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LINEAR ELLIPTIC AND PARABOLIC PDEs WITH NONLINEAR
MIXED BOUNDARY CONDITIONS AND SPATIAL

HETEROGENEITIES

SANTIAGO CANO-CASANOVA

Communicated by Ratnasingham Shivaji

Abstract. This article concerns the positive solutions of a boundary-value
problem constituted by a linear elliptic partial differential equation, subject to

nonlinear mixed boundary conditions containing spatial heterogeneities with

arbitrary sign along the boundary. The results obtained in this work provide
us the global bifurcation diagram of positive solutions, the pointing behavior of

them when the parameters change and the dynamics of the positive solutions

of the associated parabolic problem. The main contribution of this paper
is to give general results about existence, uniqueness, stability and pointing

behavior of positive solutions, for boundary-value problems with nonlinear

boundary conditions of mixed type containing spatial heterogeneities. The
main technical tools used to develop the mathematical analysis are local and

global bifurcation, monotonicity techniques, the Characterization of the Strong

Maximum Principle given by Amann and López-Gómez [5], blow up arguments
and some of the techniques used in the previous works [19, 20, 33, 34]. The

results obtained in this paper are the natural continuation of the previous ones
in [11].

1. Introduction

In this article we consider the boundary-value problem with nonlinear mixed
boundary conditions and spatial heterogeneities given by

−∆u = λu in Ω ,

u = 0 on Γ0 ,

∂u+ V (x)u = γb(x)uq on Γ1 , q > 1 ,
(1.1)

where:
(i) Ω is a bounded domain of RN , N ≥ 1 of class C2, with boundary ∂Ω =

Γ0 ∪ Γ1, where Γ0 and Γ1 are disjoint open and closed subsets of ∂Ω;
(ii) −∆ stands for the minus Laplacian operator in RN and λ ∈ R is the

bifurcation parameter;
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(iii) the spatial heterogeneities on the boundary come given by the potentials
V, b ∈ C(Γ1), where b > 0 on Γ1 and V possesses arbitrary sign in each
point x ∈ Γ1;

(iv) ∂u(x) stands for the outer normal derivative of u at x ∈ Γ1, and γ ∈ R.

This work is devoted to analyzing the structure of the set of positive solutions
of (1.1) depending on the sign of the parameter γ ∈ R on the nonlinear mixed
boundary conditions, to ascertain the pointing behavior of positive solutions of (1.1)
when γ < 0 and λ changes, and to obtain the dynamics of the positive solutions of
the associated parabolic problem to (1.1) depending on the values of the bifurcation
parameter λ ∈ R and on the sign of the parameter γ ∈ R.

By a positive solution of (1.1) we will mean any couple (λ, u) ∈ R×W 2
p (Ω) for

some p > N , with u > 0 in Ω satisfying (1.1). It should be noted that W 2
p (Ω) ⊂

C2−Np (Ω̄) and that any function u ∈ W 2
p (Ω), p > N is a.e. twice differentiable (cf.

[29, Theorem VIII.1]). We will say that a positive solution (λ, u) of (1.1) is strongly
positive in Ω, and we will denote it by u � 0, if u(x) > 0 for all x ∈ Ω ∪ Γ1 and
∂u(x) < 0 for all x ∈ Γ0.

In the particular case when γ = 0, (1.1) becomes in a linear boundary-value
problem which exhibits vertical bifurcation to positive solutions from the trivial
branch (λ, u) = (λ, 0) at a unique value of λ which will be denoted by σ1. The
results obtained along this work will show that the sign of the parameter γ plays a
crucial role in our problem. Indeed, we will see that although the partial differential
equation of (1.1) is linear, in the particular case when γ < 0 the structure of the set
of positive solutions of (1.1) is a typical structure of a sublinear problem, whereas in
the particular case when γ > 0 it is the typical structure of a superlinear problem.
The same occurs in the study of the stability of the positive solutions of (1.1).

The main techniques used to carry out the mathematical analysis are mono-
tonicity techniques, local and global bifurcation, blow up arguments and some of
the techniques used in the previous works [33, 34, 19, 20].

Hereinafter, for each V ∈ C(Γ1), B(V (x)) will stand for the boundary operator
defined by

B(V (x))u :=

{
u on Γ0 ,

∂u+ V (x)u on Γ1 ,

and D the Dirichlet boundary operator on ∂Ω.
From the results in [4, Theorem 12.1] and [5, Theorem 2.2], it is known that for

any K ∈ C(Ω̄) and V ∈ C(Γ1), the boundary eigenvalue problem

(−∆ +K(x))ϕ = σϕ in Ω ,

B(V (x))ϕ = 0̄ on ∂Ω ,
(1.2)

admits a unique eigenvalue which possesses a positive eigenfunction, unique up
multiplicative constant, named principal eigenvalue of (1.2). Hereafter we will
denote it by σΩ

1 [−∆ + K(x),B(V (x))]. Also the principal eigenvalue of (1.2) is
simple and dominant in the sense that any other eigenvalue λ of (1.2) satisfies

Re(λ) > σΩ
1 [−∆ +K(x),B(V (x))] ,
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where Re(λ) stands for the real part of λ. In addition, if ϕ∗ stands for the positive
eigenfunction of (1.2) associated to σΩ

1 [−∆+K(x),B(V (x))], unique up multiplica-
tive constant, then

ϕ∗ � 0 in Ω, (1.3)

ϕ∗ ∈W 2(Ω) := ∩p>NW 2
p (Ω) ⊂ C1+α(Ω̄) for all α ∈ (0, 1) . (1.4)

Hereinafter we will denote

σ1 := σΩ
1 [−∆,B(V (x))] ,

and by ϕ1 > 0, the principal eigenfunction associated to the principal eigenvalue
σ1, normalized so that ‖ϕ1‖L∞(Ω) = 1. By (1.3) and (1.4) we obtain

ϕ1 � 0 in Ω and ϕ1 ∈ C1+α(Ω̄) ∀α ∈ (0, 1)

Also we will denote
σ0 := σΩ

1 [−∆,D] ,
that is, the principal eigenvalue of the −∆ operator in the domain Ω under Dirichlet
boundary conditions. Owing to [7, Proposition 3.1] we know that

σ1 < σ0 (1.5)

Finally, we will denote

C1
Γ0

(Ω̄) :=
{
u ∈ C1(Ω̄) : u|Γ0 = 0

}
As it was mentioned, in the particular case when γ = 0, (1.1) becomes in the linear
boundary-value problem

−∆u = λu in Ω

B(V (x))u = 0 on ∂Ω
(1.6)

and owing to [4, Theorem 12.1], we know that (1.6) possesses positive solutions if,
and only if λ = σ1. In this case we obtain vertical bifurcation to positive solutions
from the trivial branch (λ, u) = (λ, 0) at λ = σ1, because all the positive solutions
of (1.6) are positive multiple of ϕ1, being ϕ1 the principal eigenfunction associated
to the principal eigenvalue σ1 of (1.6), normalized so that ‖ϕ1‖L∞(Ω) = 1.

There is a big amount of literature about the topics of existence, uniqueness and
stability of solutions of elliptic boundary-value problems with nonlinear boundary
conditions, and about the dynamics of the solutions of parabolic problems with
nonlinear boundary conditions, among others, [3, 6, 8, 9, 10, 11, 12, 13, 15, 16,
17, 22, 25, 26, 27, 30, 31, 32, 35]. The main contribution of this paper, together
with the previous works [8, 9, 10, 11, 22], lies in providing general results about
the structure of the set of positive solutions and about the stability of them, for
very general nonlinear boundary-value problems with nonlinear mixed boundary
conditions, containing spatial heterogeneities with arbitrary sign. In particular, in
this work, just as in [11], the outer normal derivative of the solution u depends in
a nonlinear way of u, and may be positive, negative and vanish in different regions
of Γ1, depending on the sign of γb(x)u(x)q−V (x)u(x) in each point x ∈ Γ1. In [11]
were analyzed the existence, uniqueness and stability of the positive solutions of
the semilinear boundary-value problem with nonlinear mixed boundary conditions

−∆u = λu− a(x)up in Ω , p > 1
u = 0 on Γ0 ,

∂u+ V (x)u = b(x)uq on Γ1 , q > 1
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where the domain Ω and the potentials on the boundary V, b ∈ C1(Γ1) possess
similar properties to the considered in this work, and the spatial heterogeneity
a ∈ C(Ω̄), with a > 0, satisfies that either

Ω0 := int{x ∈ Ω : a(x) = 0}, Ω0 ∈ C2, Ω̄0 ⊂ Ω, and a(x) is
bounded away from zero in any compact subsets of (Ω \ Ω̄0)∪Γ1,

(1.7)

or
a(x) is bounded away from zero in any compact subset Ω ∪ Γ1 (1.8)

The results obtained in the current work are, in some sense, the natural continuation
of the results in [11], to cover the case therein when Ω0 = Ω, that is, when the
potential a = 0 in Ω. Clearly, the results obtained in this paper can not be obtained
substituting in [11] a = 0 in Ω, because the case Ω0 = Ω does not satisfy the
assumptions (1.7) neither (1.8) required in [11].

The organizations of this article is as follows: Section 1 is the Introduction.
Section 2 contains results about the profile and regularity of the positive solutions
of (1.1) and the main results about local and global bifurcation to positive solutions
of (1.1) from the trivial branch (λ, u) = (λ, 0). In Section 3 is carried out a very
sharp analysis, in the particular case when γ < 0, about the global structure of the
set of positive solutions of (1.1)(Section 3.1), about the pointing behavior of the
positive solutions of (1.1) when λ ↑ σ0 (Section 3.2) and about the dynamics of the
positive solutions of the associated parabolic problem to (1.1) (Section 3.3). Finally,
in Section 4 is analyzed the particular case when γ > 0, obtaining some results about
the dynamics of the positive solutions of the parabolic problem associated to (1.1)
(Section 4.1), and some results about the structure of the set of positive solutions
of (1.1) (Section 4.2).

