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Abstract. In this article, we study the existence of asymptotically almost

automorphic mild solutions for a class of nonautonomous semilinear evolution

equations and extend some related results in this direction. The working tools
are based on the Krasnoselskii’s fixed point theorem and compactness criterion.

Finally, an example is presented to illustrate the main findings.

1. Introduction

The concept of almost automorphy, which is a generalization of almost period-
icity, has been introduced in the literature by Bochner in relation to some aspects
of differential geometry [8, 9, 7, 10]. Since then, the theory of almost automorphic
functions has found several developments and applications in the theory of various
ordinary differential equations, partial differential equations, functional differential
equations, integro-differential equations, fractional differential equations as well as
stochastic differential equations (see for instance [1, 6, 12, 13, 14, 17, 23, 26, 25, 28,
29, 30, 32, 35, 39] and the references therein).

As a natural extension of almost automorphy, the concept of asymptotic almost
automorphy, which is the central issue to be discussed in this paper, was introduced
in the literature in the early eighties by N’Guérékata [34]. Since then, this notion has
found several developments and has been generalized into different directions. In
particular, the existence of asymptotically almost automorphic solutions to various
ordinary differential equations, partial differential equations, functional differential
equations, integro-differential equations, fractional differential equations as well as
stochastic differential equations has been investigated in many papers (see, e.g.
[11, 15, 16, 19, 20, 24, 34, 44, 45, 47] and references therein), and it has become
an attractive topic in the qualitative theory of differential equations due to their
significance and applications in physics, mathematical biology, control theory and
so on. We refer the reader to the monographs of N’Guérékata [33] for the recently
theory and applications of asymptotically almost automorphic functions.
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When dealing with parabolic evolution equation, it is usually assumed that the
partial differential operator in the linear part (possibly unbounded) depends on
time (i.e., it is the case of equations being nonautonomous), motivated by the fact
that this class of operators appears very often in the applications (see, e.g., [5, 36]).
Stimulated by the works above, the main purpose of this paper is to establish a
new existence theorem of asymptotically almost automorphic mild solutions to the
following nonautonomous semilinear evolution equations

x′(t) = A(t)x(t) + F (t, x(t)), t ∈ R. (1.1)

In our result, the nonlinearity F (t, x) does not have to satisfy a (locally) Lipschitz
condition with respect to x (see Remark 3.1). However, in many papers (for instance
[15, 16, 19, 20, 24, 44, 45, 47]) on asymptotically almost automorphic solutions, to
be able to apply the well known Banach contraction principle, a (locally) Lipschitz
condition for the nonlinearity of corresponding differential equations is needed. Here
we weaken the assumptions on nonlinearity F (t, x) and deal with the existence of
asymptotically almost automorphic solutions of (1.1) by Krasnoselskii’s fixed point
theorem. To the best our knowledge, few papers using this theorem to solve related
problem and this is one of the key motivations of study.

The rest of this paper is organized as follows. In Section 2, some concepts, the
related notations and some useful lemmas are introduced. In Section 3, we present
some criteria ensuring the existence of asymptotically almost automorphic mild
solutions. An example is given to illustrate our result in Section 4.

2. Preliminaries

This section is concerned with some notations, definitions, lemmas and prelimi-
nary facts which are used in what follows.

From now on, R, R+ and C stand for the set of real numbers, nonnegative
real numbers and complex numbers respectively, let (X, ‖ · ‖), (Y, ‖ · ‖Y ) be two
Banach spaces, L(X,Y ) denotes the space of all bounded linear operators from X
to Y , we abbreviate L(X,Y ) to L(X) when X = Y , and ρ(A), D(A), R(A) stand
for the resolvent, domain and range of operator A respectively. BC(R, X) (resp.,
BC(R × Y,X)) is the space of all X-valued bounded continuous functions (resp.,
jointly bounded continuous functions F : R × Y → X). Furthermore, C0(R, X)
(resp., C0(R × Y,X)) is the closed subspace of BC(R, X) (resp., BC(R × Y,X))
consisting of functions vanishing at infinity (vanishing at infinity uniformly in any
compact subset of Y , in other words,

lim
|t|→+∞

‖g(t, x)‖ = 0 uniformly for x ∈ K,

where K is an any compact subset of Y ).
Now, we recall some basic definitions and results on almost automorphic func-

tions and asymptotically almost automorphic functions.

