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SPECTRUM, GLOBAL BIFURCATION AND NODAL
SOLUTIONS TO KIRCHHOFF-TYPE EQUATIONS

XIAOFEI CAO, GUOWEI DAI

Abstract. In this article, we consider a Dancer-type unilateral global bifur-
cation for the Kirchhoff-type problem

−
“
a+ b

Z 1

0
|u′|2 dx

”
u′′ = λu+ h(x, u, λ) in (0, 1),

u(0) = u(1) = 0.

Under natural hypotheses on h, we show that (aλk, 0) is a bifurcation point of
the above problem. As applications we determine the interval of λ, in which

there exist nodal solutions for the Kirchhoff-type problem

−
“
a+ b

Z 1

0
|u′|2 dx

”
u′′ = λf(x, u) in (0, 1),

u(0) = u(1) = 0,

where f is asymptotically linear at zero and is asymptotically 3-linear at infin-

ity. To do this, we also establish a complete characterization of the spectrum
of a nonlocal eigenvalue problem.

1. Introduction

We consider the unilateral global bifurcation phenomenon for the problem

−
(
a+ b

∫ 1

0

|u′|2 dx
)
u′′ = λu+ h(x, u, λ) in (0, 1),

u(0) = u(1) = 0,
(1.1)

where a > 0, b > 0 are real constants, λ is a parameter and h : (0, 1)× R2 → R is
a continuous function satisfying

lim
s→0

h(x, s, λ)
s

= 0 (1.2)

uniformly for all x ∈ (0, 1) and λ on bounded sets.
Problem (1.1) is related to the stationary problem of a model introduced by

Kirchhoff to describe the transversal oscillations of a stretched string [25]. Problem
(1.1) received much attention only after Lions [27] proposed an abstract frame-
work to it. Some important and interesting results can be found, for example, in
[1, 5, 16, 17, 24]. Recently, many mathematicians have studied problem (1.1) by
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variational method, see [6, 7, 22, 26, 28, 29, 30, 31, 32, 35, 36, 37] and the refer-
ences therein. The study of Kirchhoff-type equations has already been extended
to the case involving the p-Laplacian and p(x)-Laplacian. We refer the readers to
[2, 8, 10, 12, 13, 14, 18, 19, 21, 33] on this subject. A distinguishing feature of prob-
lem (1.1) is that the first equation contains a nonlocal coefficient a + b

∫ 1

0
|u′|2 dx,

and hence the equation is no longer a pointwise equation. Moreover, the first equa-
tion of problem (1.1) with h ≡ 0 is not homogeneous. So problem (1.1) is a fully
nonlinear problem which raises some essential difficulties to the study of this kind
of problems.

It is well known that the problem

−u′′ = λu in (0, 1),

u(0) = u(1) = 0

possesses infinitely many eigenvalues 0 < λ1 < λ2 < · · · < λk → +∞, all of which
are simple. The eigenfunction ϕk corresponding to λk has exactly k−1 simple zeros
in (0, 1). Let S+

k denote the set of functions in E := C1
0 [0, 1] which have exactly

k−1 interior nodal (i.e. non-degenerate) zeros in (0, 1) and are positive near x = 0,
and set S−k = −S+

k , and Sk = S+
k ∪S

−
k . It is clear that S+

k and S−k are disjoint and
open in E. Finally, let Φ±k = R×S±k and Φk = R×Sk under the product topology.

Theorem 1.1. The pair (aλk, 0) is a bifurcation point of problem (1.1). Moreover,
there are two distinct unbounded continua in R×H1

0 (0, 1), C +
k and C−k , consisting of

the bifurcation branch Ck emanating from (aλk, 0), such that C ν
k ⊆ ({(aλk, 0)}∪Φνk),

ν ∈ {+,−}.

We shall prove Theorem 1.1 in Section 2. If b = 0, the conclusions of Theorem
1.1 are well known. However, the case of b > 0 is nontrivial because problem (1.1)
is nonlinear. So the standard bifurcation theory cannot be used directly here. In
order to apply the Dancer unilateral global bifurcation theorem, we find a skillful
transformation which can convert problem (1.1) to a desired form. This technique
can also be used to deal with other similar problems.

To find more detailed information of C ν
k , in Section 3 we study the eigenvalue

problem

−
(∫ 1

0

|u′|2 dx
)
u′′ = µu3 in (0, 1),

u(0) = u(1) = 0.
(1.3)

We shall establish a complete characterization of the spectrum of problem (1.3).

Theorem 1.2. The set of all eigenvalues of problem (1.3) satisfy

0 < µ1 < µ2 < · · · < µk < · · · → +∞.