2. Regularity and bifurcation of positive solutions to (1.1)

This section contains results about the profile and regularity of the positive
solutions of (1.1) and the main results about local and global bifurcation to positive
solutions of (1.1) from the trivial branch (λ, u) = (λ, 0). The next result gives the
regularity and profile of the positive solutions of (1.1) and a necessary condition
for the existence of them.

Theorem 2.1. If uλ is a positive solution of (1.1) for the value λ of the parameter,
then

λ = σΩ
1 [−∆,B(V (x)− γb(x)uq−1

λ )] , (2.1)

uλ ∈ C1+α(Ω̄) for all α ∈ (0, 1), and uλ is strongly positive in Ω.

Proof. Let uλ be a positive solution of (1.1) for the value λ. Then, uλ is a positive
function in Ω satisfying the problem

−∆uλ = λuλ in Ω ,

uλ = 0 on Γ0 ,(
∂ + V (x)− γb(x)uq−1

λ

)
uλ = 0 on Γ1 , q > 1 ;

that is, λ is an eigenvalue of the problem

−∆θ = λθ in Ω ,

B
(
V (x)− γb(x)uq−1

λ

)
θ = 0 on ∂Ω , q > 1 ,

(2.2)
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and θ = uλ is a positive eigenfunction of (2.2) associated to the eigenvalue λ. Then,
owing to the uniqueness of the principal eigenvalue of (2.2) (cf. (1.2), [4]), we obtain
(2.1) and that uλ is its principal eigenfunction. The remaining assertions of the
theorem follow from the structure and regularity of the principal eigenfunction of
(2.2) (cf. (1.3), (1.4), [4]). This completes the proof. �

Hereafter, by continuum we will mean a closed and connected set. The following
theorem collects the main results about bifurcation of positive solutions of (1.1)
from the trivial branch (λ, u) = (λ, 0). It is [10, Theorem 1.1] for the particular
case therein when p = 1, q > 1 and a = 0 in Ω.

Theorem 2.2. The following hold:
(i) The value λ = σ1 is the unique bifurcation value to positive solutions of (1.1)

from the trivial branch (λ, u) = (λ, 0).
(ii) A differentiable continuum C of solutions of (1.1) emanates from the bifur-

cation point (λ, u) = (σ1, 0) and in a small neighborhood V of (σ1, 0) in R×C1
Γ0

(Ω̄),
the unique non-trivial solutions of (1.1) belong to C. In addition,

C ∩ V = {(λ, u) = (σ1 + µq(s), s(ϕ1 + vq(s))) : s ∈ (−ε, ε)} (2.3)

for ε > 0 small enough, with

(µq, vq) ∈ C1((−ε, ε),R× C1
Γ0

(Ω̄)) , (µq(0), vq(0)) = (0, 0) , (2.4)

and
∫

Ω
vq(s)ϕ1 = 0 for all s ∈ (−ε, ε). Furthermore,

lim
s→0

µq(s)
sq−1

= D(q, γ) , (2.5)

where

D(q, γ) := −γ
∫

Γ1

b(x)ϕq+1
1 . (2.6)

Remark 2.3. It should be noted that owing to (2.3), (2.4), (2.5) and (2.6) and
since b > 0 and ϕ1 � 0 in Ω, we obtain the bifurcation to positive solutions from
the trivial branch at λ = σ1 produces for s ∈ (0, ε) and it is supercritical if γ < 0
and subcritical if γ > 0.

Hereinafter we will denote by C+ the maximal subcontinuum of C composed by
the positive solutions of (1.1) emanating from the trivial branch at λ = σ1.

Remark 2.4. Since λ = σ1 is a simple eigenvalue of the linearization of (1.1) at
(λ, u) = (σ1, 0), and owing to the fact that (λ, u) = (σ1, 0) is the unique bifurcation
point to positive solutions of (1.1) from the trivial branch, it follows from the
updated version of the Global Alternative of Rabinowitz [24, Theorem 1.27] given
by López-Gómez in [21, Theorem 6.4.3], that either C+ is unbounded in R×C1

Γ0
(Ω̄),

or it contains a pair (λ̃, ũ) with ũ� 0 in Ω satisfying∫
Ω

ũϕ1 = 0 ,

which is impossible since ϕ1 � 0 in Ω. Then, we obtain C+ is unbounded in
R× C1

Γ0
(Ω̄) and by the Lp-estimates, unbounded in R× L∞(Ω).
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3. The case γ < 0

In this section, in the particular case when γ < 0, we will analyze the existence,
uniqueness and stability of the positive solutions of (1.1), and we will obtain the
structure of the global bifurcation diagram of positive solutions of (1.1), the pointing
behavior of the positive solutions of (1.1) when λ ↑ σ0 and the dynamics of the
positive solutions of the parabolic problem associated to (1.1). Along this section
we will denote by γ̃ := −γ > 0, and hence, (1.1) will be written in the form

−∆u = λu in Ω ,

u = 0 on Γ0 ,

∂u+ V (x)u+ γ̃b(x)uq = 0 on Γ1 , q > 1
(3.1)

3.1. Structure of the set of positive solutions to (1.1). The following is the
main result of this section, which gives the structure of the global bifurcation dia-
gram of positive solutions of (3.1).

Theorem 3.1. If
b(x) ≥ b > 0 for all x ∈ Γ1 , (3.2)

then the following hold:
(i) (3.1) possesses a positive solution if, and only if

σ1 < λ < σ0 . (3.3)

(ii) The positive solution of (3.1), if it exists, is unique, strongly positive in
Ω, and linearly and globally asymptotically stable as steady-state of the parabolic
problem associated to (3.1). Hereafter we will denote it by uλ.

(iii) For any λ ∈ (σ1, σ0), u̇λ := d uλ
d λ is strongly positive in Ω, that is,

u̇λ(x) > 0 ∀x ∈ Ω ∪ Γ1 and ∂u̇λ(x) < 0 ∀x ∈ Γ0 (3.4)

In particular, for each x ∈ Ω ∪ Γ1, the map (σ1, σ0)→ (0,∞) defined by

λ 7→ uλ(x) (3.5)

is strictly increasing.
(iv) There exist uniform L∞(Ω)-bounds for the positive solutions of (3.1) in

compact intervals of λ contained in [σ1, σ0).
(v) The positive solutions of (3.1) belong to a differentiable continuum C+ of pos-

itive solutions, which emanates supercritically from the trivial branch at the unique
bifurcation value to positive solutions of (3.1) λ = σ1, bifurcates from infinity at
λ = σ0 and it is increasing in ‖ · ‖L∞(Ω) with the λ−parameter. In particular,

Pλ(C+) = [σ1, σ0), (3.6)

lim
λ↓σ1
‖uλ‖L∞(Ω) = 0 , lim

λ↑σ0
‖uλ‖L∞(Ω) =∞ , (3.7)

where Pλ(C+) denotes the λ-projection of the continuum C+ over the λ-axis.

To prove Theorem 3.1 we need some lemmas. Next result gives a sufficient
condition for the existence of a positive strict subsolution of (3.1).

Lemma 3.2. For each λ > σ1, (3.1) possesses a positive strict subsolution arbi-
trarily small, which is strongly positive in Ω.
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Proof. Let λ > σ1 be. Owing to the monotonicity and continuous dependence
of the principal eigenvalue with respect to the potential on the boundary (cf. [7,
Proposition 3.5], [7, Theorem 8.2, Remark 8.3]), there exists ε > 0 small enough
such that

σ1 := σΩ
1 [−∆,B(V (x))] < σΩ

1 [−∆,B(V (x) + ε)] < λ (3.8)
Let us fix ε > 0 satisfying (3.8) and let us denote by

σε1 := σΩ
1 [−∆,B(V (x) + ε)]

and by ϕε the principal eigenfunction associated to the principal eigenvalue σε1,
normalized so that

‖ϕε‖L∞(Ω) = 1 (3.9)
By construction, ϕε is strongly positive in Ω and it satisfies the problem

−∆ϕε = σε1ϕε in Ω ,

ϕε = 0 on Γ0 ,(
∂ + V (x) + ε

)
ϕε = 0 on Γ1

(3.10)

Now, let us consider the function uλ := αϕε for α > 0 satisfying

0 < α <
( ε

γ̃‖b‖L∞(Γ1)

) 1
q−1

(3.11)

By construction, and thanks to (3.8), (3.9), (3.10) and (3.11), it is easy to see that
uλ is a positive strict subsolution of (3.1) for any fixed α > 0 satisfying (3.11).
Moreover, since ϕε is strongly positive in Ω and α > 0, we obtain uλ is strongly
positive in Ω. This completes the proof. �

The next result gives a sufficient condition for the existence of a positive strict
supersolution of (3.1).