Definition 2.1 (Bochner [8], N’Guérékata [35]). A continuous function F : R→ X
is said to be almost automorphic if for every sequence of real numbers {s′n}, there
exists a subsequence {sn} such that

Θ(t) = lim
n→∞

F (t+ sn)
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is well defined for each t ∈ R and

lim
n→∞

Θ(t− sn) = F (t) for each t ∈ R.

Denote by AA(R, X) the set of all such functions.

Remark 2.2 ([35]). By the pointwise convergence, the function Θ(t) in Definition
2.1 is measurable, but not necessarily continuous. Moreover, if Θ(t) is continuous,
then F (t) is uniformly continuous (cf., e.g., [30, Theorem 2.6]), and if the conver-
gence in Definition 2.1 is uniform on R, one gets almost periodicity (in the sense of
Bochner and von Neumann). Almost automorphy is thus a more general concept
than almost periodicity. There exists an almost automorphic function which is not
almost periodic. The function F : R→ R defined by

F (t) = sin
( 1

2 + cos t+ cos
√

2t

)
is an example of such function [18].

Lemma 2.3 ([29]). AA(R, X) is a Banach space with the supremum norm

‖F‖∞ = sup
t∈R
‖F (t)‖.

Definition 2.4 ([35]). A continuous function F : R× Y → X is said to be almost
automorphic in t ∈ R for each x ∈ Y if for every sequence of real numbers {s′n},
there exists a subsequence {sn} such that

lim
n→∞

F (t+ sn, x) = Θ(t, x) exists for each t ∈ R and each x ∈ Y ,

lim
n→∞

Θ(t− sn, x) = F (t, x) exists for each t ∈ R and each x ∈ Y .

The collection of those functions is denoted by AA(R× Y,X).

Remark 2.5 ([46]). The function F : R×X → X given by

F (t, x) = sin
( 1

2 + cos t+ cos
√

2t

)
cosx

is almost automorphic in t ∈ R for each x ∈ X, where X = L2[0, 1].

Lemma 2.6 ([35]). Let F : R×X → X be almost automorphic in t for each x ∈ X
and assume that F (t, x) satisfies a Lipschitz condition in x uniformly in t ∈ R, i.e.,
for each pair x, y ∈ X,

‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖

uniformly in t ∈ R, where L > 0 is called the Lipschitz constant for the function
F (t, x). Let γ : R → X be almost automorphic. Then the function Υ : R → X
defined by

Υ(t) = F (t, γ(t))
is almost automorphic.

Definition 2.7 ([35]). A continuous function F : R→ X is said to be asymptoti-
cally almost automorphic if it can be decomposed as F (t) = G(t) + Φ(t), where

G(t) ∈ AA(R, X), Φ(t) ∈ C0(R, X).

Denote by AAA(R, X) the set of all such functions.
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Remark 2.8. The function F : R→ R defined by

F (t) = G(t) + Φ(t) = sin
( 1

2 + cos t+ cos
√

2t

)
+ e−|t|

is an asymptotically almost automorphic function with

G(t) = sin
( 1

2 + cos t+ cos
√

2t

)
∈ AA(R,R), Φ(t) = e−|t| ∈ C0(R,R).

Lemma 2.9 ([35]). AAA(R, X) is also a Banach space with the supremum norm
‖ · ‖∞.

Definition 2.10 ([35]). A continuous function F : R × Y → X is said to be
asymptotically almost automorphic if it can be decomposed as

F (t, x) = G(t, x) + Φ(t, x),

where
G(t, x) ∈ AA(R× Y,X), Φ(t, x) ∈ C0(R× Y,X).

Denote by AAA(R× Y,X) the set of all such functions.

Remark 2.11. The function F : R×X → X given by

F (t, x) = G(t, x) + Φ(t, x) = sin
( 1

2 + cos t+ cos
√

2t

)
cosx+ e−|t|x sinx2

is asymptotically almost automorphic in t ∈ R for each x ∈ X, where X = L2[0, 1]
and

G(t, x) = sin
( 1

2 + cos t+ cos
√

2t

)
cosx ∈ AA(R×X,X),

Φ(t, x) = e−|t|x sinx2 ∈ C0(R×X,X).

Next, let us recall the definition of bi-almost automorphic functions, which was
introduced originally by Xiao, Zhu and Liang [40], it will be used to obtain our
result.

Definition 2.12 ([40]). A continuous function F (t, s) : R × R → X is called bi-
almost automorphic if for every sequence of real numbers {τ ′n}, we can extract a
subsequence {τn} such that

G(t, s) = lim
n→∞

F (t+ τn, s+ τn)

is well defined in t, s ∈ R, and

lim
n→∞

G(t− τn, s− τn) = G(t, s)

for each t, s ∈ R. Let bAA(R× R, X) stand for the set of all such functions.

