NONEXISTENCE OF NONNEGATIVE SOLUTIONS FOR PARABOLIC INEQUALITIES IN THE HALF-SPACE

EVLGENY I. GALAKHOV, OLGA A. SALIEVA, LIUDMILA A. UVAROVA

Abstract. Based on the method of nonlinear capacity, we study the nonexistence of nonnegative monotonic solutions for the quasilinear parabolic inequality $u_t - \Delta_p u \geq u^q$. Also we study generalizations in the half-space in terms of parameters p and q.

1. Introduction

The question about nonexistence of nontrivial nonnegative global solutions to nonlinear equation $u_t - Au = g(x)u^q$ and the inequality $u_t - Au \geq g(x)u^q$, where A is an elliptic operator, in different domains is of substantial interest. Such inequalities can be understood as nonlinear heat equations with a supplementary external source term $f(x,t) = u_t - Au - g(x)u^q \geq 0$. The aim of the study is to find the range of values of q such that the equation or inequality in question has no-nontrivial nonnegative global solutions, i.e. the extra heat source leads to blow-up of a local solution.

The results in the whole space \mathbb{R}^n go back to Fujita [11] who established that solutions to the equation $u_t - \Delta u = u^q$ do not exist for $1 < q < 1 + \frac{2}{n}$. Similar nonexistence ranges for much more general operators were obtained later in [16]. As for the half-space, up to our knowledge, so far only stationary solutions have been considered. The first results in this direction were obtained by Berestycki, Capuzzo Dolcetta and Nirenberg [2] who proved nonexistence of solutions to the inequality $-\Delta u \geq u^q$ for $1 < q < \frac{n+1}{n-1}$. The optimality of these results was shown by Birindelli and Mitidieri [3]. Inequalities of the form $Au \geq u^q$ with $A = -\Delta_p$, where $p > 1$ and Δ_p is the p-Laplace operator defined by $\Delta_p u := \text{div}(|Du|^{p-2}Du)$, in the half-space with a punched point or a removed neighborhood of a point on the boundary were studied by Bidaut-Véron and Pohozaev [4], and later by Véron and A. Porretta [18]. They obtained results on nonexistence of solutions in the domains under study and consequently in the whole half-space for $p - 1 < q < q_{cr}(p,n)$, where $q_{cr}(p,n) = p - 1 + \frac{p}{\beta_{p,n}}$, and $\beta_{p,n}$ is the growth rate of singular solutions near zero, obtained explicitly only for $n = 2 (\beta_{p,2} = \frac{3-p+\sqrt{(p-1)^2+2p}}{3(p-1)})$. One should also note the papers of Filippucci [10] on critical exponents for semilinear inequalities of

2010 Mathematics Subject Classification. 35K92, 35R45.
Key words and phrases. Quasilinear parabolic inequalities; monotonicity; nonexistence of solutions.
©2018 Texas State University.
the form $-\text{div}(u^\alpha |x|^\beta Du) \geq |x|^{\gamma} u^q$ in the half-space, of Dancer, Du and Efendiev [5] and of Zou [20] on nonexistence of solutions to the Dirichlet problem

$$
-\Delta_p u = u^q, \quad x \in \mathbb{R}_n^+,
$$

$$
u(x) = 0, \quad x \in \partial \mathbb{R}_n^+,
$$

for a nonlinear equation with a p-Laplace operator in a half-space, as well as those of Farina, Montoro and Sciunzi [6]–[9] on monotonicity of essentially bounded solutions of the same problem, which implies their nonexistence for a certain range of q. Elliptic problems with singular coefficients near unbounded sets were considered, in particular, in [12, 13].

In this article we consider the nonexistence of nonnegative solutions for the parabolic inequality $u_t - \Delta_p u \geq ax^\gamma_n u^q$ in the half-space. Based on the method of nonlinear capacity [10, 11], we obtain sufficient conditions for nonexistence of solutions. Similar results for elliptic inequalities and systems can be found in [14].

The rest of this article consists of three sections. §2 has our main results, §3 contains a proof in the semilinear case, and §4 the quasilinear case.

