.

Habib Mâagli
King Abdulaziz University
College of Sciences and Arts, Rabigh Campus
Department of Mathematics. P. O. Box 344
Rabigh 21911, Saudi Arabia
email: habib.maagli@fst.rnu.tn
  Abdulah Khamis Alzahrani
King Abdulaziz University, Faculty of Sciences
Department of Mathematics. P. O. Box 80203
Jeddah 21589, Saudi Arabia
email: akalzahrani@kau.edu.sa
Zagharide Zine El Abidine
Université de Tunis El Manar
Faculté des Sciences de Tunis
UR11ES22 Potentiels et Probabilités
2092 Tunis, Tunisie
email: Zagharide.Zinelabidine@ipeib.rnu.tn

Return to the EJDE web page