Remark 2.13 ([40]). If F (t, s) ∈ C(R × R, X) and F (t, s) = G(t − s) for some
G(t) ∈ C(R, X), then F (t, s) ∈ bAA(R×R, X). On the other hand, the concept of
bi-almost automorphic function is a natural generalization of the function F (t, s)
having the same period in the two arguments, that is

F (t+ T, s+ T ) = F (t, s) for all t, s ∈ R for some T ∈ R/{0}.

Remark 2.14 ([40]). F (t, s) = sin t cos s is a bi-almost automorphic function from
R× R to R as

F (t+ 2π, s+ 2π) = F (t, s) for all t, s ∈ R.
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We also need to recall the basic definitions and results on evolution family. Let

R(λ, L) := (λI − L)−1 for all λ ∈ ρ(L), Σθ := {λ ∈ C/{0} : | arg λ| ≤ θ}.
Throughout, assumed that A(t) (usually unbounded) for each t ∈ R is a closed
and densely defined linear operator on D = D(A(t)) satisfying the so-called Ac-
quistapace and Terreni conditions:

(AT1) There are constants λ0 ≥ 0, θ ∈
(
π
2 , π

)
and K1 ≥ 0 such that Σθ ∪ {0} ⊂

ρ(A(t)− λ0) and for all λ ∈ Σθ ∪ {0}, t ∈ R,

‖R(λ,A(t)− λ0)‖ ≤ K1

1 + |λ|
.

(AT2) There are constants K2 ≥ 0 and α, β ∈ (0, 1] with α + β > 1 such that for
all λ ∈ Σθ and t, s ∈ R

‖(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ K2|t− s|α

|λ|β
.

It should mentioned that conditions (AT1) and (AT2), which are initiated by Ac-
quistapace and Terreni [2, 3] for λ0 = 0, are well understood and widely used in
the literature.

Definition 2.15 ([21]). A two parameter family of bounded linear operators
{U(t, s)}t≥s on X is called an evolution family if

(1) U(t, r)U(r, s) = U(t, s) and U(t, t) = I for all t ≥ r ≥ s and t, r, s ∈ R,
(2) the map (t, s)→ U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R.

It is worth pointing out that “evolution family” as a basic concept in the theory
of nonautonomous evolution equations is also called evolution system, evolution
operator, evolution process, propagator or fundamental solution. More details can
be found in, e.g., [21, 36, 43].

By an obvious rescaling from [4, Theorem 2.3] and [42, Theorem 2.1], the Ac-
quistapace and Terreni conditions (AT1) and (AT2) ensure that there exists a
unique evolution family {U(t, s)}t≥s on X such that

(I) U(·, s) ∈ C1((s,+∞), L(X)), ∂U(t,s)
∂t = A(t)U(t, s) for t > s, moreover

there exists a constant C > 0 such that

‖A(t)kU(t, s)‖ ≤ C(t− s)−k for 0 < t− s ≤ 1, k = 0, 1;

(II) ∂+U(t,s)x
∂s = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈

D(A(s)).
In this case we say that (A(t))t∈R generate the evolution family {U(t, s)}t≥s.

It should also be mentioned that the above mentioned proprieties were mainly
established in [4, Theorem 2.3] and [42, Theorem 2.1], see also [3, 41].

Note that in the particular case when A(t) has a constant domain D = D(A(t)),
it is wellknown [36, 5] that condition (AT2) can be replaced with the following
condition: there exist constants K2 ≥ 0, 0 < µ ≤ 1 such that

‖(A(t)−A(s))R(λ0, A(r))‖ ≤ K2|t− s|µ for all s, t, r ∈ R.
One says that an evolution family {U(t, s)}t≥s has exponential stability if there
exist constants M > 0, δ > 0 such that

‖U(t, s)‖ ≤Me−δ(t−s) for all t ≥ s; t, s ∈ R.
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Definition 2.16 ([21]). An evolution family {U(t, s)}t≥s is said to be compact if
for all t > s, U(t, s) is continuous and maps bounded subsets of X into precompact
subsets of X.

Remark 2.17 ([22]). Let us note that if for each t ∈ R and some λ ∈ ρ(A(t)),
the resolvent R(λ,A(t)) is a compact operator, then U(t, s) is a compact operator
whenever t > s.

Similar to one-parameter semigroups, {U(t, s)}t≥s satisfies the following prop-
erty.