2. Formulation of main results

Denote $\mathbb{R}_n^+ = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_n > 0\}$. Let $p > 1$, $q > p - 1$, $a > 0$, $\gamma \in \mathbb{R}$, and let $u_0 \in C(\mathbb{R}_n^+)$ be a nonnegative function. Consider the problem

$$
u_t - \Delta_p u \geq ax^\gamma_n u^q, \quad (x, t) \in \mathbb{R}_n^+ \times \mathbb{R}_+,$$

$$
u(x, 0) = u_0(x), \quad x \in \mathbb{R}_n^+,$$

$$
u(x, t) \geq 0, \quad (x, t) \in \mathbb{R}_n^+ \times \mathbb{R}_+.
$$

We understand its weak solutions in the following sense.

Definition 2.1. A weak solution of problem (2.1) is a nonnegative function $u \in C^{2,1}(\mathbb{R}_n^+ \times \mathbb{R}_+)$, which satisfies the integral inequality

$$
\int_{\mathbb{R}_n^+} \int_{\mathbb{R}_n^+} (|Du|^{p-2}(Du, D\varphi) - u\varphi) \, dx \, dt \geq \int_{\mathbb{R}_n^+} \int_{\mathbb{R}_n^+} ax^\gamma_n u^q \varphi \, dx \, dt + \int_{\mathbb{R}_n^+} u_0 \varphi \, dx
$$

for any nonnegative $\varphi \in C^\infty(\mathbb{R}_n^+ \times \mathbb{R}_+)$ such that $\varphi(x, t) \equiv 0$ for $(x, t) \in \partial \mathbb{R}_n^+ \times \mathbb{R}_+$ (that is, for $x_n = 0$).

Weak solutions of the problems considered below are defined in a similar way. In the case $p = 2$, we obtain the following result.

Theorem 2.2. Let $a > 0, \gamma > -2$, and $1 < q \leq 1 + \frac{\gamma+2}{n+1}$. Then (2.1) with $p = 2$:

$$
u_t - \Delta u \geq ax^\gamma_n u^q, \quad (x, t) \in \mathbb{R}_n^+ \times \mathbb{R}_+,$$

$$
u(x, 0) = u_0(x), \quad x \in \mathbb{R}_n^+,$$

$$
u(x, t) \geq 0, \quad (x, t) \in \mathbb{R}_n^+ \times \mathbb{R}_+$$

has no nonnegative nontrivial weak solutions u.

For other values of $p \neq 2$, we obtain a nonexistence result in a smaller functional class of solutions (with an additional property of monotonicity).

Theorem 2.3. Let $a > 0$, $\gamma > -p$, $q \geq \max(1, p - 1)$, $\gamma(p - 2) > p(1 - q)$, and

$$
[(n + 1)(q - 1) - \gamma](q - p + 1) - p(q - 1) - \gamma(p - 2) < 0.
$$
Then \[(2.1)\] has no nonnegative nontrivial weak solutions \(u\) such that \(u(x', \cdot, t)\) is monotonic in \(x_n\) for each \(x' \in \mathbb{R}^{n-1}\) and \(t > 0\).

Corollary 2.4. Let \(a > 0\) and \(\max(1, p - 1) \leq q \leq p - 1 + \frac{p}{n+1}\). Then the problem
\[
\begin{aligned}
&u_t - \Delta_p u \geq au^q, \quad (x, t) \in \mathbb{R}^n_+ \times \mathbb{R}_+, \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^n_+, \\
u(x, t) \geq 0, \quad (x, t) \in \mathbb{R}^n_+ \times \mathbb{R}_+
\end{aligned}
\]
(that is, \[(2.1)\] with \(\gamma = 0\)) has no nonnegative nontrivial weak solutions \(u\) such that \(u(x', \cdot, t)\) is monotonic in \(x_n\) for each \(x' \in \mathbb{R}^{n-1}\) and \(t > 0\).

Evidently, the above corollary follows from Theorem \(2.3\) in the case \(\gamma = 0\).

Remark 2.5. Nonexistence results can be obtained in the same class of monotonic solutions for the problem
\[
\begin{aligned}
&u_t - \Delta_p u \geq ax_n^\gamma u^q, \quad (x, t) \in \mathbb{R}^n_+ \times \mathbb{R}_+, \\
u(x, 0) = u_0(x), \quad x \in \mathbb{R}^n_+, \\
u(x, t) \geq 0, \quad (x, t) \in \mathbb{R}^n_+ \times \mathbb{R}_+,
\end{aligned}
\]
where the operator \(\Delta_p\) has the opposite sign (see \([14]\)). Although the result in \([14]\) is formulated for monotonically nondecreasing solutions, its proof is valid for non-increasing ones as well.