Lemma 3.3. If (3.2) holds, then for each

λ < σ0 (3.12)

Equation (3.1) possesses a positive strict supersolution arbitrarily large and strongly
positive in Ω

Proof. Let λ < σ0 be. Owing to the dominance of the principal eigenvalue of the
operator −∆ under Dirichlet boundary conditions (cf. [7, Proposition 3.1, Corollary
9.2]) and to the limiting behavior of the principal eigenvalue σΩ

1 [−∆,B(n)] when
n ↑ ∞ (cf. [7, Theorem 9.1]), the following hold

σΩ
1 [−∆,B(n)] < σ0 , ∀n ∈ N , lim

n↑∞
σΩ

1 [−∆,B(n)] = σ0 (3.13)

Then, owing to (3.12) and (3.13), there exists n ∈ N large enough such that

λ < σΩ
1 [−∆,B(n)] < σ0 (3.14)

Let us fix n ∈ N satisfying (3.14) and let us denote by

σn1 := σΩ
1 [−∆,B(n)]

and by ϕn1 the principal eigenfunction associated to the principal eigenvalue σn1 ,
normalized so that

‖ϕn1‖L∞(Ω) = 1 (3.15)
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Set
mn := min

x∈Γ1
ϕn1 (3.16)

Since ϕn1 is strongly positive in Ω, we obtain ϕn1 (x) > 0 for all x ∈ Γ1 and hence,

mn > 0 (3.17)

By definition ϕn1 satisfies the problem
−∆ϕn1 = σn1ϕ

n
1 in Ω ,

ϕn1 = 0 on Γ0 ,

(∂ + n)ϕn1 = 0 on Γ1

(3.18)

Now, let us consider the function uλ := κϕn1 for κ > 0 satisfying

κ >
(‖V (x)− n‖L∞(Γ1)

γ̃bmq−1
n

) 1
q−1

(3.19)

By construction and owing to (3.14), (3.2), (3.16), (3.17), (3.18) and (3.19), it is
easy to see that uλ is a positive strict supersolution of (3.1) for any κ > 0 satisfying
(3.19). Moreover, since ϕn1 is strongly positive in Ω and κ > 0, we obtain uλ is
strongly positive in Ω. This completes the proof. �

Proof of Theorem 3.1. (i) To prove the necessary condition for the existence of
positive solution of (3.1), let uλ be a positive solution of (3.1) for the value λ of
the parameter. Then, owing to (2.1), to the dominance of the principal eigenvalue
of the operator −∆ in the domain Ω under Dirichlet boundary conditions (cf. [7,
Proposition 3.1]), to the facts that uλ is strongly positive in Ω, b > 0 on Γ1 and
γ̃ > 0 and to the monotonicity of the principal eigenvalue with respect to the
potential on the boundary conditions (cf. [7, Proposition 3.5]), we obtain

σ1 < λ = σΩ
1 [−∆,B(V (x) + γ̃b(x)uq−1

λ )] < σ0 ,

which proves (3.3) and ends the proof of the necessary condition for the existence
of positive solutions of (3.1).

We now prove the sufficient condition (3.3) for the existence of positive solution
of (3.1). Indeed, owing to Lemma 3.2 and Lemma 3.3, for each λ satisfying (3.3),
there exist a positive strict subsolution uλ of (1.1) arbitrarily small, and a positive
strict supersolution uλ of (1.1) arbitrarily large, both of them strongly positive in
Ω. Thanks to the fact that both of them are strongly positive in Ω, taking α > 0
small enough in Lemma 3.2 or κ > 0 large enough in Lemma 3.3, it is possible to
obtain 0 < uλ < uλ, and hence, the sub-super solutions method (cf. [2]) implies
the existence of a positive solution uλ of (3.1) with 0 < uλ < uλ < uλ, for each λ
satisfying (3.3). This completes the proof of i).

(ii) To prove the uniqueness of positive solution of (3.1), when it exists, we will
argue by contradiction. Let λ be satisfying (3.3) and suppose that u1 and u2 are
two positive solutions of (3.1) for the value λ of the parameter with

u1 6= u2 (3.20)

Owing to (2.1) we obtain

λ = σΩ
1

[
−∆,B

(
V (x) + γ̃b(x)uq−1

i

)]
, i = 1, 2 (3.21)

Arguing as in [1, Theorem 4.1], set

J(t) := (tu2 + (1− t)u1)q , t ∈ [0, 1]
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By construction we obtain

uq2 − u
q
1 = J(1)− J(0) =

∫ 1

0

J ′(t) dt = q(u2 − u1)
∫ 1

0

(tu2 + (1− t)u1)q−1 dt

and hence,
uq2 − u

q
1

u2 − u1
= q

∫ 1

0

(tu2 + (1− t)u1)q−1 dt (3.22)

Now, since u1 � 0,

(tu2 + (1− t)u1)q−1 � tq−1uq−1
2 , 0 ≤ t < 1 , (3.23)

and hence, owing to (3.22) and (3.23) we obtain

uq2 − u
q
1

u2 − u1
= q

∫ 1

0

(tu2 + (1− t)u1)q−1 dt > q

∫ 1

0

tq−1uq−1
2 dt = uq−1

2 (3.24)

Now, let us consider the function Θ := u2 − u1. By construction it satisfies

(−∆− λ)Θ = 0 in Ω ,

Θ = 0 on Γ0 ,

∂Θ +
(
V (x) + γ̃b(x)

uq2(x)− uq1(x)
u2(x)− u1(x)

)
Θ = 0 on Γ1

(3.25)

Owing to (3.24) and the facts that b > 0 and γ̃ > 0, it follows from the monotonicity
of the principal eigenvalue with respect to the potential on the boundary (cf. [7,
Proposition 3.5]) and (3.21) that

σΩ
1

[
−∆,B

(
V (x) + γ̃b(x)

uq2 − u
q
1

u2 − u1

)]
> σΩ

1

[
−∆,B

(
V (x) + γ̃b(x)uq−1

2

)]
= λ

and hence,

σΩ
1

[
−∆− λ,B

(
V (x) + γ̃b(x)

uq2 − u
q
1

u2 − u1

)]
> 0 (3.26)

Then, since σΩ
1 [−∆ − λ,B(V + γ̃b(x)u

q
2−u

q
1

u2−u1
)] is the least eigenvalue of (3.25) (cf.

[4, Theorem 12.1]), and owing to (3.26), we obtain 0 is not an eigenvalue of (3.25)
and therefore Θ = 0, which contradicts (3.20). This completes the proof of the
uniqueness of positive solution of (3.1) when it exists. The fact that uλ is strongly
positive in Ω follows from Theorem 2.1.

Now it will be proved that for each λ satisfying (3.3), the unique positive solution
uλ of (3.1) is linearly asymptotically stable. Indeed, the linearization of (3.1) in uλ
is given by

(−∆− λ)v = 0 in Ω
v = 0 on Γ0(

∂ + V (x) + γ̃qb(x)uq−1
λ

)
v = 0 on Γ1

(3.27)

Since by (2.1),
λ = σΩ

1 [−∆,B(V (x) + γ̃b(x)uq−1
λ )] ,

and thanks to the facts that b > 0, q > 1 and γ̃ > 0, it follows from the monotonicity
of the principal eigenvalue with respect to the potential on the boundary that

σΩ
1

[
−∆− λ,B(V (x) + qγ̃b(x)uq−1

λ )
]
> σΩ

1

[
−∆− λ,B(V (x) + γ̃b(x)uq−1

λ )
]

= 0 ,
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which proves that uλ is linearly asymptotically stable. The proof of the fact that uλ
is globally asymptotically stable as steady state of the parabolic problem associated
to (3.1) is given in Theorem 3.8-ii). This completes the proof of (ii).

(iii) Owing to (i), (ii) and (2.1), for each λ ∈ (σ1, σ0) there exists a unique
positive solution uλ of (3.1) and the following holds

λ = σΩ
1 [−∆,B(V (x) + γ̃b(x)uq−1

λ )] (3.28)

Also, differentiating with respect to λ in (3.1), we obtain

(−∆− λ)u̇λ = uλ > 0 in Ω
u̇λ = 0 on Γ0

(∂ + V (x) + γ̃b(x)quq−1
λ )u̇λ = 0 on Γ1

(3.29)

Then, since b > 0, γ̃ > 0 and q > 1, and owing to (3.28) and to the monotonicity of
the principal eigenvalue with respect to the potential on the boundary, the following
hold

σΩ
1 [−∆− λ,B(V (x) + γ̃b(x)quq−1

λ )] > σΩ
1 [−∆− λ,B(V (x) + γ̃b(x)uq−1

λ )] = 0

Thus, the characterization of the strong maximum principle (cf. [5, Theorem 2.4])
establishes that (−∆− λ,B(V (x) + γ̃b(x)quq−1

λ ),Ω) satisfies the strong maximum
principle and therefore, (3.29) implies that u̇λ is strongly positive in Ω. This com-
pletes the proof of (iii).

