Jaume Llibre, Rafael Ramirez, Valentin Ramirez
Abstract:
-
differential systems are the real planar
polynomial differential equations of degree m of the form
where
and
are polynomials of degree at most m-1 such that
.
A planar vector field with linear type center can be written as a
-
system if and only if the Poincare-Liapunov
first integral is of the form
.
The main objective of this article is to study the center problem for
-
systems of degree m with
,
and
,
where
are constants and
is a homogenous polynomial of degree
,
for .
We prove the following results. Assuming that
and
the
-
system has a weak center at the origin
if and only if these systems after a linear change of variables
are invariant under the transformations
.
If
and
then the origin is a weak center. We observe that the main difficulty
in proving this result for m>6 is related to the huge computations.
Submitted July 9, 2018. Published November 14, 2018.
Math Subject Classifications: 34C05, 34C07.
Key Words: Linear type center; Darboux first integral; weak center;
Poincare-Liapunov theorem; Reeb integrating factor.
Show me the PDF file (320 KB), TEX file for this article.
Jaume Llibre Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain email: jllibre@mat.uab.cat | |
Rafael Ramírez Departament d'Enginyeria Informática i Matemátiques Universitat Rovira i Virgili Avinguda dels Pa&imul;sos Catalans 26 43007 Tarragona, Catalonia, Spain email: rafaelorlando.ramirez@urv.cat | |
Valentín Ramírez Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona, Catalonia, Spain email: valentin.ramirez@e-campus.uab.cat |
Return to the EJDE web page