3. Proof of Theorem 2.2

We use the method of nonlinear capacity \([16, 17]\). We choose a family of nonnegative test functions \(\xi_{R,T}(x) \in C^1_0(\mathbb{R}^n)\) such that \(\lambda > 0\) (to be specified below), \(R\) and \(T\) are some positive parameters, and \(\xi_{R,T}(x) = \prod_{k=1}^{N-1} \chi_R(x_k) \cdot \chi_R(x_n - 3R) \cdot \chi_T(t)\) with
\[
\chi_R(s) = \begin{cases}
1 & \text{if } s \leq R, \\
0 & \text{if } s \geq 2R,
\end{cases}
\]
(3.1)
where
\[
|D\chi_R(s)| \leq cR^{-1}, \quad s \in \mathbb{R}_+.
\]
(3.2)
Multiply both sides of \((2.2)\) by \(\xi_{R,T}^\lambda x_n\) and integrate by parts. After elementary transformations we obtain
\[
\begin{aligned}
a &\int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} u^q \xi_{R,T}^\lambda x_n^\gamma + 1 \ dx \ dt \\
&\leq \int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} u \cdot |\Delta(\xi_{R,T}^\lambda x_n)| \ dx \ dt + \int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} u \cdot \frac{\partial \xi_{R,T}^\lambda}{\partial t} \ |x_n| \ dx \ dt.
\end{aligned}
\]
(3.3)
Application of the parametric Young inequality to both integrals on the right-hand side of \((3.3)\) yields
\[
\begin{aligned}
\frac{a}{2} &\int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} u^q \xi_{R,T}^\lambda x_n^\gamma + 1 \ dx \ dt \leq c \int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} |D\xi_{R,T}^\lambda| \frac{2n}{\gamma + 1} \xi_{R,T}^\lambda \frac{2n}{\gamma + 1} x_n^\gamma \ dx \ dt \\
&+ c \int_{\mathbb{R}^n_+} \int_{\mathbb{R}^n_+} \chi_T(t) \frac{2n}{\gamma + 1} \chi_{R'}^{\lambda - \frac{2n}{\gamma + 1}} x_n^{\gamma + 1} \ dx \ dt
\end{aligned}
\]
(3.4)
\[
:= I_1(R, T) + I_2(R, T).
\]
For $\lambda > \frac{2n}{q-1}$, the integral $I_1(R, T)$ can be estimated as

$$I_1(R, T) \leq R^{n-\frac{2n+1}{q-1}} T$$

and $I_2(R, T)$ as

$$I_2(R, T) \leq R^{n-\frac{q-1}{q}T^{1-\frac{n}{q}}}.$$ (3.6)

From (3.4)–(3.6) we obtain

$$\frac{a}{2} \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^q \xi^\lambda_{R, T} x_n^{\gamma+1} \, dx \, dt \leq c(R^{n-\frac{2n+1}{q-1}} T + R^{n-\frac{q-1}{q}T^{1-\frac{n}{q}}}).$$ (3.7)

Choosing $T = R^\theta$ with $\theta > 0$ such that both terms are of the same order and taking $R \to \infty$, we obtain

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^q x_n^{\gamma+1} \, dx \, dt = 0,$$

which contradicts the assumption of non-triviality of the solution. This completes the proof of Theorem 2.2.

4. PROOF OF THEOREM 2.3

Now, using the same family of test functions $\xi_{R, T}$ as in the previous proof, we multiply both parts of (2.3) by $u^\alpha \xi^\lambda_{R, T} x_n$, where $\alpha < 0$ will be specified below, and integrate by parts. After elementary transformations we obtain

$$a \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{q+\alpha} \xi^\lambda_{R, T} x_n^{\gamma+1} \, dx \, dt + |\alpha| \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{\alpha-1} |Du|^p \xi^\lambda_{R, T} x_n \, dx \, dt$$

$$\leq \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^\alpha |Du|^{p-1} |D\xi^\lambda_{R, T} x_n| \, dx \, dt + \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u_t u^\alpha \xi^\lambda_{R, T} x_n \, dx \, dt + \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{\alpha} |D^2u|^{p-2} \frac{\partial u}{\partial x_n} \xi^\lambda_{R, T} \, dx \, dt.$$ (4.1)