(iv). It is a straightforward consequence of iii), taking into account that owing
to (3.3) and (3.5) the map (σ1, σ0)→ R+ given by

λ 7→ ‖uλ‖L∞(Ω)

is increasing with λ and uσ1 = 0. Then, if [α, β] ⊂ [σ1, σ0), we obtain

‖uλ‖L∞(Ω) ≤ ‖uβ‖L∞(Ω) for all λ ∈ [α, β]

This completes the proof of (iv).
Now we are going to prove (v). The fact that λ = σ1 is the unique bifurcation

value to positive solutions of (3.1) from the trivial branch (λ, u) = (λ, 0) was proved
in Theorem 2.2-i). The existence of the continuum C+ of positive solutions of (3.1)
emanating supercritically from the point (λ, u) = (σ1, 0) follows from Theorem 2.2
and Remark 2.3, taking into account that γ := −γ̃ < 0 and b > 0 on Γ1. Denoting
by Pλ(C+) the λ−projection of C+ on the λ−axis, it follows from (3.3) that

Pλ(C+) ⊂ [σ1, σ0) (3.30)

Owing to the fact that (σ1, 0) is the unique bifurcation point of (3.1) to positive so-
lutions from the trivial branch (λ, u) = (λ, 0), it follows from the global bifurcation
theory (cf. Remark 2.4) that the continuum C+ is unbounded in R × L∞(Ω) and
since (3.30) holds, we obtain C+ is unbounded in L∞(Ω), and therefore, C+ must
bifurcate to positive solutions from infinity at some value λ∗ ∈ [σ1, σ0]. Now, the
existence of uniform L∞(Ω)−bounds for the positive solutions of (3.1) in compact
intervals of λ contained in [σ1, σ0), implies that C+ must bifurcate from infinity in
L∞(Ω) when λ ↑ σ0, and that λ = σ0 is the unique bifurcation value to positive
solutions of (3.1) from infinity. Then, since C+ bifurcates to positive solutions from
the trivial branch at λ = σ1 and from infinity at λ = σ0, since (3.3) holds and
owing to the fact that C+ is connected, we obtain

Pλ(C+) = [σ1, σ0) (3.31)
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The fact that all the positive solutions of (3.1) are contained in C+ follows from
(3.3), (3.31), from the fact that λ = σ1 is the unique bifurcation value to positive
solutions of (3.1) from the trivial branch and from the uniqueness of positive solu-
tion of (3.1) when it exists. Finally, the fact that C+ is increasing in L∞(Ω) with
λ, follows from (iii). This completes the proof of (v). �

3.2. Pointwise growth of positive solutions of (3.1) when λ ↑ σ0. In this
section we are going to analyze the pointing behavior of the positive solutions of
(3.1) when λ ↑ σ0. The original ideas given in the previous works [19] and [20] will
play a crucial role to obtain the results of this section. Owing to Theorem 3.1 it is
known that λ = σ0 is the unique bifurcation value from infinity to positive solutions
of (3.1) and hence,

lim
λ↑σ0
‖uλ‖L∞(Ω) =∞

In this section we will prove that the growth to infinity of the positive solutions of
(3.1) when λ ↑ σ0 is not concentrated in some particular region of Ω ∪ Γ1, but it
occurs uniformly in any compact subset of Ω∪ Γ1. The following result establishes
the uniform growth to infinity in compact subsets of Ω of the positive solutions of
(3.1) when λ ↑ σ0.

Theorem 3.4. Assume (3.2). Then

lim
λ↑σ0

uλ =∞ and lim
λ↑σ0

u̇λ =∞ (3.32)

uniformly in compact subsets of Ω, where u̇λ := duλ
dλ

Proof. Let ϕ0 be the principal eigenfunction of −∆ in the domain Ω under Dirichlet
boundary conditions, normalized so that ‖ϕ0‖L∞(Ω) = 1, let us fix λ1 ∈ (σ1, σ0)
and let uλ1 be the unique positive solution of (3.1) for such a value λ = λ1. Since
ϕ0 and uλ1 are strongly positive in Ω, there exists α > 0 such that

uλ1 � αϕ0 in Ω ,

and since the branch of positive solutions C+ = {uλ : λ ∈ (σ1, σ0)} is increasing
with λ (cf. Theorem 3.1-iii)), we obtain

uλ > uλ1 > αϕ0 in Ω , λ ∈ (λ1, σ0) . (3.33)

Also, we obtain

σΩ
1 [−∆− λ,D] = σ0 − λ > 0 , ∀λ ∈ (λ1, σ0) . (3.34)

Now, differentiating (3.1) with respect to λ gives

(−∆− λ)u̇λ = uλ in Ω
u̇λ = 0 on Γ0

(∂ + V (x) + qγ̃b(x)uq−1
λ )u̇λ = 0 on Γ1

(3.35)

and taking into account (3.4) and (3.33), we obtain for λ ∈ (λ1, σ0),

(−∆− λ)u̇λ = uλ > αϕ0 in Ω
u̇λ = 0 on Γ0

u̇λ > 0 on Γ1

(3.36)
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Now, since by definition,

ϕ0 =

{
1

σ0−λ (−∆− λ)ϕ0 in Ω,
0 on ∂Ω = Γ0 ∪ Γ1 ,

Equation (3.36) becomes

(−∆− λ)
(
u̇λ −

αϕ0

σ0 − λ
)
> 0 in Ω

u̇λ −
αϕ0

σ0 − λ
= 0 on Γ0

u̇λ −
αϕ0

σ0 − λ
> 0 on Γ1

and hence,

(−∆− λ)
(
u̇λ −

αϕ0

σ0 − λ
)
> 0 in Ω

u̇λ −
αϕ0

σ0 − λ
> 0 on ∂Ω

(3.37)

Owing to the characterization of the strong maximum principle (cf. [5, Theorem
2.4]) it follows from (3.34) that the problem (−∆ − λ,Ω,D) satisfies the strong
maximum principle for each λ ∈ (λ1, σ0) and hence, (3.37) implies that

u̇λ >
αϕ0

σ0 − λ
, x ∈ Ω , λ ∈ (λ1, σ0) (3.38)

Now, let K ⊂ Ω be a compact subset in Ω and let us denote mK := minx∈K ϕ0 > 0.
Owing to (3.38) we obtain for λ ∈ (λ1, σ0),

u̇λ >
αϕ0

σ0 − λ
≥ αmK

σ0 − λ
, x ∈ K , (3.39)

and taking limits in (3.39) when λ ↑ σ0 it is obtained that limλ↑σ0 u̇λ =∞ uniformly
in K. Finally, integrating (3.39) in [λ1, λ] gives

uλ ≥ uλ1 + αmK ln
(σ0 − λ1

σ0 − λ
)
, x ∈ K (3.40)

and therefore, limλ↑σ0 uλ =∞ uniformly in K. This completes the proof. �

To prove that the positive solutions of (3.1) also grow to infinity uniformly on
Γ1, we need the following lemmas. The following lemma gives a comparison result,
and it may be proved following similar arguments to the used in the proof of [11,
Proposition 3.2].

Lemma 3.5. Let uλ and θλ be a positive solution and a positive strict subsolution
of (3.1), respectively, for the value λ of the parameter. Then

θλ � uλ in Ω (3.41)

The following lemma will be proved adapting to our current framework some of
the original ideas given in [19], assuming for it that the component Γ1 of ∂Ω is of
class C3 in RN .

Lemma 3.6. Assume that the component Γ1 of ∂Ω is of class C3 in RN , and let
be the domain

Ωδ := Ω ∪ {x ∈ RN \ Ω : dist(x,Γ1) < δ} ,
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for δ > 0 small enough, and ϕ0 and ϕδ the principal eigenfunctions associated
to −∆ operator in the domains Ω and Ωδ, respectively, under Dirichlet boundary
conditions, normalized so that

‖ϕ0‖L∞(Ω) = 1 , ‖ϕδ‖L∞(Ωδ) = 1

Then, there exists z̄, z ∈ Γ1 such that

‖ϕδ‖L∞(Γ1) = −∂ϕ0(z̄)δ + o(δ), (3.42)

min
x∈Γ1

ϕδ = −∂ϕ0(z)δ + o(δ) (3.43)

Proof. Since Γ1 is a compact surface of class C3 in RN , let n := n(x) ∈ C2(Γ1; RN )
be the C2 outward unit normal field to Γ1 and for δ > 0 small enough, let

Aδ := {x ∈ RN : dist(x,Γ1) < δ}

be a tubular δ−neighborhood of Γ1, and

Γδ :=
{
x ∈ RN \ Ω : dist(x,Γ1) = δ

}
Then, for every x ∈ Aδ, there exists a unique y ∈ Γ1 and τ ∈ (−δ, δ) such that

x = y − τn(y) (3.44)

By restricting δ > 0 if it is necessary, the implicit function theorem gives the
existence of two unique mappings τ ∈ C2(Aδ; R) and π ∈ C2(Aδ; Γ1) such that

x = π(x)− τ(x)n(π(x)) , x ∈ Aδ (3.45)

Let τ̂ ∈ C(Ω̄; R) be the extension to Ω̄ by τ̂(x) = δ if dist(x,Γ1) ≥ δ, n̂ ∈ C2(Ω̄; RN )
any regular extension of the vector field n(π(x)) to Ω̄ and let us consider any
function ξ ∈ C3([0,∞); [0,∞)) satisfying ξ(0) = 1, ξ(τ)ξ′(τ) < 0 for τ ∈ [0, δ2 ) and
ξ(τ) = 0 for τ ≥ δ

2 . Now, let us consider the mapping

H(x) := ξ(τ̂(x))n̂(x) , x ∈ Ω̄

This map is of class C2 and it satisfies

H(x) =


0 if dist(x,Γ1) ≥ δ/2
ξ(τ(x))n(π(x)) if 0 < dist(x,Γ1) < δ/2
n(x) if x ∈ Γ1

Let us consider the mapping Tδ : Ω̄ 7→ RN defined by

Tδ := I + δH ,

where I stands for the identity map in RN . Owing to [19, Theorem 3.1], Tδ ∈
C2(Ω̄; RN ) and Tδ : Ω̄ 7→ Ω̄δ is a bijection and a real holomorphic family in δ ∼= 0(cf.
[19, Section 2]). Now, set

y = Tδ(x) ∈ Ω̄δ , ψδ(x) = ϕδ(y) = ϕδ(Tδ(x)) , x ∈ Ω̄

By construction and definition we obtain Tδ(Γ1) = Γδ and

ψδ|Γ1 = (ϕδ ◦ Tδ)|Γ1 = ϕδ|Tδ(Γ1) = ϕδ|Γδ = 0 (3.46)

To prove (3.42), for each δ > 0 small enough, let ȳδ ∈ Γ1 ⊂ Ωδ be such that

‖ϕδ‖L∞(Γ1) = ϕδ(ȳδ) , (3.47)
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and xδ ∈ Ω such that Tδ(xδ) = ȳδ. Let zδ ∈ Γ1 be such that π(xδ) = zδ. We have
that xδ = zδ − δn(zδ). Since zδ ∈ Γ1, it follows from (3.46) that ψδ(zδ) = 0 and
since