Every µk is simple and the corresponding one-dimensional space of solutions of
problem (1.3) with µ = µk is spanned by a function having precisely k bumps in
(0, 1). Each k-bump solution is constructed by the reflection and compression of the
eigenfunction ϕ1 associated with µ1.

Note that problem (1.3) is nonlinear and nonlocal. So the Prüfer-type trans-
formation method cannot be used to get the desired results. We use variational
method combined with reflection-compression technique to prove Theorem 1.2. We
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believe that the first trying of this way has significance to nonlinear eigenvalue
problems.

In Section 4, we describe C ν
k more detailed for problem (1.1) with h(x, s, λ) =

λf(x, s)− λs, i.e., the problem

−
(
a+ b

∫ 1

0

|u′|2 dx
)
u′′ = λf(x, u) in (0, 1),

u(0) = u(1) = 0.
(1.4)

We assume that f satisfies the following assumptions:
(A1) f : (0, 1) × R → R is a continuous function such that f(x, s)s > 0 for all

x ∈ (0, 1) and any s 6= 0.
(A2) there exist f0, f∞ ∈ (0,+∞) such that

lim
s→0

f(x, s)
as

= f0, lim
|s|→+∞

f(x, s)
bs3

= f∞

uniformly with respect to x ∈ (0, 1).
Our last main theorem reads as follows.

Theorem 1.3. Assume that (A1)–(A2) are satisfied. Then for

λ ∈
(λk
f0
,
µk
f∞

)
∪
( µk
f∞

,
λk
f0

)
,

problem (1.4) possesses at least two solutions u+
k and u−k such that u+

k has exactly
k − 1 simple zeros in (0, 1) and is positive near 0, and u−k has exactly k − 1 simple
zeros in (0, 1) and is negative near 0.

We end this section by introducing some notation convention which will be used
later in this paper. Let X be the usual Sobolev space H1

0 (0, 1) with the norm
‖u‖ = (

∫ 1

0
|u′|2 dx)1/2. For a measurable set A of RN , we denote its measure by

|A|. Also, denote by c and ci, i ∈ N, some generic positive constants (the exact
value may be different from line to line).

2. Global bifurcation

Firstly, we consider the auxiliary problem
−u′′ = f(x) in (0, 1),

u(0) = u(1) = 0.
(2.1)

It is well known that problem (2.1) possesses a unique weak solution for each f ∈
L1(0, 1). Let us denote by G(f) the unique solution of problem (2.1). Then G :
L1(0, 1)→ X is a linear continuous operator. Since the embedding of X ↪→ C[0, 1]
is compact, the restriction of G to X is a completely continuous operator.

Theorem 2.1. The pair (aλk, 0) is a bifurcation point of problem (1.1). Moreover,
there are two distinct continua in R×X, C +

k and C−k , consisting of the bifurcation
branch Ck emanating from (aλk, 0), which contain {(aλk, 0)} and satisfy either C +

k

and C−k are both unbounded or C +
k ∩ C−k 6= {(aλk, 0)}.

Proof. Clearly, the pair (λ, u) is a solution of problem (1.1) if and only if (λ, u)
satisfies

u = G(
1

a+ b‖u‖2
(λu+ h(x, u, λ))). (2.2)
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Let

Lu =
1
a
G(u), H̃(λ, u) =

1
a+ b‖u‖2

G(h(x, u, λ))− λb‖u‖2

a(a+ b‖u‖2)
G(u).

Clearly, L:X → X is linear completely continuous, H̃:R × X → X is compact.
Moreover, it is easy to see that aλk is simple characteristic value of L. Then
equation (2.2) is equivalent to

u = λLu+ H̃(λ, u).

Let h̃(x, u, λ) = max0≤|s|≤u |h(x, s, λ)| for all x ∈ (0, 1) and λ on bounded sets.
Then h̃ is nondecreasing with respect to u and

lim
u→0+

h̃(x, u, λ)
u

= 0. (2.3)

Further it follows from (2.3) that

h(x, u, λ)
‖u‖

≤ h̃(x, |u|, λ)
c‖u‖∞

≤ h̃(x, ‖u‖∞, λ)
c‖u‖∞

→ 0 as ‖u‖ → 0, (2.4)

uniformly for x ∈ (0, 1) and λ belonging to a bounded set, where c > 0 is the
best embedding constant of X ↪→ C[0, 1], ‖u‖∞ = maxx∈[0,1] |u(x)|. It follows that
H̃ = o(‖u‖) for u near 0 uniformly on bounded λ intervals. [15, Theorem 2] shows
the desired conclusions. �

For the regularity of weak solution, we have the following result.