Lemma 2.18 ([21]). Let {U(t, s)}t≥s be a compact evolution family on X. Then
for each s ∈ R, the function t → U(t, s) is continuous on (s,+∞) in the uniform
operator topology.

In the following, we present the following compactness criterion, which is a special
case of the general compactness result in [37, Theorem 2.1].

Lemma 2.19 ([37]). A set D ⊂ C0(R, X) is relatively compact if
(1) D is equicontinuous;
(2) lim|t|→+∞ x(t) = 0 uniformly for x ∈ D;
(3) the set D(t) := {x(t) : x ∈ D} is relatively compact in X for every t ∈ R.

The following Krasnoselskii’s fixed point theorem plays a key role in the proofs
of our main results, which can be found in many books.

Lemma 2.20 ([38]). Let B be a bounded closed and convex subset of X, and J1, J2

be maps of B into X such that

J1x+ J2y ∈ B for x, y ∈ B.

If J1 is a contraction and J2 is completely continuous, then the equation

J1x+ J2x = x

has a solution on B.

3. Main result

In this section, we study the existence of asymptotically almost automorphic
mild solutions for the Cauchy problem consisting in the standard nonautonomous
parabolic evolution equation of the form

x′(t) = A(t)x(t) + F (t, x(t)), t ∈ R (3.1)

in the Banach space X. Here, A(t) for each t, which has domain D(A(t)) and
satisfies the so-called Acquistapace and Terreni conditions (AT1) and (AT2), is a
closed and densely defined linear operator on X and is the generator of a compact
as well as exponentially stable evolution family {U(t, s)}t≥s, F : R ×X → X is a
given function satisfying the following assumption:

(H1) F (t, x) = F1(t, x) + F2(t, x) ∈ AAA(R×X,X) with

F1(t, x) ∈ AA(R×X,X), F2(t, x) ∈ C0(R×X,X)

and there exists a constant L > 0 such that

‖F1(t, x)− F1(t, y)‖ ≤ L‖x− y‖ for all t ∈ R, x, y ∈ X. (3.2)
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Moreover, there exist a function β(t) ∈ C0(R,R+) and a nondecreasing
function Φ : R+ → R+ such that for all t ∈ R and x ∈ X with ‖x‖ ≤ r,

‖F2(t, x)‖ ≤ β(t)Φ(r) and lim inf
r→+∞

Φ(r)
r

= ρ1. (3.3)

In addition, we suppose that
(H2) The evolutionary family {U(t, s)}t≥s is exponentially stable.
(H3) U(t, s)x ∈ bAA(R×R, X) uniformly for all x in any bounded subset of X.

Remark 3.1. Assuming that F (t, x) satisfies the assumption (H1), it is noted that
F (t, x) does not have to meet the Lipschitz continuity with respect to x. Such class
of asymptotically almost automorphic functions F (t, x) are more complicated than
those with Lipschitz continuity and little is known about them.

In the proof of our result, we need the following auxiliary results concerning
asymptotically almost automorphic functions.

Lemma 3.2. Given

F (t, x) = F1(t, x) + F2(t, x) ∈ AAA(R×X,X)

with F1(t, x) ∈ AA(R ×X,X), F2(t, x) ∈ C0(R ×X,X) satisfying the assumption
(H1) and

X(t) = Y (t) + Z(t) ∈ AAA(R, X)
with Y (t) ∈ AA(R, X), Z(t) ∈ C0(R, X). Then F (t,X(t)) ∈ AAA(R, X) with

F1(t, Y (t)) ∈ AA(R, X), F1(t,X(t))− F1(t, Y (t)) ∈ C0(R, X),

F2(t,X(t)) ∈ C0(R, X).

Proof. Since

F (t,X(t)) =F1(t, Y (t)) + [F (t,X(t))− F1(t, Y (t))]

=F1(t, Y (t)) + [F1(t,X(t))− F1(t, Y (t))] + F2(t,X(t)).

By Lemma 2.6, together with (3.2), one has F1(t, Y (t)) ∈ AA(R, X). Obviously
F2(t,X(t)) ∈ C0(R, X). Moreover (3.2) implies that

F1(t,X(t))− F1(t, Y (t)) ∈ C0(R, X) as Z(t) ∈ C0(R, X).

�

Lemma 3.3. Let (H2), (H3) be satisfied. Given Y (t) ∈ AA(R, X). Let

Φ1(t) :=
∫ t

−∞
U(t, s)Y (s)ds, t ∈ R.

Then Φ1(t) ∈ AA(R, X).