ϕδ(ȳδ) = ϕδ(Tδ(xδ)) = ψδ(xδ) = ψδ(zδ − δn(zδ)) ,
arguing as in [19, Theorem 4.3] we find that

ϕδ(ȳδ)
δ

=
ψδ(xδ)
δ

=
ψδ(zδ − δn(zδ))− ψδ(zδ)

δ

= −
∫ 1

0

〈∇ψδ(zδ − tδn(zδ)), n(zδ)〉 dt
(3.48)

Since {zδ : δ > 0} ⊂ Γ1 and Γ1 is compact, taking limits when δ → 0, module some
subsequence, we obtain there exists z̄ ∈ Γ1 such that limδ↓0 zδ = z̄ ∈ Γ1. Then,
taking limits in (3.48) when δ → 0 we find that

lim
δ→0

ϕδ(ȳδ)
δ

= − lim
δ→0

∫ 1

0

〈∇ψδ(zδ − tδn(zδ)), n(zδ)〉 dt = −∂ϕ0(z̄) , (3.49)

and therefore, (3.47) and (3.49) imply

‖ϕδ‖L∞(Γ1) = ϕδ(ȳδ) = −∂ϕ0(z̄)δ + o(δ)

This completes the proof of (3.42).
The proof of (3.43) follows exactly the same steps than in the proof of (3.42),

changing in (3.47) the existence of ȳδ ∈ Γ1 ⊂ Ωδ satisfying (3.47), by the existence
of ỹδ ∈ Γ1 ⊂ Ωδ such that

min
x∈Γ1

ϕδ = ϕδ(ỹδ) > 0 ,

where later, module some subsequence, we will get that

lim
δ↓0

z̃δ = z ∈ Γ1 ,

being x̃δ ∈ Ω, Tδ(x̃δ) = ỹδ and π(x̃δ) = z̃δ. This completes the proof of (3.43) and
of the result. �

The following result establishes the uniform growth to infinity on Γ1 of the
positive solutions of (3.1) when λ ↑ σ0. Part of its proof is based in some of the
original ideas given in [19].

Theorem 3.7. Assume (3.2) and that the component Γ1 of ∂Ω is of class C3 in
RN . Then

lim
λ↑σ0

uλ(x) =∞ uniformly on Γ1 (3.50)

Proof. Set, for δ > 0 small enough, the domain

Ωδ := Ω ∪ {x ∈ RN \ Ω : dist(x,Γ1) < δ} ,
and let (σ0, ϕ0) and (σδ, ϕδ) be the principal eigen-pairs associated to −∆ operator
in the domains Ω and Ωδ, respectively, under Dirichlet boundary conditions, with
the eigenfunctions normalized so that

‖ϕ0‖L∞(Ω) = 1 , ‖ϕδ‖L∞(Ωδ) = 1

By definition and since ϕ0 and ϕδ are strongly positive in Ω and Ωδ, respectively,
we obtain

ϕ0(x) = 0 , ∂ϕ0(x) < 0 ∀x ∈ ∂Ω = Γ0 ∪ Γ1 ,
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and since Γ1 ⊂ Ωδ for all δ > 0,

ϕδ(x) > 0 ∀x ∈ Γ1 (3.51)

Let us denote

α0(x) := −∂ϕ0(x) > 0 ∀x ∈ ∂Ω , (3.52)

α0 := min
x∈Γ1

α0(x) > 0 , ᾱ0 := ‖α0(x)‖L∞(Γ1) , (3.53)

b̄ := ‖b(x)‖L∞(Γ1) > 0 , V̄ := ‖V (x)‖L∞(Γ1) ≥ 0 (3.54)

Let us fix ε > 0 such that
0 < ε <

α0

1 + V̄
(3.55)

and k0 > 0 large enough such that

0 <
1
k0

< α0 − ε(1 + V̄ ) (3.56)

Thanks to the monotonicity of the principal eigenvalue with respect to the domain
(cf. [18], [7, Proposition 3.2]), it is known that

σδ < σ0 for all δ > 0, (3.57)

and by the continuous dependence of the principal eigenvalue with respect to per-
turbations of the domain around its Dirichlet boundary (cf. [18, Theorem 4.2], [7,
Theorems 7.1 and 7.4]), we obtain

lim
δ↓0

σδ = σ0 . (3.58)

Then, by (1.5), (3.57) and (3.58), there exists δ0 > 0 such that

σ1 < σδ < σ0 ∀δ ∈ (0, δ0] (3.59)

Also, by construction, owing to the regularity of the principal eigenfunctions ϕδ
and ϕ0 and to the results in [19], there exists δ1 ∈ (0, δ0] such that

∂ϕδ(x) ≤ ∂ϕ0(x) + ε , ∀δ ∈ (0, δ1] , ∀x ∈ Γ1, (3.60)

ϕδ(x) ≤ ϕ0(x) + ε = ε , ∀δ ∈ (0, δ1] , ∀x ∈ Γ1 (3.61)

Let ȳδ ∈ Γ1 be such that
ϕδ(ȳδ) = ‖ϕδ‖L∞(Γ1) (3.62)

(cf. (3.47)). Owing to (3.42) we obtain the existence of z̄ ∈ Γ1 such that

ϕδ(ȳδ) = ‖ϕδ‖L∞(Γ1) = α0(z̄)δ + o(δ) . (3.63)

Now, let us consider the function defined in Ωδ by

vδ := C(δ)ϕδ , (3.64)

where

C = C(δ) :=
1

(k0b̄γ̃)
1
q−1 (ᾱ0δ)

q
q−1

> 0 , (3.65)

being ᾱ0, b̄ and k0 defined by (3.53), (3.54) and (3.56), respectively. We are going
to prove that there exists δ2 ∈ (0, δ1], such that for each δ ∈ (0, δ2] and λ ∈ (σδ, σ0),
the function

uδ := vδ|Ω̄ = C(δ)ϕδ|Ω̄
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is a positive strict subsolution of (3.1). Indeed, by construction the following holds
in Ω for each δ ∈ (0, δ1] and λ ∈ (σδ, σ0)

(−∆− λ)uδ = C(δ)(σδ − λ)ϕδ < 0 (3.66)

In regard to the boundary conditions on Γ1, by (3.52), (3.53), (3.54), (3.60), (3.61),
(3.62), (3.63) and (3.65), the following hold on Γ1:

(∂ + V (x))uδ(x) + γ̃b(x)uqδ(x)

= C
(
∂ϕδ(x) + V (x)ϕδ(x) + γ̃b(x)Cq−1ϕqδ(x)

)
≤ C

(
∂ϕ0(x) + ε(1 + V̄ ) + γ̃b̄Cq−1ϕqδ(yδ)

)
= C

(
−α0(x) + ε(1 + V̄ ) + γ̃b̄Cq−1(α0(z0)δ + o(δ))q

)
≤ C(−α0 + ε(1 + V̄ ) + γ̃b̄Cq−1(ᾱ0δ + o(δ))q)

= C(−α0 + ε(1 + V̄ ) + γ̃b̄Cq−1 (ᾱq0δ
q + o(δq)))

= C
(
− α0 + ε(1 + V̄ ) +

1
k0

+
1

k0ᾱ
q
0

o(δq)
δq

)
.

Then, by (3.56), there exists δ2 ∈ (0, δ1] such that for each δ ∈ (0, δ2] and x ∈ Γ1,

(∂ + V (x))uδ(x) + γ̃b(x)uqδ(x) ≤ C
(
− α0 + ε(1 + V̄ ) +

1
k0

+
1

k0ᾱ
q
0

o(δq)
δq

)
< 0

and hence,

∂uδ + V (x)uδ + γ̃b(x)uqδ < 0 on Γ1 , δ ∈ (0, δ2] (3.67)

Also, by construction

uδ
∣∣
Γ0

= C(δ)ϕδ|Γ0 = 0 (3.68)

Then, (3.66), (3.67) and (3.68) give that for δ ∈ (0, δ2] and λ ∈ (σδ, σ0)

(−∆− λ)uδ < 0 in Ω
uδ = 0 on Γ0

∂uδ + V (x)uδ + γ̃b(x)uqδ < 0 on Γ1

(3.69)

and therefore, uδ is a positive strict subsolution of (3.1) for δ > 0 small enough and
λ ∈ (σδ, σ0).

Now we prove (3.50). From (3.51), for each δ ∈ (0, δ2] there exists ỹδ ∈ Γ1 such
that

min
x∈Γ1

ϕδ(x) = ϕδ(ỹδ) > 0 , (3.70)

and from (3.43), there exists z ∈ Γ1 such that

ϕδ(ỹδ) = α0(z)δ + o(δ) (3.71)

Thus, from (3.70), (3.71) and the definition of the constants C = C(δ) > 0 and α0

(cf. (3.65), (3.53)), for each x ∈ Γ1 and δ ∈ (0, δ2] we obtain

uδ(x) = Cϕδ(x) ≥ Cϕδ(ỹδ) =
α0(z)δ + o(δ)(

k0b̄γ̃
) 1
q−1
(
ᾱ0δ
) q
q−1
≥ α0δ + o(δ)(

k0b̄γ̃
) 1
q−1
(
ᾱ0δ
) q
q−1

,
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and therefore, since q > 1, it holds

lim inf
δ↓0

uδ(x) ≥ lim
δ↓0

α0δ + o(δ)

k
1
q−1
0 γ̃

1
q−1 b̄

1
q−1 ᾱ

q
q−1
0 δ

q
q−1

= lim
δ↓0

α0

k
1
q−1
0 γ̃

1
q−1 b̄

1
q−1 ᾱ

q
q−1
0 δ

1
q−1

=∞
(3.72)

uniformly on Γ1. Now, due to the fact that uδ(x) is a positive strict subsolution of
(3.1) for any δ ∈ (0, δ2] and λ ∈ (σδ, σ0), it follows from Lemma 3.5 and from the
existence and uniqueness of positive solution uλ of (3.1) for each λ ∈ (σδ, σ0) (cf.
(3.59) and Theorem 3.1) that

uδ < uλ in Ω, 0 < δ ≤ δ2 , σδ < λ < σ0 , (3.73)

and therefore, (3.72), (3.73) and (3.58) imply (3.50). This completes the proof. �

3.3. Dynamics of the positive solutions of the parabolic problem for γ < 0.
In this section we will analyze, in the particular case when γ < 0, depending on the
values of the parameter λ, the longtime behavior of the positive solutions of the
parabolic problem associated to (3.1), given by

wt −∆w = λw in Ω× (0,∞)

w = 0 on Γ0 × (0,∞)

∂w + V (x)w = γb(x)wq on Γ1 × (0,∞)

w(x, 0) = u0 > 0 in Ω .