Proposition 2.2. Any weak solution u ∈ X of problem (1.1) is also a classical
solution, i.e., u ∈ C2(0, 1) ∩ C1,α[0, 1] satisfying (1.1) and u(0) = u(1) = 0.

Proof. Let

f(x) =
1

a+ b‖u‖2
(λu+ h(x, u, λ)).

Then it is easy to see that f ∈ L2(0, 1). By [23, Theorem 8.12], we know that
u ∈ W 2,2(0, 1). Furthermore, by the general Sobolev embedding theorem [20, p.
270], we get u ∈ C1,α[0, 1] for some α ∈ (0, 1). According to the definition of weak
solution, we have

−
(
a+ b

∫ 1

0

|u′|2 dx
)
u′′ = λu+ h(x, u, λ)

in the sense of distribution, i.e.,

−
(
a+ b

∫ 1

0

|u′|2 dx
)
u′′ = λu+ h(x, u, λ) in (0, 1) \ I0 (2.5)

for some I0 ⊂ (0, 1) which satisfies |I0| = 0. Let I := (0, 1). Then the equation
(2.5) follows that u ∈ C2(I \ I0) and

u′′(x) = −f(x), x ∈ I \ I0. (2.6)

For any x0 ∈ I0, it is easy to see that equation (2.6) implies the existence of
lim
x→x0

u′′(x). [11, Proposition 1] follows that u′′(x0) = lim
x→x0

u′′(x). By the arbitrary

property of x0, we get that u ∈ C2(I) and satisfies (1.1). Clearly, one has u(0) =
u(1) = 0. �
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Lemma 2.3. If (λ, u) is a solution of (1.1) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of problem (1.1) and x∗ ∈ [0, 1] be a double zero. We
note that

u(x) =
−1

a+ b‖u‖2

∫ x

x∗

∫ s

x∗
(λu+ h(τ, u, λ)) dτ ds.

Firstly, we consider x ∈ [0, x∗]. Then

|u(x)| ≤ 1
a

∫ x∗

x

|λu+ h(τ, u, λ)| dτ,

≤ 1
a

∫ x∗

x

(
|λ|+ |h(τ, u(τ), λ)

u(τ)
|
)
|u(τ)| dτ.

In view of (1.2), for any ε > 0, there exists a constant δ > 0 such that

|h(x, s, λ)| ≤ ε|s|
uniformly with respect to all x ∈ (0, 1) and fixed λ when |s| ∈ [0, δ]. Hence,

|u(x)| ≤
∫ x∗

x

1
a

(
|λ|+ ε+ max

s∈[δ,‖u‖∞]

∣∣h(τ, s, λ)
s

∣∣)|u(τ)| dτ.

By the Gronwall-Bellman inequality [4], we get u ≡ 0 on [0, x∗]. Similarly, we can
get u ≡ 0 on [x∗, 1] and the proof is complete. �

Lemma 2.4. We have C ν
k ∩ (R× {0}) = {(aλk, 0)} if C ν

k ⊆ (Φνk ∪ {(aλk, 0)}).

Proof. By Proposition 2.2 follows that C ν
k ∈ R × E. Suppose, on the contrary, if

there exists (µm, um) → (aλj , 0) when m → +∞ with (µm, um) ∈ C ν
k , um ∈ Sνk ,

um 6≡ 0 and j 6= k. Let vm := um/‖um‖, then vm should be a solution of the
problem

v = G
( 1
a+ b‖um‖2

(
µmv +

h(x, um, µm)
‖um(x)‖

))
. (2.7)

By (2.4), (2.7) and the compactness of G we obtain that for some convenient sub-
sequence vm → v0 as m→ +∞. Now v0 verifies the equation

−v′′ = λjv

and ‖v0‖ = 1. Hence v0 ∈ Sj which is an open set in X, and as a consequence for
some m large enough, vm ∈ Sj , and this is a contradiction. �

Proof of Theorem 1.1. By [34, Lemma 1.24] there exists a bounded open neighbor-
hood Ok of (aλk, 0) such that (C ν

k ∩ Ok) ⊆ (Φνk ∪ {(aλk, 0)}) or (C ν
k ∩ Ok) ⊆

(Φ−νk ∪ {(aλk, 0)}). Without loss of generality, we assume that (C ν
k ∩ Ok) ⊆

(Φνk ∪ {(aλk, 0)}).
Next, we show that C ν

k ⊆ (Φνk∪{(aλk, 0)}). Suppose that C ν
k 6⊆ (Φνk∪{(aλk, 0)}).

