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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A
SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

ERIC R. KAUFMANN

Abstract. We consider the existence and uniqueness of solutions to the second-
order iterative boundary-value problem

x′′(t) = f(t, x(t), x[2](t)), a ≤ t ≤ b,

where x[2](t) = x(x(t)), with solutions satisfying one of the boundary condi-

tions x(a) = a, x(b) = b or x(a) = b, x(b) = a. The main tool employed to
establish our results is the Schauder fixed point theorem.

1. Introduction

The study of iterative differential equations can be traced back to papers by
Petuhov [9] and Eder [4]. In 1965 Petuhov [9] considered the existence of solutions
to the functional differential equation x′′ = λx(x(t)) under the condition that x(t)
maps the interval [−T, T ] into itself and that x(0) = x(T ) = α. He obtained con-
ditions on λ and α for the existence and uniqueness of solutions. In 1984, Eder
[4] studied solutions of the first order equation x′(t) = x(x(t)). The author proved
that every solution either vanishes identically or is strictly monotonic. The author
established conditions for the existence, uniqueness, analyticity, and analytic de-
pendence of solutions on initial data. In 1990, using Schauder’s fixed point theorem
Wang [10] obtained a solution of x′ = f(x(x(t))), x(a) = a, where a is one endpoint
of the interval of existence. In 1993, Fečkan showed the existence of local solutions
via the Contraction Mapping Principle for the initial value problem for the iterative
differential equation x′(t) = f(x(x(t))), x(0) = 0. For more on iterative differential
equations see the papers [1, 2] [5]-[8], [11]-[14] and references therein.

In this paper we consider the existence and uniqueness of solutions to the second-
order iterative boundary-value problem

x′′(t) = f(t, x(t), x[2](t)), a < t < b, (1.1)

where x[2](t) = x(x(t)), with solutions satisfying one of the following boundary
conditions:

x(a) = a, x(b) = b; (1.2)

x(a) = b, x(b) = a. (1.3)
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We assume throughout that f : [a, b]×R×R→ R is continuous. Due to the iterative
term x[2](t), in order for solutions to be well-defined, we require that the image of
x be in the interval [a, b]; that is, we need a ≤ x(t) ≤ b for all t ∈ [a, b].

In Section 2, we first rewrite (1.1), (1.2) as an integral equation and then state
a condition under which solutions of the integral equation will be solutions of the
boundary value problem. We also state properties of the kernel that will be needed
in the sequel. In Section 3, we state and prove theorems on the existence and
uniqueness of solutions for the boundary value problems (1.1), (1.2) and (1.1),
(1.3). We provide an example to demonstrate our results.

2. Preliminaries

Our goals in this section are to convert the boundary value (1.1), (1.2) to a
fixed point problem and to state theorems we will need to prove the existence and
uniqueness. To this end, let x ∈ C2[a, b] be a solution of

x′′(t) = f(t, x(t), x[2](t)), a < t < b,

x(a) = a, x(b) = b.

We begin by integrating the equation x′′(t) = f(t, x(t), x[2](t)) twice.

x(t) = a+ x′(a)(t− a) +
∫ t

a

(t− s)f(s, x(s), x[2](s)) ds. (2.1)

After applying the boundary condition x(b) = b, we can solve for x′(a) to obtain,

x′(a) = 1− 1
b− a

∫ b

a

(b− s)f(s, x(s), x[2](s)) ds.

Now substitute this expression for x′(a) into (2.1).

x(t) = t− (t− a)
b− a

∫ b

a

(b− s)f(s, x(s), x[2](s)) ds+
∫ t

a

(t− s)f(s, x(s), x[2](s)) ds.

We can rewrite this equation in the form

x(t) = t− 1
b− a

∫ b

t

(t− a)(b− s)f(s, x(s), x[2](x)) ds

− 1
b− a

∫ t

a

(t− a)(b− s)f(s, x(s), x[2](s)) ds

+
1

b− a
(t− s)f(s, x(s), x[2](s)) ds.

Finally, we combine the last two integrals and simplify the integrand.

x(t) = t+
1

b− a

∫ b

t

(t− a)(s− b)f(s, x(s), x[2](x)) ds

+
1

b− a

∫ t

a

(t− b)(s− a)f(s, x(s), x[2](s)) ds.