(3.74)

In this section Θλ(x, t;u0) stands for the solution of (3.74) for the value λ of the
parameter, uλ will stand for the unique positive solution of (3.1) when it exists, that
is, when λ ∈ (σ1, σ0) and T (t) will stand for the Lp-evolution operator associated
with ∆ + λ under the linear homogeneous mixed boundary conditions given by the
boundary operator B(V (x)). The solution Θλ(x, t;u0) is globally defined in time,
since it satisfies

(Θλ(·, t;u0))t − (∆ + λ)Θλ(·, t;u0) = 0 in Ω× (0,∞)

Θλ(·, t;u0) = 0 on Γ0 × (0,∞)

(∂ + V (x))Θλ(·, t;u0) < 0 on Γ1 × (0,∞)

Θλ(·, 0;u0) = u0 > 0 in Ω ;

that is, it is a positive strict subsolution of the linear heat equation in the domain
Ω under the linear homogeneous mixed boundary conditions

B(V (x))Θλ = 0 ,

and therefore, by the parabolic maximum principle we obtain

0� Θλ(x, t;u0)� T (t)u0 .

Hereafter we will say that a non-negative steady-state ũλ of (3.1) for the value λ
of the parameter is globally asymptotically stable, if

lim
t↑∞
‖Θλ(·, t;u0)− ũλ(·)‖L∞(Ω) = 0 ,

for any initial data u0 > 0.
Arguing as in [20, Theorem 2.2] and by Lemma 3.2, Lemma 3.3 and Theorem 3.1,

we obtain the following result, which gives the dynamics of the solution Θλ(·, t;u0)
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of the parabolic problem (3.74), with u0 > 0, depending on the value λ of the
parameter.

Theorem 3.8. Under the assumptions of Theorem 3.1 the following hold:
(i) If λ ≤ σ1, then u = 0 is globally asymptotically stable for (3.74).

(ii) If σ1 < λ < σ0, then uλ is globally asymptotically stable for (3.74).
(iii) If λ ≥ σ0, then for any u0 > 0,

lim
t↑∞

Θλ(·, t;u0) =∞ (3.75)

uniformly in compact subsets K ⊂ Ω. If in addition Γ1 is of class C3, then
(3.75) holds uniformly in compact subsets K ⊂ Ω ∪ Γ1.

Proof. (i) Let u0 > 0 be, fix t1 > 0 and let us consider ũ0 = u(·, t1;u0). Owing to
the parabolic maximum principle we know that

ũ0 � 0 in Ω (3.76)

Since λ ≤ σ1 < σ0, it follows from Lemma 3.3 the existence of a positive strict
supersolution ūλ of (3.1), strongly positive in Ω, such that

ũ0 < ūλ ,

and owing to the parabolic maximum principle, we obtain

0� Θλ(·, t;u0) = Θλ(·, t− t1; ũ0) ≤ Θλ(·, t− t1; ūλ) (3.77)

Now, thanks to the results in [28], we know that Θλ(·, t − t1; ūλ) is a decreasing
function in t > t1 which converges to a non-negative solution of (3.1), and due
to the fact that u = 0 is the unique nonnegative solution of (3.1) for λ ≤ σ1 (cf.
Theorem 3.1), taking limits in (3.77) when t ↑ ∞ we obtain

lim
t↑∞

Θλ(·, t;u0) = lim
t↑∞

Θλ(·, t− t1; ūλ) = 0 ,

which completes the proof of (i).
(ii) Let u0 > 0 be, fix t1 > 0 and let us consider ũ0 = u(·, t1;u0)� 0 (cf. (3.76)).

Since λ ∈ (σ1, σ0), owing to Lemma 3.2 and Lemma 3.3, we obtain the existence
of a positive strict subsolution uλ of (3.1) and a positive strict supersolution ūλ of
(3.1), both of them strongly positive in Ω, such that

0 < uλ < ũ0 < ūλ in Ω

Then, by the parabolic maximum principle, we obtain

0� Θλ(·, t− t1;uλ) ≤ Θλ(·, t;u0) = Θλ(·, t− t1; ũ0) ≤ Θλ(·, t− t1; ūλ) (3.78)

On the other hand, thanks to the results in [28], we know that Θλ(·, t− t1;uλ) and
Θλ(x, t− t1; ūλ) are an increasing and a decreasing function in t > t1, respectively,
converging to a nonnegative solution of (3.1). Then, since for λ ∈ (σ1, σ0) there
exists a unique positive solution uλ of (3.1) (cf. Theorem 3.1), we obtain

lim
t↑∞

Θλ(·, t− t1, ūλ) = uλ , lim
t↑∞

Θλ(·, t− t1, uλ) = uλ ,

and therefore, taking limits in (3.78) when t ↑ ∞, we have

lim
t↑∞

Θλ(·, t;u0) = uλ ,

which completes the proof of (ii).
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(iii) Let u0 > 0 be and let us consider the global solution Θλ := Θλ(·, t;u0) > 0
of the parabolic problem (3.74) for the value λ of the parameter with initial data
u0 > 0. Since λ ≥ σ0, for all ε > 0 small enough, λ ≥ σ0 > σ0 − ε > σ1. Then

(Θλ)t −∆Θλ = λΘλ > (σ0 − ε)Θλ , in Ω× (0,∞) ,

and hence, Θλ is a positive strict supersolution of the problem

wt −∆w = (σ0 − ε)w in Ω× (0,∞)

w = 0 on Γ0 × (0,∞)

∂w + V (x)w = γb(x)wq on Γ1 × (0,∞)

w(·, 0) = u0 > 0 in Ω

(3.79)

Then, by the parabolic maximum principle,

Θλ(·, t;u0) > Θσ0−ε(·, t;u0) , (3.80)

where Θσ0−ε(·, t, u0) stands for the solution of (3.79). Now, since σ0− ε ∈ (σ1, σ0),
owing to ii) we obtain uσ0−ε is globally asymptotically stable for (3.74). Then

lim
t↑∞
‖Θσ0−ε(·, t;u0)− uσ0−ε(·)‖L∞(Ω) = 0 , (3.81)

and hence, (3.80) and (3.81) imply

lim inf
t↑∞

Θλ(·, t;u0) ≥ uσ0−ε(·) . (3.82)

Now, taking limits in (3.82) when ε ↓ 0 we obtain

lim inf
t↑∞

Θλ(·, t;u0) ≥ lim
ε↓0

uσ0−ε(·) , (3.83)

and since by Theorem 3.4
lim
ε↓0

uσ0−ε(·) =∞ (3.84)

uniformly in compact subsets K ⊂ Ω, we obtain that

lim inf
t↑∞

Θλ(·, t;u0) =∞ (3.85)

uniformly in compact subsets K ⊂ Ω. If in addition Γ1 is of class C3 in RN , then
owing to Theorem 3.7 and (3.83), (3.84) holds uniformly on Γ1 and therefore (3.85)
holds uniformly in compact subsets of Ω ∪ Γ1. This completes the proof. �

4. The case γ > 0

In this section we obtain, in the particular case when γ > 0, some results about
existence and non existence of positive solutions of (1.1), about the stability of them
and about the structure of the global bifurcation diagram of positive solutions of
(1.1). Also, we will obtain some results about the dynamics of the positive solutions
of the parabolic problem associated to (1.1), given by

vt −∆v = λv in Ω× (0, T ) ,

v = 0 on Γ0 × (0, T ) ,

∂v + V (x)v = γb(x)vq on Γ1 × (0, T ) , q > 1

v(·, 0) = u0 > 0 in Ω ,

(4.1)

where T > 0 is its time of existence.
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4.1. Dynamics of positive solutions of the parabolic problem for γ > 0.
In this section we analyze the longtime behavior or blow up in finite time of the
positive solutions of (4.1). In this section Θλ(x, t;u0) will stand for the solution
of (4.1) for the value λ of the parameter. The main result of this section is the
following.

Theorem 4.1. Assume γ > 0. Then, the following hold:
(i) For any λ sufficiently negative, Θλ(x, t;u0) is globally defined in time and

‖Θλ(·, t;u0)‖L∞(Ω) → 0 as t→∞ (4.2)

(ii) If (3.2) holds, λ ≥ σ1 and u0 is large enough, then Θλ(x, t;u0) blows up in
finite time uniformly in compact subsets Q ⊂ Ω ∪ Γ1.