Proof. From (H2) it is clear that Φ1(t) is well-defined and continuous on R. Choose
a bounded subset K of X such that Y (t) ∈ K for all t ∈ R. From Y (t) ∈ AA(R, X)
and (H3) it follows that for every sequence of real numbers {τ ′n}, we can extract a
subsequence {τn} such that

(1) limn→∞ Y (t+ τn) = Ỹ (t) for each t ∈ R4,
(2) limn→∞ Ỹ (t− τn) = Y (t) for each t ∈ R,
(3) limn→∞ U(t+ τn, s+ τn)x = Ũ(t, s)x for each t, s ∈ R, x ∈ K,
(4) limn→∞ Ũ(t− τn, s− τn)x = U(t, s)x for each t, s ∈ R, x ∈ K.
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Write

Φ̃1(t) :=
∫ t

−∞
Ũ(t, s)Ỹ (s)ds, t ∈ R.

Then

‖Φ1(t+ τn)− Φ̃1(t)‖ =
∥∥∫ t+τn

−∞
U(t+ τn, s)Y (s)ds−

∫ t

−∞
Ũ(t, s)Ỹ (s)ds

∥∥
=
∥∥∫ t

−∞
U(t+ τn, s+ τn)Y (s+ τn)ds−

∫ t

−∞
Ũ(t, s)Ỹ (s)ds

∥∥
≤
∥∥∫ t

−∞
U(t+ τn, s+ τn)[Y (s+ τn)− Ỹ (s)]ds

∥∥
+
∥∥∫ t

−∞
[U(t+ τn, s+ τn)− Ũ(t, s)]Ỹ (s)ds

∥∥.
From (H2) together with the Lebesgue dominated convergence theorem and (1),
(3), it follows that

lim
n→∞

Φ1(t+ τn) = Φ̃1(t), t ∈ R.

Similarly by (2) and (4) we can prove that

lim
n→∞

Φ̃1(t− τn) = Φ1(t), t ∈ R.

Hence Φ1(t) ∈ AP (R, X). �

Lemma 3.4. Let (H2) be satisfied. Given Z(t) ∈ C0(R, X). Let

Φ2(t) :=
∫ t

−∞
T (t− s)Z(s)ds, t ∈ R.

Then Φ2(t) ∈ C0(R, X).

Proof. From (H2) it is clear that Φ2(t) are well-defined and continuous on R. Since
Z(t) ∈ C0(R, X), one can choose a T > 0 such that

‖Z(t)‖ < ε for all t > T.

This enables us to conclude that for all t > T ,

‖Φ2(t)‖ ≤
∥∥∫ T

−∞
T (t−s)Z(s)ds

∥∥+
∥∥∫ t

T

T (t−s)Z(s)ds
∥∥ ≤ Me−δ(t−T )

δ
‖Z‖∞+

Mε

δ
,

which implies limt→+∞ ‖Φ2(t)‖ = 0.
By a similar argument one can obtain limt→−∞ ‖Φ2(t)‖ = 0. �

Definition 3.5. A continuous function x : R → X is called an asymptotically
almost automorphic mild solution to equation (3.1) on R if x ∈ AAA(R, X) and
satisfies the integral equation

x(t) = U(t, τ)x(τ) +
∫ t

τ

U(t, s)F (s, x(s))ds for all t > τ.

Let β(t) be the function involved in assumption (H1). Define

σ(t) :=
∫ t

−∞
e−δ(t−s)β(s)ds, t ∈ R.



EJDE-2018/37 ASYMPTOTICALLY ALMOST AUTOMORPHIC MILD SOLUTIONS 9

Then σ(t) ∈ C0(R,R+). Put ρ2 := supt∈R σ(t). Now we are in a position to present
our existence result.

Theorem 3.6. Under hypotheses (H1)–(H3), equation (3.1) has at least one asymp-
totically almost automorphic mild solution provided that

MLδ−1 +Mρ1ρ2 < 1. (3.4)

Proof. The proof is divided into the following six steps.
Step 1. Define a mapping Λ on AA(R, X) by

(Λv)(t) =
∫ t

−∞
U(t, s)F1(s, v(s))ds, t ∈ R.

and prove Λ has a unique fixed point v(t) ∈ AA(R, X). Firstly, from F1(t, x) ∈
AA(R×X,X) satisfying (3.2) and Lemma 2.6 it follows that

F1(·, v(·)) ∈ AA(R, X) for every v(·) ∈ AA(R, X).

This, together with Lemma 3.3, implies that Λ is well defined and maps AA(R, X)
into itself. On the other hand, for any v1(t), v2(t) ∈ AA(R, X), by (3.2) one has

‖(Λv1)(t)− (Λv2)(t)‖ ≤ML

∫ t

−∞
e−δ(t−s)‖v1(s)− v2(s)‖ds ≤ ML

δ
‖v1 − v2‖∞.