Then there exists (µ, u) ∈ C ν
k ∩(R×∂Sνk ) such that (µ, u) 6= (aλk, 0) and (µn, un)→

(µ, u) with (µn, un) ∈ C ν
k ∩ (R × Sνk ). Since u ∈ ∂Sνk , by Lemma 2.3, u ≡ 0. Let

wn := un/‖un‖, then wn should be a solution of the following problem

w = G
( 1
a+ b‖un‖2

(
µnw +

h(x, un, µn)
‖un(x)‖

))
. (2.8)

By (2.4), (2.8) and the compactness of G we obtain that for some convenient sub-
sequence wn → w0 6= 0 as n→ +∞. Now w0 verifies the equation

−w′′ =
µ

a
w
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and ‖w0‖ = 1. Hence µ = aλj , for some j 6= k. Therefore, (µn, un)→ (aλj , 0) with
(µn, un) ∈ C ν

k ∩ (R× Sνk ). This contradicts Lemma 2.4. Thus, we have that

C ν
k ⊆ (Φνk ∪ {(aλk, 0)}).

We claim that both C +
k and C−k are unbounded. Without loss of generality, we

may suppose that C−k is bounded. Therefore, there exists (λ∗, u∗) ∈ C +
k ∩C−k such

that (λ∗, u∗) 6= (aλk, 0) and u∗ ∈ S+
k ∩ S

−
k . This contradicts the definitions of S+

k

and S−k . �

3. Spectrum

By an argument similar to that of Proposition 2.2, we can get the following
regularity result.

Proposition 3.1. Any weak solution u ∈ X of problem (1.3) is also a classical
solution, i.e., u ∈ C2(0, 1) ∩ C1,α[0, 1] satisfying (1.3) and u(0) = u(1) = 0.

Lemma 3.2. If (µ, u) is a solution of (1.3) and u has a double zero, then u ≡ 0.

Proof. The homogeneity of problem (1.3) implies that it suffices to consider a so-
lution such that ‖u‖ = 1, which therefore is solution of the ordinary differential
equation

−u′′ = µu3 in (0, 1),

u(0) = u(1) = 0.

Such a nontrivial solution necessarily cannot have a double zero by the uniqueness
property of Cauchy problem for (1.3). �

Lemma 3.3. Each nontrivial solution of (1.3) has a finite number of zeros.

Proof. If a nontrivial solution has an infinite number of zeros, its accumulation
point is a double zero, a contradiction. �

Lemma 3.4. µ1(I) with I = (0, 1) satisfies the strict monotonicity property with
respect to the domain I, i.e. if J is a strict sub interval of I, then µ1(I) < µ1(J).

Proof. Let ϕ1 with ‖ϕ1‖ = 1 be the eigenfunction of (1.3) on J corresponding to
µ1(J), and denote by ϕ̃1 the extension by zero on I. Then we have that

1
µ1(J)

=
∫
J

|ϕ1|4 dx =
∫
I

|ϕ̃1|4 dx < sup
u∈X,‖u‖=1

∫ 1

0

|u|4 dx =
1

µ1(I)
.

The last strict inequality holds from the fact that ϕ̃1 vanishes in I \J so cannot be
an eigenfunction corresponding to the principal eigenvalue µ1(I). �

Proof of Theorem 1.2. Let ϕ1 be a positive eigenfunction corresponding to µ1. It
follows from the symmetry of (1.3) and [9, Theorem 1.2] that ϕ1(x) = ϕ1(1 − x)
for x ∈ [0, 1], i.e. ϕ1 is even with respect to 1/2. For any k ≥ 2, set

ϕk(x) =


ϕ1(kx), x ∈ [0, 1/k],
−ϕ1(kx− 1), x ∈ [1/k, 2/k],
. . .

(−1)kϕ1(kx− k + 1), x ∈ [k−1
k , 1].
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Then ϕk is an eigenfunction of (1.3) associated with the eigenvalue µk = k4µ1.
On the other hand, let u = u(x) be an eigenfunction of (1.3) associated with
some eigenvalue µ∗ > µ1. According to [9, Theorem 1.2], u changes sign in (0, 1).
Lemmas 3.2 and 3.3 imply that u ∈ Sk for some k ≥ 2. Without loss of generality,
we may assume that u′(0) > 0. Let

0 < τ1 < τ2 < · · · < τk−1 < 1

denote the zeros of u in (0, 1). Without loss of generality, we may assume that
τ1 ≤ 1/k. Applying Lemma 3.4 on [0, 1/k], we have that µ∗ ≥ µk. By [3, Lemma
2], there exist integers p and q, 1 ≤ p ≤ k − 1, 1 ≤ q ≤ k − 1, such that

τp ≤
1

q + 1
<

1
q
≤ τp+1.