Thus, if x ∈ C2[a, b] is a solution of

x′′(t) = f(t, x(t), x[2](t)), a < t < b,

x(a) = a, x(b) = b,
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then x ∈ C[a, b] must satisfy the integral equation

x(t) = t+
∫ b

a

G(t, s)f(s, x(s), x[2](s)) ds, a ≤ t ≤ b, (2.2)

where

G(t, s) =
1

b− a

{
(t− b)(s− a), a ≤ s ≤ t ≤ b,
(t− a)(s− b), a ≤ t ≤ s ≤ b.

Define the operator T1 : C[a, b]→ C[a, b] by

(T1x)(t) = t+
∫ b

a

G(t, s)f(s, x(s), x[2](s)) ds.

Note that (T1x)(a) = a and (T1x)(b) = b. Also,

(T1x)′(t) = 1 +
1

b− a

∫ t

a

(s− a)f(s, x(s), x[2](s)) ds

− 1
b− a

∫ b

t

(b− s)f(s, x(s), x[2](s)) ds,

and

(T1x)′′(t) = f(s, x(s), x[2](s)).

Recall that in order for the solution of (1.1), (1.2) to be well-defined we need
a ≤ x(t) ≤ b, for all a ≤ t ≤ b. As such, if x ∈ C[a, b] is a fixed point of T1 such
that a ≤ (T1x)(t) ≤ b for all t ∈ [a, b], then x is a solution of (1.1), (1.2). We have
the following lemma.

Lemma 2.1. The function x is a solution of (1.1), (1.2) if and only if a ≤
(T1x)(t) ≤ b and x is a fixed point of T1.

To establish our uniqueness results we will need the following results concerning
the kernel of (2.2). The proof of this lemma is straight forward and hence omitted.

Lemma 2.2. The function

G(t, s) =
1

b− a

{
(t− b)(s− a), a ≤ s ≤ t ≤ b,
(t− a)(s− b), a ≤ t ≤ s ≤ b

satisfies

|G(t, s)| ≤ |G(s, s)|, t, s ∈ [a, b]× [a, b],∫ b

a

|G(s, s)| ds =
1
6

(b− a)2.

We conclude this section with Schauder’s fixed point theorem [3].

Theorem 2.3 (Schauder). Let A be a nonempty compact convex subset of a Banach
space and let T : A→ A be continuous. Then T has a fixed point in A.
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3. Existence and uniqueness of solutions

We present our main results in this section. From Lemma 2.1 we note that we
need a ≤ (T1x)(t) ≤ b for all t ∈ [a, b]. The following condition will be used to
control the range of T1x.

(H1) There exists constants K,L > 0 such that −K ≤ f(t, u, v) ≤ L for all
t ∈ [a, b], u, v ∈ R and 1− b−a

2 (K + L) > 0.
We are now ready to state our first result.

Theorem 3.1. Suppose that condition (H1) holds. The there exists a solution of
the boundary-value problem (1.1), (1.2).

Proof. Consider the Banach space Φ = (C[a, b], ‖ · ‖) with the norm defined by
‖x‖ = maxt∈[a,b] |x(t)|. Let m = max{|a|, |b|} and let Φm = {x ∈ Φ : ‖x‖ ≤ m}.
Since (H1) holds,

(T1x)′(t) = 1 +
1

b− a

∫ t

a

(s− a)f(s, x(s), x[2](s)) ds

− 1
b− a

∫ b

t

(b− s)f(s, x(s), x[2](s)) ds

≥ 1− K

b− a

∫ t

a

(s− a) ds− L

b− a

∫ b

t

(b− s) ds

≥ 1− b− a
2

(K + L) > 0.

Consequently T1x is increasing. Since (T1x)(a) = a and (T1x)(b) = b, then a ≤
(T1x)(t) ≤ b for all t ∈ [a, b]. An application of Schauder’s theorem yields a fixed
point x of T1 and the proof is complete. �

By Lemma 2.1 the function x is a solution of (1.1), (1.2).
Using the same technique as in Section 2, we can show that the boundary-value

problem (1.1), (1.3) is equivalent to the integral equation

(T2x)(t) = (b+ a)− t+
∫ b

a

G(t, s)f(s, x(s), x[2](s)) ds

provided a ≤ (T2x)(t) ≤ b.