As a result

‖Λv1 − Λv2‖∞ ≤
ML

δ
‖v1 − v2‖∞.

Together with (3.4), this proves that Λ is a contraction on AA(R, X). Thus, the Ba-
nach’s fixed point theorem implies that Λ has a unique fixed point v(t) ∈ AA(R, X).

Step 2. Set
Ωr := {ω(t) ∈ C0(R, X) : ‖ω‖∞ ≤ r}.

For the above v(t), define Γ := Γ1 + Γ2 on C0(R, X) as

(Γ1ω)(t) =
∫ t

−∞
U(t, s)[F1(s, v(s) + ω(s))− F1(s, v(s))]ds, t ∈ R,

(Γ2ω)(t) =
∫ t

−∞
U(t, s)F2(s, v(s) + ω(s))ds, t ∈ R,

and prove that Γ maps Ωk0 into itself, where k0 is a given constant. Firstly, from
hypothesis (H1) it follows that

‖F1(s, v(s) + ω(s))− F1(s, v(s))‖ ≤ L‖ω(s)‖ for all s ∈ R, ω(s) ∈ X

and
‖F2(s, v(s) + ω(s))‖ ≤ β(s)Φ

(
r + sup

s∈R
‖v(s)‖

)
(3.5)

for all s ∈ R and ω(s) ∈ X with ‖ω(s)‖ ≤ r, which implies

F1(·, v(·) + ω(·))− F1(·, v(·)) ∈ C0(R, X) for every ω(·) ∈ C0(R, X),

F2(·, v(·) + ω(·)) ∈ C0(R, X) as β(·) ∈ C0(R,R+).

Those, together with Lemma 3.4, yields that Γ is well-defined and maps C0(R, X)
into itself.
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On the other hand, in view of (3.3) and (3.4) it is not difficult to see that there
exists a constant k0 > 0 such that

ML

δ
k0 +Mρ2Φ

(
k0 + sup

s∈R
‖v(s)‖

)
≤ k0.

This enables us to conclude that for any t ∈ R and ω1(t), ω2(t) ∈ Ωk0 ,

‖(Γ1ω1)(t) + (Γ2ω2)(t)‖ ≤M
(∫ t

−∞
e−δ(t−s)‖F1(s, v(s) + ω1(s))− F1(s, v(s))‖ds

)
+M

(∫ t

−∞
e−δ(t−s)‖F2(s, v(s) + ω2(s))‖ds

)
≤ML

δ
‖ω1‖∞ +Mρ2Φ

(
‖ω2‖∞ + sup

s∈R
‖v(s)‖

)
≤ML

δ
k0 +Mρ2Φ

(
k0 + sup

s∈R
‖v(s)‖

)
≤ k0,

which implies that (Γ1ω1)(t) + (Γ2ω2)(t) ∈ Ωk0 . Thus Γ maps Ωk0 into itself.
Step 3. Show that Γ1 is a contraction on Ωk0 . In fact, for any ω1(t), ω2(t) ∈ Ωk0
and t ∈ R, from (3.2) it follows that

‖[F1(s, v(s) + ω1(s))− F1(s, v(s))]− [F1(s, v(s) + ω2(s))− F1(s, v(s))]‖
≤ L‖ω1(s)− ω2(s)‖ for all s ∈ R, ω1(s), ω2(s) ∈ X.

Thus

‖(Γ1ω1)(t)− (Γ1ω2)(t)‖ ≤ML

∫ t

−∞
e−δ(t−s)‖ω1(s)− ω2(s)‖ds ≤ ML

δ
‖ω1 − ω2‖∞.

As a result
‖Γ1ω1 − Γ1ω2‖∞ ≤

ML

δ
‖ω1 − ω2‖∞.

Thus, in view of (3.4), one obtains the conclusion.
Step 4. Show the set {(Γ2ω)(t) : ω(t) ∈ Ωk0} is relatively compact in X for each
t ∈ R. Firstly, from our assumption it is clear that Γ2 is a continuous mapping
from Ωk0 to Ωk0 . Moveover, for all ω(t) ∈ Ωk0 and t ∈ R,

‖(Γ2ω)(t)‖ ≤
∥∥ ∫ t

−∞
U(t, s)F2(s, v(s) + ω(s))ds

∥∥ ≤Mσ(t)Φ
(
k0 + sup

s∈R
‖v(s)‖

)
,

in view of σ(t) ∈ C0(R,R+), one concludes that

lim
|t|→+∞

(Γ2ω)(t) = 0 uniformly for ω(t) ∈ Ωk0 .