Application of the parametric Young inequality to the first integral on the right-hand side of (4.1) yields

$$a \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{q+\alpha} \xi^\lambda_{R, T} x_n^{\gamma+1} \, dx \, dt + |\alpha| \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{\alpha-1} |Du|^p \xi^\lambda_{R, T} x_n \, dx \, dt$$

$$\leq c \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{\alpha+p-1} |D\xi^\lambda_{R, T}|^p \xi^\lambda_{R, T} x_n \, dx \, dt$$

$$+ \frac{1}{\alpha+1} \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^{\alpha+1} (\xi^\lambda_{R, T}) t x_n \, dx \, dt$$

$$+ \int_{\mathbb{R}_+} \int_{\mathbb{R}^n_+} u^\alpha |D^2u|^{p-2} \frac{\partial u}{\partial x_n} \xi^\lambda_{R, T} \, dx \, dt.$$ (4.2)
Applying the parametric Young inequality to the first two integrals on the right-hand side of (4.2) once more, we obtain

\[
\frac{a}{2} \int_{R^+} \int_{R^n_+} u^{q+\alpha} \xi_{R,T}^{\gamma+1} dx \, dt + \frac{\alpha}{2} \int_{R^+} \int_{R^n_+} u^{\alpha-1} |Du|^{p} \xi_{R,T}^{q} x_n \, dx \, dt \\
\leq c \int_{R^+} \int_{R^n_+} |D\xi_{R,T}| \frac{p(q+\alpha)}{q-p+1} \xi_{R,T}^{p(q+\alpha)-\frac{q+\alpha-(\alpha+p-1)(\gamma+1)}{q-p+1}} x_n \, dx \, dt \\
+ c \int_{R^+} \int_{R^n_+} |\chi_T(t)|^{\frac{q+\alpha}{q-p+1}} \xi_{R,T}^{\frac{q+\alpha-(\alpha+p-1)(\gamma+1)}{q-p+1}} x_n \, dx \, dt \\
+ \int_{R^+} \int_{R^n_+} u^\alpha |Du|^{p-2} \frac{\partial u}{\partial x_n} \xi_{R,T} \, dx \, dt \\
:= I_1(R, T) + I_2(R, T) + I_3(R, T).
\]

For \(\lambda > \frac{q}{q-p+1} \) and

\[
\alpha > \frac{n(q-p+1) - (q + \gamma - 1)(p-1)}{p + \gamma}
\]

the integral \(I_1(R, T) \) and \(I_2(R, T) \) can be estimated as

\[
I_1(R, T) \leq R^{n-\frac{(q-1)(q+\alpha)+2p-1}{q-p+1}} T, \\
I_2(R, T) \leq R^{n-\frac{q+\alpha-(\alpha+p-1)(\gamma+1)}{q-p+1}} T^{1-\frac{q+\alpha}{q-p+1}}.
\]

If \(\frac{\partial u}{\partial x_n} \geq 0 \), then \(I_3(R, T) < 0 \). Estimate the integral \(I_3(R, T) \) in the case \(\frac{\partial u}{\partial x_n} \leq 0 \). In case \(p < 2 \), using the H"older inequality and integrating by parts, we have