Proof. (i) Let us take some p > 2q − 1, let us fix some α > 0 satisfying

0 < α <
(
γ‖b‖L∞(Γ1)

)− 1
q−1 , (4.3)

let Ṽ be any extension of V from Γ1 to ∂Ω = Γ0 ∪ Γ1 with Ṽ ∈ C1(∂Ω), and let us
consider the parabolic problem

wt −∆w = −wp in Ω× (0, T )

∂w + Ṽ (x)w = wq on ∂Ω× (0, T )

w(x, 0) =
1
α
u0 > 0 in Ω .

(4.4)

By [11, Lemma 4.5], obtained adapting to our framework the original ideas given
in [6, Lemma 5.1] and [6, Theorem 2.3] for m = 1 therein (also cf. [12],[25]), the
solution w(x, t) of (4.4) is globally defined in time (T =∞) and globally bounded
in (x, t) ∈ Ω̄× [0,∞). Now, let us consider the function

v̄(x, t) := αe−tw(x, t)

Since w(x, t) is globally bounded in Ω̄× [0,∞), we obtain

lim
t↑∞
‖v̄(x, t)‖L∞(Ω) = 0 (4.5)

Now we prove that for α > 0 satisfying (4.3) and λ sufficiently negative, the function
v̄ is a positive strict supersolution of (4.1). Indeed, since w > 0 is globally bounded
in Ω̄ × [0,∞), by construction the following hold in Ω × [0,∞) for any α > 0 and
λ negative enough

v̄t −∆v̄ − λv̄ = αe−tw
(
− (1 + λ)− wp−1

)
≥ αe−tw

(
− (1 + λ)− ‖w‖p−1

L∞(Ω×[0,∞))

)
> 0

(4.6)

On the other hand, as for the boundary conditions, owing to (4.3) and since q > 1,
γ > 0 and b > 0, the following hold on Γ1

∂v̄ + V (x)v̄ − γb(x)v̄q = αe−twq
(
1− γb(x)αq−1e−(q−1)t

)
≥ αe−twq

(
1− γ‖b‖L∞(Γ1)α

q−1
)
> 0

(4.7)

Also, since w > 0 in Ω̄, we obtain

v̄ ≥ 0 on Γ0 (4.8)

Finally,
v̄(x, 0) = αw(x, 0) = u0(x) (4.9)
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Thus (4.6), (4.7), (4.8) and (4.9) show that for any λ negative enough, v̄ is a positive
strict supersolution of (4.1) and hence, owing to the parabolic maximum principle
we obtain

0 < Θλ(x, t;u0) ≤ v̄(x, t) , (x, t) ∈ Ω× [0,∞) , (4.10)
where Θλ(x, t;u0) stands for the solution of (4.1). Now, (4.10) and (4.5) give (4.2)
and complete the proof of (i).

(ii) Let us denote d̃(x) := dist(x,Γ0), and for each δ > 0 set

Γδ0 := {x ∈ Ω̄ : d̃(x) < δ}

Since ∂Ω = Γ0 ∪Γ1 ∈ C2, there exists δ > 0 small enough such that d̃ ∈ C2(Γδ0) and
for each x ∈ Γδ0, there exists a unique y(x) ∈ Γ0 such that d̃(x) = |y(x)− x| and if
n = n(x) denotes the unit (outward) normal to Γ0 at y(x), then

|∇d̃|2 =
( ∂d̃
∂n

)2

= 1 , ‖∆d̃‖L∞(Γδ0) ≤ C ,

for some C > 0 depending only on the curvature of ∂Ω (cf. [23, Lemma 3.1], [14,
Lemmas 14.16 and 14.17]). Let us take any smooth extension d ∈ C2(Ω̄) of d̃, from
Γδ0 to Ω̄, satisfying

|∇d| ≥ µ > 0 for all x ∈ Ω , (4.11)
for some µ > 0, and

d(x) > 0 for all x ∈ Ω ∪ Γ1 and ‖∆d‖L∞(Ω) ≤ C̃ , (4.12)

for some C̃ > 0.
Now, let ϕ be the solution of the initial-value problem

ϕ′(t) = ϕq(t) , t > 0

ϕ(0) = α > 0 ,
(4.13)

for some fixed α satisfying

α >
(1 + |σ1|‖d‖L∞(Ω) + ‖∆d‖L∞(Ω)

qµ2

) 1
q−1

. (4.14)

The solution is
ϕ(t) :=

α

(1− (q − 1)αq−1t)
1
q−1

.

This function blows up in finite time, at

T ∗ = T ∗(α, q) :=
1

(q − 1)αq−1
, (4.15)

and since ϕ(t) > 0 for all t ∈ [0, T ∗) and ϕ′ = ϕq > 0, we obtain ϕ is increasing
and the following hold

ϕ(t) ≥ ϕ(0) = α > 0 , ϕ′ = ϕq ≥ αq > 0 , ϕ′′ = qϕq−1ϕ′ ≥ qαq−1ϕ′ > 0 (4.16)

Hereafter we will denote
s = s(x, t) := t+ d(x) .

By construction we obtain if x ∈ Ω ∪ Γ1, then s > t, and if x ∈ Γ0, then s = t.
Also, set

d1 := min
x∈Γ1

d(x) > 0 .

Since ϕ is increasing, for each x ∈ Γ1 the following holds

ϕ(d(x)) ≥ ϕ(d1) > ϕ(0) . (4.17)
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Now, let us consider for each x ∈ Γ1 the function

g(x, t) :=
ϕ(t)

ϕ(t+ d(x))
=
ϕ(t)
ϕ(s)

.

Since s > t on Γ1 and ϕ is increasing and positive, we obtain

gt(x, t) =
∂g

∂t
(x, t) =

ϕ(t)
ϕ(s)

(
ϕq−1(t)− ϕq−1(s)

)
< 0 , x ∈ Γ1

Hence, for each fixed x ∈ Γ1, g(x, t) is decreasing in t and owing to (4.17) we obtain

g(x, t) < g(x, 0) =
ϕ(0)

ϕ(d(x))
≤ ϕ(0)
ϕ(d1)

:= ε < 1 (4.18)

Also, for each x ∈ Γ1 we obtain

(ϕ(s)− ϕ(t))q

ϕ′(s)
=

(ϕ(s)− ϕ(t))q

ϕq(s)
=
(

1− ϕ(t)
ϕ(s)

)q
= (1− g(x, t))q (4.19)

Now, let us consider the function

ũ(x, t) = k (ϕ(t+ d(x))− ϕ(t)) , (4.20)

where

k >
((‖∂d‖L∞(Γ1) + ‖V ‖L∞(Γ1)‖d‖L∞(Ω)

)
γb(1− ε)q

) 1
q−1

> 0 , (4.21)

being ε ∈ (0, 1) and µ > 0 defined by (4.18) and (4.11), respectively. It must be
pointed out that for each x ∈ Ω ∪ Γ1, the function ũ(x, t) blows up in finite time
t∗(x) = T ∗ − d(x), where T ∗ is the time defined by (4.15).

To prove the result we are going to prove that if u0 > 0 is large enough, then
ũ(x, t) is a positive subsolution of (4.1) which blows up in finite time. The con-
struction of the subsolution ũ(x, t) made to prove the result, is strongly motivated,
up the necessary and involved changes and modifications to adapt it to our mixed
boundary conditions with spatial heterogeneities, for the previous constructions
made in [33] and [34] for other kind of problems. Indeed, by construction

ũt = k(ϕ′(s)− ϕ′(t)) , ∆ũ = k(ϕ′′(s)|∇d|2 + ϕ′(s)∆d), (4.22)

∂ũ = kϕ′(s)∂d , x ∈ Γ1 . (4.23)

Owing to (4.16), if x ∈ Ω ∪ Γ1 there exists ξ1(x, t) ∈ (t, s) such that

ϕ′(t)d(x) ≤ ϕ(s)− ϕ(t) = ϕ′(ξ1(x, t))d(x) ≤ ϕ′(s)d(x) (4.24)

Also, for each λ ≥ σ1 and x ∈ Ω we obtain

(λ− σ1)(ϕ(s)− ϕ(t)) ≥ 0 (4.25)

Then, owing to (4.20), (4.22), (4.16), (4.11), (4.25), (4.24) and (4.14), the following
hold in Ω,

1
k

(ũt −∆ũ− λũ)

= ϕ′(s)− ϕ′(t)− ϕ′′(s)|∇d|2 − ϕ′(s)∆d− λ(ϕ(s)− ϕ(t))

≤ ϕ′(s)− ϕ′(t)− qαq−1ϕ′(s)|∇d|2 − ϕ′(s)∆d− λ(ϕ(s)− ϕ(t))

≤ ϕ′(s)
[
1− qαq−1µ2 −∆d

]
− ϕ′(t)− (λ− σ1)(ϕ(s)− ϕ(t))− σ1(ϕ(s)− ϕ(t))

≤ ϕ′(s)
[
1− qαq−1µ2 −∆d

]
+ |σ1|(ϕ(s)− ϕ(t))

≤ ϕ′(s)
[
1− qαq−1µ2 −∆d

]
+ |σ1|ϕ′(s)‖d‖L∞(Ω)
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≤ ϕ′(s)
[
1− qαq−1µ2 + ‖∆d‖L∞(Ω) + |σ1|‖d‖L∞(Ω)

]
< 0 ,

and therefore,
ũt −∆ũ− λũ < 0 if (x, t) ∈ Ω× (0, t∗(x)) (4.26)

As for the boundary conditions, owing to (4.20), (4.23), (4.24), (4.19), (4.18),
(3.2) and (4.21), the following hold on Γ1,

∂ũ + V (x)ũ− γb(x)ũq

= k(ϕ′(s)∂d+ V (x)(ϕ(s)− ϕ(t))− γb(x)kq(ϕ(s)− ϕ(t))q

= kϕ′(s)
[
∂d+ V (x)