Applying Lemma 3.4 on [τp, τp+1], we have that µ∗ ≤ µk. So we have that µ∗ = µk.
Furthermore, if τ1 < 1/k, we have µ∗ > µk; if τ1 > 1/k, we have µ∗ < µk. Thus
we have τ1 = 1/k and u = c1ϕk(x) for x ∈ [0, 1/k]. Similarly, we can obtain that
τi = i/k and u = ciϕk(x) for x ∈ [(i − 1)/k, i/k], 2 ≤ i ≤ k − 1. Let us normalize
u as u′(0) = ϕ′k(0). It follows that c1 = 1. Hence ϕ′k( 1

k ) = c2ϕ
′
k( 1
k ). So we have

c2 = 1. Similarly, one has ci = 1 for all 3 ≤ i ≤ k − 1. Therefore, we have that
u(x) = ϕk(x), x ∈ [0, 1]. �

4. Nodal solutions

In this section, we apply Theorems 1.1 and 1.2 to study the existence of nodal
solutions for (1.4).

Proof of Theorem 1.3. Let g : (0, 1)× R→ R be a continuous function such that

f(x, s) = af0s+ g(x, s)

with

lim
s→0

g(x, s)
as

= 0 and lim
|s|→+∞

g(x, s)
s3

= bf∞ (4.1)

uniformly with respect to x ∈ (0, 1).
From (4.1), we can see that λg satisfies the assumptions of (1.2). Now, by

Theorem 1.1, there are two distinct unbounded continua, C +
k and C−k emanating

from (λk/f0, 0), such that

C ν
k ⊂ ({(λk/f0, 0)} ∪ Φνk).

If C ν
k is unbounded in the parameter direction, the conclusion is done. Next we

assume that C ν
k is bounded in the parameter direction. Then it is sufficient to show

that C ν
k joins (λk/f0, 0) to (λk/f∞,∞). Let (ξn, un) ∈ C ν

k where un 6≡ 0 satisfies
ξn + ‖un‖ → +∞. Since (0,0) is the only solution of (1.4) for λ = 0, we have
C ν
k ∩ ({0} ×X) = ∅. It follows that ξn > 0 for all n ∈ N. Clearly, we have

‖un‖ → +∞ as n→ +∞.
Let h:(0, 1)× R→ R be a continuous function such that

f(x, s) = bf∞s
3 + h(x, s)

with

lim
|s|→+∞

h(x, s)
s3

= 0 and lim
s→0

h(x, s)
s

= af0
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uniformly with respect to x ∈ (0, 1). Then (ξn, un) satisfies

un = G
( ξn
a+ b‖un‖2

(bf∞u3
n + h(x, un))

)
. (4.2)

Dividing the above equation by ‖un‖ and letting un = un/‖un‖, we obtain

un = G
( ξn‖un‖2

a+ b‖un‖2
(bf∞u3

n +
h(x, un)
‖un‖3

)
)
.

Let

h̃(x, u) = max
0≤|s|≤u

|h(x, s)| for x ∈ (0, 1).

Then h̃ is nondecreasing with respect to u. Define

h(x, u) = max
u/2≤|s|≤u

|h(x, s)| for x ∈ (0, 1).

Then we can see that

lim
u→+∞

h(x, u)
u3

= 0 and h̃(x, u) ≤ h̃(x,
u

2
) + h(x, u).

It follows that

lim sup
u→+∞

h̃(x, u)
u3

≤ lim sup
u→+∞

h̃(x, u2 )
u3

= lim sup
u/2→+∞

h̃(x, u2 )
8(u2 )3

.

So we have

lim
u→+∞

h̃(x, u)
u3

= 0. (4.3)

Further it follows from (4.3) that

h(x, un)
‖un‖3

≤ h̃(x, |un|)
‖un‖3

≤ h̃(x, ‖un‖∞)
‖un‖3

≤ c3 h̃(x, c‖un‖)
c3‖un‖3

→ 0

as n → +∞ uniformly for x ∈ (0, 1), where c > 0 is the best embedding constant
of X ↪→ C[0, 1].

From the compactness of G we obtain

−‖u‖2u′′ = µf∞u
3,

where u = lim
n→+∞

un and µ = lim
n→+∞

ξn, again choosing a subsequence and relabeling

it if necessary. It is clear that ‖u‖ = 1 and u ∈ C ν
k . Theorem 1.2 shows that

µ = µk/f∞. Therefore, C ν
k joins (λk/f0, 0) to (µk/f∞,∞). �
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