\[
I_3(R, T) = - \int_{R^+} \int_{R^n_+} u^\alpha |Du|^{p-2} \frac{\partial u}{\partial x_n} \xi_{R,T} \, dx \, dt \\
\leq \int_{R^+} \int_{R^n_+} u^\alpha \left(- \frac{\partial u}{\partial x_n} \right)^{p-1} \xi_{R,T} \, dx \, dt \\
\leq c \int_{R^+} \int_{R^n_+} \left(- \frac{\partial u}{\partial x_n} \right)^{p-1} \xi_{R,T} \, dx \, dt \\
\leq c \left(\int_{R^+} \int_{R^n_+} \frac{\partial u}{\partial x_n} \xi_{R,T} \, dx \, dt \right)^{p-1} R^{n(2-p)} \\
= c \left(\int_{R^+} \int_{R^n_+} u^{1+\frac{\alpha}{q-p+1}} \xi_{R,T} \, dx \, dt \right)^{p-1} R^{n(2-p)} \\
\leq c \left(\int_{R^+} \int_{R^n_+} u^{1+\frac{\alpha}{q-p+1}} \frac{\partial \xi_{R,T}}{\partial x_n} \, dx \, dt \right)^{p-1} R^{n(2-p)} \\
\leq c \left(\int_{R^+} \int_{R^n_+} u^{\alpha+\alpha} \xi_{R,T} x_n^{\gamma+1} \, dx \, dt \right)^{\frac{\alpha+p-1}{q-p+1}} R^{n(2-p)} \\
\times \left(\int_{R^+} \int_{R^n_+} \left| \frac{\partial \xi_{R,T}}{\partial x_n} \right|^{\frac{(q+\alpha)(q-1)}{q-p+1}} \, dx \, dt \right)^{\frac{q-p+1}{q-p+1}} \\
\times \left(\xi_{R,T}^{q-p+1} - (q+\alpha) x_n^{-(\gamma+1)(\alpha+p-1)} \right) \, dx \, dt \right)^{\frac{q+p-1}{q-p+1}}.
\]
and by the Young inequality, similarly to the previous argument,
\[
R^n \leq cR\int_{\mathbb{R}_+^n} u^{q+\alpha} \xi_{R,T}^\gamma x_n^{\gamma+1} \, dx \, dt + cR_{n-\frac{q+\alpha}{q-p+1}}^{\frac{q+\alpha}{q-p+1}} T.
\]
E. I. GALAKHOV, O. A. SALIEVA, L. A. UVAROVA

From (4.3)–(4.7) we obtain
\[
I_3(R, T) \leq \frac{a}{4} \int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{q+\alpha} \xi_{R,T}^\gamma x_n^{\gamma+1} \, dx \, dt + cR_{n-\frac{q+\alpha}{q-p+1}}^{\frac{q+\alpha}{q-p+1}} T.
\]
Choosing \(T = R^\theta \) with \(\theta > 0 \) such that both terms are of the same order and taking \(R \to \infty \), for \(\alpha \) satisfying (4.4) we obtain
\[
\int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{q+\alpha} x_n^{\gamma+1} \, dx \, dt = 0,
\]
which contradicts the assumption of non-triviality of the solution. This proves the theorem in the case \(p < 2 \).

In the case \(p > 2 \), estimates (4.3) and (4.5) are still valid, and for the integral \(I_3(R, T) \) in the case \(\frac{\partial u}{\partial x_n} \leq 0 \) we have
\[
I_3(R, T) = \int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{\alpha} |Du|^{p-2} \frac{\partial u}{\partial x_n} \xi_{R,T} \, dx \, dt
\]
\[
= - \int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{\alpha} |Du|^{p-2} \left(- \frac{\partial u}{\partial x_n} \right) \xi_{R,T} \, dx \, dt
\]
\[
\leq \int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{\alpha} |Du|^{p-2} \xi_{R,T} \, dx \, dt
\]
and by the Young inequality, similarly to the previous argument,
\[
I_3(R, T) \leq \frac{|\alpha|}{4} \int_{\mathbb{R}_+^n} \int_{\mathbb{R}_+^n} u^{\alpha-1} |Du|^{p-2} \xi_{R,T} \, dx \, dt
\]
\[I_3(R, T) \leq |\alpha| \int_{\mathbb{R}^n_+} u^{\alpha-1} |Du|^p \xi_{R, T}^\lambda x_n^\gamma \, dx \, dt + \frac{a}{4} \int_{\mathbb{R}^n_+} u^{q+\alpha} R_{R, T}^\lambda x_n^{\gamma+1} \, dx \, dt + c R^{n-(p-1)(\gamma+n)+2n-2n-1(\gamma+1)} T, \]

which together with (4.3) and (4.5) yields (4.8) again. The proof can be completed similarly to the previous case.

Acknowledgments. This work was supported by the Ministry of Education and Science of Russia, as a state order in the sphere of scientific activities (order No. 1.7706.2017/8.9). This publication was prepared with support from RUDN University Program 5-100.

References

Evgeny I. Galakhov
RUDN University, ul. Miklukho-Maklaya, 6, Moscow 117198, Russia
E-mail address: galakhov@rambler.ru

Olga A. Salieva, MSTU “STANKIN”, Vadkovsky per. 1, Moscow 127055, Russia
E-mail address: olga.a.salieva@gmail.com

Liudmila A. Uvarova MSTU “STANKIN”, Vadkovsky per. 1, Moscow 127055, Russia
E-mail address: uvar11@yandex.com