Let t ∈ R be fixed. For given ε0 > 0, from (3.5) it follows that

(Γ2
ε0ω)(t) =

∫ t−ε0

−∞
U(t− ε0, s)F2(s, v(s) + ω(s))ds

is uniformly bounded for ω(t) ∈ Ωk0 . This, and the compactness of U(t, t − ε0)
yield that the set

{U(t, t− ε0)(Γ2
ε0ω)(t) : ω(t) ∈ Ωk0}

is relatively compact in X. On the other hand

‖(Γ2ω)(t)− U(t, t− ε0)(Γ2
ε0ω)(t)‖ ≤

∥∥∫ t

t−ε0
U(t, s)F2(s, v(s) + ω(s))ds

∥∥
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≤M
∫ t

t−ε0
e−δ(t−s)‖F2(s, v(s) + ω(s))‖ds→ 0

as ε0 → 0+, this and the total boundedness yield that the set

{(Γ2ω)(t) : ω(t) ∈ Ωk0}
is relatively compact in X for each t ∈ R.
Step 5. Consider the equicontinuity of the set {(Γ2ω)(t) : ω(t) ∈ Ωk0}. Given
ε1 > 0. In view of (3.5) there exists an η > 0 such that for all ω(t) ∈ Ωk0 and
t2 ≥ t1 with t2 − t1 < η,∥∥∫ t2

t1

U(t2, s)F2(s, v(s) + ω(s))ds
∥∥ < ε1

5
,

∥∥∫ t1

t1−η
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥ < 2ε1

5
.

Also, one can choose a k > 0 such that
2M
δ

Φ
(
k0 + sup

s∈R
‖v(s)‖

)
e−δk sup

s∈R
β(s) <

ε1

5
,

which implies that for all ω(t) ∈ Ωk0 ,∥∥∫ t1−k

−∞
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥ < ε1

5
.

In addition, from the fact that {U(t, s)}t≥s is compact implies its norm continuity,
it follows that there exists an η′ ∈ (0, η) such that for every ω(t) ∈ Ωk0 and t2 ≥ t1
with t2 − t1 < η′,∥∥∫ t1−η′

t1−k
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥ < ε1

5
.

Thus for every ω(t) ∈ Ωk0 and t2 ≥ t1 with t2 − t1 < η′,

‖(Γ2ω)(t2)− (Γ2ω)(t1)‖

=
∥∥∫ t2

−∞
U(t2, s)F2(s, v(s) + ω(s))ds−

∫ t1

−∞
U(t1, s)F2(s, v(s) + ω(s))ds

∥∥
≤
∥∥∫ t2

t1

U(t2, s)F2(s, v(s) + ω(s))ds
∥∥

+
∥∥ ∫ t1

t1−η′
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥
+
∥∥ ∫ t1−k

−∞
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥
+
∥∥ ∫ t1−η′

t1−k
[U(t2, s)− U(t1, s)]F2(s, v(s) + ω(s))ds

∥∥ < ε1,

which implies the equicontinuity of the set {(Γ2ω) : ω(t) ∈ Ωk0}.
Step 6. Show that equation (3.1) has at least one asymptotically almost automor-
phic mild solution. Firstly, the results of step 4 and step 5, together with Lemma
2.19, yields that Γ2 is compact on Ωk0 . This, together with the results of step
2 and step 3 as well as Lemma 2.20, yields that Γ has at least one fixed point
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ω(t) ∈ Ωk0 , furthermore ω(t) ∈ C0(R, X). Then, consider the coupled system of
integral equations

v(t) =
∫ t

−∞
U(t, s)F1(s, v(s))ds, t ∈ R,

ω(t) =
∫ t

−∞
U(t, s)[F1(s, v(s) + ω(s))− F1(s, v(s))]ds

+
∫ t

−∞
U(t, s)F2(s, v(s) + ω(s))ds, t ∈ R.

(3.6)

From the result of step 1, together with the above fixed point ω(t) ∈ C0(R, X), it
follows that (v(t), ω(t)) ∈ AA(R, X)×C0(R, X) is a solution to system (3.6). Thus

x(t) := v(t) + ω(t) ∈ AAA(R, X)

and it is a solution to the integral equation

x(t) =
∫ t

−∞
U(t, s)F (s, x(s))ds, t ∈ R.