Theorem 3.2. Suppose that condition (H1) holds. The there exists a solution of
the boundary-value problem (1.1), (1.3).

Proof. As in the proof of Theorem 3.1, we first show that T2x is monotone. From
condition (H1) we have

(T2x)′(t) = −1 +
1

b− a

∫ t

a

(s− a)f(s, x(s), x[2](s)) ds

− 1
b− a

∫ b

t

(b− s)f(s, x(s), x[2](s)) ds

≤ −1 +
b− a

2
(K + L) < 0.

The rest of the proof is the same as in Theorem 3.1. �
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Example 3.3. Consider the following boundary-value problem with parameter k.

x′′(t) = k cos(x[2](t)) (3.1)

x(0) = 0, x(π) = π. (3.2)

Here, f(t, u, v) = k cos v. Since −|k| ≤ k cos v ≤ |k|, then 1− b−a
2 (K+L) = 1− π

2 |k|.
By Theorem 3.1 there exists a solution of (3.1), (3.2) for all values of k such that
|k| < 2

π .

We now consider uniqueness of solutions of (1.1), (1.2) and (1.1), (1.3). To this
end, we need the following condition.

(H2) There exists M,N > 0 such that |f(t, u1, v1)− f(t, u2, v2)| ≤M |u1 − u2|+
N |v1 − v2| for all t ∈ [a, b], u1, u2, v1, v2 ∈ R.

Theorem 3.4. Suppose that (H1) and (H2) hold. Assume that
1
6

(M +N)(b− a)2 < 1.

Then there exists a unique solution of (1.1), (1.2).

Proof. Since (H1) holds, then there exists a fixed point x of T1. Suppose that x1

and x2 are two distinct fixed points of T1. Then for all t ∈ [a, b] we have,

|x1(t)− x2(t)| = |(T1x1)(t)− (T1x2)(t)|

=
∣∣∣ ∫ b

a

G(t, s)
(
f(s, x1(s), x[2]

1 (s))− f(s, x2(s), x[2]
2 (s))

)
ds
∣∣∣

≤
∫ b

a

|G(t, s)|
∣∣f(s, x1(s), x[2]

1 (s))− f(s, x2(s), x[2]
2 (s))

∣∣ ds
≤
∫ b

a

|G(s, s)|
(
M |x1(s)− x2(s)|+N |x[2]

1 (s)− x[2]
2 (s)|

)
≤ 1

6
(M +N)(b− a)2‖x1 − x2‖

< ‖x1 − x2‖.

Thus, ‖x1 − x2‖ < ‖x1 − x2‖ and we have a contradiction. Consequently, the fixed
point x of T1 is unique. By Lemma 2.1 x is the unique solution of (1.1), (1.2) and
the proof is complete. �

In a similar manner we can prove the following theorem.

Theorem 3.5. Suppose that (H1) and (H2) hold. Assume that
1
6

(M +N)(b− a)2 < 1.

Then there exists a unique solution of (1.1), (1.3).

Example 3.6. We again consider the boundary-value problem (3.1), (3.2),

x′′(t) = k cos(x[2](t))

x(0) = 0, x(π) = π.

By the Mean Value Theorem we know there exists a ξ ∈ [0, π] such that

|k cos v1 − k cos v2| = |k|| sin ξ||v1 − v2| ≤ |k||v1 − v2|.
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We have 1
6 (M + N)(b − a)2 = |k|π2/6. By Theorem 3.4 there exists a unique

solution of (3.1), (3.2) for all values of k such that |k| < 6/π2.

Note that the results in this paper can be extended to boundary-value problems
of the form

x′′ = f
(
t, x(t), x[2](t), . . . , x[n](t)

)
,

x(a) = a, x(b) = b,

as well as boundary-value problems of the form

x′′ = f
(
t, x(t), x[2](t), . . . , x[n](t)

)
,

x(a) = b, x(b) = a.
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