ϕ(s)− ϕ(t)
ϕ′(s)

− γb(x)kq−1 (ϕ(s)− ϕ(t))q

ϕ′(s)
]

≤ kϕ′(s)
[
‖∂d‖L∞(Γ1) + ‖V ‖L∞(Γ1)‖d‖L∞(Ω) − γb(x)kq−1 (1− g(x, t))q

]
≤ kϕ′(s)

[
‖∂d‖L∞(Γ1) + ‖V ‖L∞(Γ1)‖d‖L∞(Ω) − γbkq−1(1− ε)q

]
< 0 ;

therefore
∂ũ+ V (x)ũ− γb(x)ũq < 0 if (x, t) ∈ Γ1 × (0, t∗(x)) (4.27)

Also, since d(x) = 0 for all x ∈ Γ0, we obtain

ũ(x, t) = 0 for all x ∈ Γ0, t ∈ [0, T ∗) (4.28)

Finally, if the initial data u0 is large enough to satisfy

ũ(x, 0) = k(ϕ(d(x))− ϕ(0)) = k(ϕ(d(x))− α) ≤ u0(x) , (4.29)

then, by (4.26), (4.27), (4.28) and (4.29), the following holds

ũt −∆ũ− λũ < 0 if (x, t) ∈ Ω× (0, t∗(x)) ,

ũ = 0 if (x, t) ∈ Γ0 × (0, t∗(x)) ,

∂ũ+ V (x)ũ < γb(x)ũq if (x, t) ∈ Γ1 × (0, t∗(x)) ,

ũ(x, 0) ≤ u0(x) if x ∈ Ω ;

that is, ũ(x, t) is a positive strict subsolution of (4.1) for each initial data u0 > 0
satisfying (4.29). Then, owing to the parabolic maximum principle we obtain the
solution Θλ(x, t;u0) of (4.1) holds

Θλ(x, t;u0) ≥ ũ(x, t) , (x, t) ∈ Ω× [0, t∗(x)) (4.30)

Now, let us consider a compact set Q ⊂ Ω ∪ Γ1. Since d(x) > 0 for all x ∈ Q, we
obtain there exists dQ > 0 such that

d(x) ≥ dQ > 0 for all x ∈ Q. (4.31)

Thus, from (4.30), (4.24) and (4.31), we obtain that if (x, t) ∈ Q× [0, T ∗) then

Θλ(x, t;u0) ≥ ũ(x, t) = k(ϕ(s)− ϕ(t)) ≥ kϕ′(t)d(x) = kϕq(t)d(x) ≥ kdQϕq(t) ,
(4.32)

and therefore, since ϕ blows up in finite time t = T ∗, owing to (4.32), so do ũ(x, t)
and Θλ(x, t;u0) uniformly in Q. This completes the proof of (ii), and the result. �

Remark 4.2. If the domain Ω is in some sense a nice domain, then

d(x) = d̃(x) = dist(x,Γ0) for all x ∈ Ω̄ ,



24 S. CANO-CASANOVA EJDE-2018/166

that is, in the proof of Theorem 4.1-ii) is not necessary to take an smooth extension
d ∈ C2(Ω̄) of d̃, from Γδ0 to Ω̄, different from d̃(x), because d̃ already satisfies (4.11)
and (4.12). For instance, if Ω is the annulus of RN ,N > 1 given by

Ω := {x ∈ RN : R1 < |x| < R2}

with

Γ0 := {x ∈ RN : |x| = R1} , Γ1 := {x ∈ RN : |x| = R2} ,

for some 0 < R1 < R2, then for all x ∈ Ω̄ we obtain

d̃(x) = dist(x,Γ0) = |x| −R1 , |∇d(x)| = 1 , |∆d(x)| = N − 1
|x|

≤ N − 1
R1

,

and (4.11) and (4.12) hold for

d(x) = d̃(x) , µ = 1 , C̃ =
N − 1
R1

> 0.

Remark 4.3. In the particular case when γ > 0, λ ≥ σ1 and (3.2) holds, taking
into account in the proof of Theorem 4.1(ii) the definition and properties of the
functions ϕ(t) and d(x) (cf. (4.13), (4.11), (4.12)) and the constant k (cf. (4.21)),
we obtain (4.29) gives a structure for the initial data u0 > 0, in terms of d(x), to
ensure that the positive solution Θλ(x, t;u0) of (4.1) blows up in finite time

Corollary 4.4. Under the general assumptions, let us consider the superlinear
parabolic problem

wt −∆w = λw + a(x)wp in Ω× (0, T ) , p > 1

w = 0 on Γ0 × (0, T )

∂w + V (x)w = γb(x)wq on Γ1 × (0, T ) , q > 1

w(·, 0) = u0 > 0 in Ω ,

(4.33)

where the potential a ∈ C(Ω̄), a > 0 in Ω, γ > 0, λ ≥ σ1 and (3.2) holds. Then,
if u0 is large enough, the solution wλ(x, t;u0) of (4.33) blows up in finite time
uniformly in compact subsets Q ⊂ Ω ∪ Γ1.

Proof. The result follows from the parabolic maximum principle and Theorem
4.1(ii), taking into account that the solution Θλ(x, t;u0) of (4.1) is a positive strict
subsolution of (4.33). �

4.2. Structure of the set of positive solutions of (1.1). In this section we
analyze, in the particular case when γ > 0, the structure of the set of positive
solutions of (1.1) and the linear stability of them. The main result of this section
is the following.

Theorem 4.5. Assume γ > 0. Then, the following hold:

(i) If uλ is a positive solution of (1.1) for the value λ of the parameter, then

λ < σ1 (4.34)

(ii) There exists λ∗ < 0, such that (1.1) does not admit a positive solution for
λ < λ∗.
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(iii) The value λ = σ1 is the unique bifurcation value to positive solutions from
the trivial branch (λ, u) = (λ, 0). From it emanates subcritically a con-
tinuum C+ of positive solutions of (1.1), which also bifurcates to positive
solutions from infinity at least in some value λ∞ ∈ [λ∗, σ1]. In particular,
C+ is unbounded in L∞(Ω) and

Pλ(C+ \ {(σ1, 0)}) ⊂ [λ∗, σ1) . (4.35)

(iv) All the positive solutions of (1.1) are unstable.

Proof. (i) Let uλ > 0 be a positive solution of (1.1) for the value λ of the parameter.
Then, since b > 0, γ > 0 and owing to (2.1) and to the monotonicity of the principal
eigenvalue with respect to the potential on the boundary conditions, we obtain

λ = σΩ
1 [−∆,B(V (x)− γb(x)uq−1

λ )] < σΩ
1 [−∆,B(V (x))] = σ1 ,

which proves (4.34).
(ii) Arguing in a similar way to [13, Lemma 4.4] and [11, Theorem 4.6], the result

follows from Theorem 4.1-i).
(iii) The existence of the continuum C+ of positive solutions of (1.1) emanating

subcritically from the trivial branch at the unique bifurcation value to positive
solutions λ = σ1, follows from Theorem 2.2 and Remark 2.3, taking into account
that b > 0 and γ > 0. On the other hand, (4.35) follows from i) and ii). Now,
since C+ is unbounded in R×L∞(Ω) (cf. Remark 2.4) and since by (4.35) Pλ(C+)
is bounded in R, we obtain C+ is unbounded in L∞(Ω) and therefore, it must
bifurcate from infinity at least in some value λ∞ ∈ [λ∗, σ1].

(iv) To prove the result we will prove that the principal eigenvalue of the lin-
earization of (1.1) at any positive solution uλ of it is negative. Indeed, let uλ > 0
be a positive solution of (1.1) for some value λ of the parameter with λ < σ1. The
linearization of (1.1) at uλ is given by

(−∆− λ)w = 0 in Ω

B
(
V (x)− γqb(x)uq−1

λ

)
w = 0 on ∂Ω

(4.36)

Then, taking into account that γ > 0, b > 0, uλ > 0 and q > 1, it follows from (2.1)
and from the monotonicity of the principal eigenvalue with respect to the potential
on the boundary condition that

σΩ
1

[
−∆− λ,B

(
V (x)− γqb(x)uq−1

λ

)]
< σΩ

1

[
−∆− λ,B

(
V (x)− γb(x)uq−1

λ

)]
= 0

which completes the proof of (iv), and of the theorem. �

Remark 4.6. In the particular case when γ > 0, if we denote

Λ := {λ ∈ R : (1.1) possesses positive solution } ⊂ [λ∗, σ1),

λ̃ := inf Λ ≥ λ∗ , λ̂ := inf{λ : (λ, u) ∈ C+ } ,

it might occur that λ̃ < λ̂, by the existence of an isola G of positive solutions of
(1.1) such that

λ∗ ≤ λ̃ ≤ inf{λ : (λ, u) ∈ G} < λ̂

In fact, Λ might be unconnected, since it might occur that

λ̃ ≤ inf{λ : (λ, u) ∈ G} < λ̄ := sup{λ : (λ, u) ∈ G} < λ̂

and that (1.1) does not possess positive solutions for λ ∈ (λ̄, λ̂). In this kind
of problems, if u1 is a positive solution of (1.1) for λ = λ1, then small positive
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multiples of u1 are not positive subsolutions of (1.1) for λ > λ1, and large positive
multiples of u1 are not positive supersolutions of (1.1) for λ < λ1.
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[15] López-Gómez, J.; Marquez, V.; Wolanski, N.; Blow up results and localization of blow up

points for the heat equations with a nonlinear boundary conditions, J. Differential Equations,
92 (1991), 384–401.
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Unión Matemática Argentina, 38 (1993), 196–209.
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