Since U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s, let

x(τ) =
∫ τ

−∞
U(τ, s)F (s, x(s))ds,

then

U(t, τ)x(τ) =
∫ τ

−∞
U(t, s)F (s, x(s))ds.

Furthermore for t ≥ τ ,∫ t

τ

U(t, s)F (s, x(s))ds =
∫ t

−∞
U(t, s)F (s, x(s))ds−

∫ τ

−∞
U(t, s)F (s, x(s))ds

=x(t)− U(t, τ)x(τ).

So that

x(t) = U(t, τ)x(τ) +
∫ t

τ

U(t, s)F (s, x(s))ds for all t > τ,

which implies that x(t) is an asymptotically almost automorphic mild solution to
equation (3.1). �

Remark 3.7. Note that the condition (3.2) in (H1) of Theorem 3.6 can be easily
extended to the case of F1(t, x) being locally Lipschitz continuous:

‖F1(t, x)− F1(t, y)‖ ≤ L(r)‖X − Y ‖

for all t ∈ R and x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ r.
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4. Applications

In this section, an example illustrates the usefulness of the theoretical result
established in the preceding section. Consider the partial differential equation with
Dirichlet boundary conditions

∂u(t, ξ)
∂t

=
∂2

∂ξ2
u(t, ξ)− 2u(t, ξ) + sin

( 1
2 + cos t+ cos

√
2t

)
u(t, ξ)

+ µ sin
( 1

2 + cos t+ cos
√

2t

)
cosu(t, ξ)

+ νe−|t|u(t, ξ) sinu2(t, ξ), t ∈ R, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,

(4.1)

where µ and ν are two constants.
Take X = L2[0, π] with norm ‖ · ‖ and inner product (·, ·)2. And define A :

D(A) ⊂ X → X given by

Ax =
∂2x(ξ)
∂ξ2

− 2x

with domain

D(A) =
{
x(·) ∈ X : x′′ ∈ X,x′ ∈ X is absolutely continuous on

[0, π], x(0) = x(π) = 0
}
.

It is well known that A is self-adjoint, with compact resolvent and is the infinitesimal
generator of an analytic semigroup {T (t)}t≥0 on X satisfying

‖T (t)‖ ≤ e−3t for t > 0,

see [27]. Moreover

T (t)x =
+∞∑
n=1

e(−n2+2)t(x, yn)2yn, t ≥ 0, x ∈ X,

where yn(x) =
√

2
π sin(nx). Define a family of linear operators A(t) by D(A(t)) =

D(A),

A(t)x(ξ) =
(
A+ sin

( 1
2 + cos t+ cos

√
2t

))
x(ξ), ∀ξ ∈ [0, π], x ∈ D(A).

Then, the system

x′(t) = A(t)x(t), t > s,

x(s) = x ∈ X

has an associated evolution family {U(t, s)}t≥s onX, which can be explicitly express
by

U(t, s)x =
(
T (t− s)e

R t
s

sin

(
1

2+cos τ+cos
√

2τ

)
dτ
)
x.

Moreover,
‖U(t, s)‖ ≤ e−2(t−s) for t ≥ s.
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Note that for each t > s, the operator U(t, s) is a nuclear operator, which yields
the compactness of U(t, s) for t > s. Note also that

sin
( 1

2 + cos t+ cos
√

2t

)
∈ AA(R,R)

and it is not difficult to verify that A(t) satisfies the Acquistapace-Terreni conditions
(AT1), (AT2), and the assumptions (H2), (H3) hold with M = 1, δ = 2. Let

F1(t, x(ξ)) := µ sin
( 1

2 + cos t+ cos
√

2t

)
cosx(ξ),

F2(t, x(ξ)) := νe−|t|x(ξ) sinx2(ξ).

Then it is easy to verify that F1, F2 : R × X → X are continuous, F1(t, x) ∈
AA(R×X,X) and

‖F1(t, x)− F1(t, y)‖ ≤ µ‖x− y‖, ‖F2(t, x)‖ ≤ νe−|t|‖x‖ for all t ∈ R, x, y ∈ X,

which implies F2(t, x) ∈ C0(R×X,X) and

F (t, x) = F1(t, x) + F2(t, x) ∈ AAA(R×X,X).

Thus, (4.1) can be reformulated as the abstract problem (3.1) and assumption (H1)
holds with

L = µ, Φ(r) = r, β(t) = νe−|t|, ρ1 = 1, ρ2 ≤
ν

2
.

Then from Theorem 3.6 it follows that equation (4.1) at least has one asymptotically
almost automorphic mild solution whenever µ+ ν < 2.
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