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Abstract. In this article, we establish the Picard-Lindelöf theorem and ap-

proximating results for dynamic equations on time scale. We present a simple
proof for the existence and uniqueness of the solution. The proof is produced

by using convergence and Weierstrass M-test. Furthermore, we show that

the Lispchitz condition is not necessary for uniqueness. The existence of ε-
approximate solution is established under suitable assumptions. Moreover,

we study the approximate solution of the dynamic equation with delay by
studying the solution of the corresponding dynamic equation with piecewise

constant argument. We show that the exponential stability is preserved in

such approximations.

1. Introduction

In this article, we study the dynamic equation

x∆(t) = f(t, x(t)), x(t0) = x0, t ∈ [a, b] ∩ T, (1.1)

where ∆ is delta derivative, T is a time scale and f is a rd-continuous function
defined on ([a, b] ∩ T) × R. We prove Picard-Lindelöf theorem for (1.1) using
the assumption of rd-continuity and Lipschtiz and then establish existence of ε-
approximate solution. A solution of the above equation means a delta differentiable
function which satisfies (1.1).

The theory of time scale calculus was introduced in1988 by Stefan Hilger [24].
This new theory unifies the calculus of the theory of difference equations with
that of differential equations. It combines the analysis for integral and differen-
tial calculus with the calculus of finite differences. It gives a way to study hybrid
discrete-continuous dynamical systems and has applications in any field that re-
quires simultaneous modelling of discrete and continuous data. Hence, dynamic
equations on a time scale have a potential for applications. In the population dy-
namics, the insect population can be better modelled using time scale calculus.
The reason behind this is that they evolve continuously while in season, die out in
winter while their eggs are incubating or dormant, and then hatch in a new season,
giving rise to a non-overlapping population.
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Lots of excellent books, monographs and research papers are available in this
field majorally contributed by Martin Bohner, Allan Peterson, Lynn Erbe, Ravi
P. Agarwal, Samir H. Saker, Zhenlai Han, Qi Ru Wang, Youssef N. Raffoul and
many more, we refer to [1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 25,
31, 32, 33, 34, 37, 38, 39, 40] and references therein. The books [8, 21] present a
complete discussion on time scale calculus. A very nice survey article is written
by Agarwal et.al. [3]. For results on ordinary differential equations, we refer the
books by Shair Ahmad and Rao, Arino and Conrad [5, 7, 15], which are nice books
for qualitative theory of ordinary differential equations. A linearlization method
and topological classification for equations on time scale is discussed by Yonghui
Xia et al in [35, 36]. In the paper [14], M. Cichoń investigates a counterexample to
Peano’s Theorem on a time scale with only one right dense point.

To implement the continuous model for simulation purpose, it is essential to
convert it into a discrete model. The resulting model will be a discrete equation
which is easy to solve and implement. In this case we need to ensure that the
discrete time model preserves the qualitative properties of the continuous time
model. We can then use the continuous model without loss of functional similarity.
It will also preserve the physical and biological reality that the continuous time
model exhibits. In this work, we also consider a semilinear dynamic equation on
time scale and study its approximate solutions. We show that the approximation
preserves the exponential stability of the solution. For more details on equations
with piecewise constant arguments, we refer to [20, 30] and references therein.

The article is organized as follows: In Section 2, we give necessary definitions
and present some basic results, Section 3 is devoted to the existence of solution
and the existence of ε-approximate solution. Finally, in the last section, we discuss
the approximate solution of a semilinear dynamic equation on time scale. We also
establish the exponential stability of the solution.

2. Preliminaries

A time scale T is a nonempty closed subset of the real line R. The forward
jump operator σ(t) is defined by σ(t) = inf{s ∈ T : s > t}. The right-dense
point is defined be a point t when t < sup T and σ(t) = t. It is called right
scattered if σ(t) > t. Similarly the backward jump operator ρ(t) is defined by
ρ(t) = sup{s ∈ T : s < t}. So, a left-dense point is defined by the points such that
t > inf T and ρ(t) = t. It is called left-scattered if ρ(t) < t. We denote Tk = T\{m}
or Tk = T \ {m} if T has a left-scattered maximum or right-scattered minimum m,
respectively, otherwise Tk = Tk = T.

Definition 2.1. A function g : T→ R is called rd continuous if it is continuous at
right-dense points of T and its left-side limit exists at left-dense points.

If f is continuous at each right-dense point and each left-dense point, then f is
called continuous on T.

Definition 2.2. For a function g : T → R, t ∈ Tk, the delta derivative is defined
as a function f∆(t), such that for each ε > 0, there exists a neighbourhood U of t
with the property

|f(σ(t)− f(s))− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,
for all s ∈ U .
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Definition 2.3. The delta integral is defined as the antiderivative with respect
to the delta derivative. If F (t) has a continuous derivative f(t) = F∆(t), then∫ t
r
f(s)∆s = F (t)− F (r).

Remark 2.4. In the above definition, the integral inequality does not holds for
all time scales. For example in q-calculus the following relation is not correct:∫ b
a
Dqf(t)dqt = f(b)− f(a). For more detail we refer the readers to [8].

Definition 2.5. The set Reg = {p : T → R : p ∈ Crd(T,R), 1 + p(t)µ(t) 6= 0}
defines the set of regressive functions, where µ(t) = σ(t)− t.

For p ∈ Reg, the exponential function ep(·, t0) is defined as the unique solution of
the IVP x∆ = p(t)x, x(t0) = 1. Further Reg+ corresponds to 1 +µ(t)p(t) > 0, and
for p ∈ Reg+, ep(·, t0) > 0. Now we define the concept of ε-approximate solution
for the equation (1.1). Let Ω be any compact subset of ([a, b] ∩ T)× R.

Definition 2.6. A function x(t) is called ε-approximate solution of the equation
(1.1) if

(i) (t, x(t)) ∈ Ω, t ∈ [a, b] ∩ T.
(ii) x∆(t) ∈ C1

rd on [a, b]∩T except possibly on a finite set S (or a set of measure
zero), where x∆ may have simple discontinuities.

(iii) ‖x∆(t)− f(t, x(t))‖ ≤ ε for each t ∈ [a, b] ∩ T\S.

Lemma 2.7 (Weierstrass M-test). Suppose that {φn}n∈N is a sequence of real or
complex-valued functions defined on a set A, and that there is a sequence of positive
numbers {Mn} satisfying ∀n ≥ 1, ∀x ∈ A: |fn(x)| ≤ Mn,

∑∞
n=1Mn < ∞. Then

the series
∑∞
n=1 fn(x) converges absolutely and uniformly on A.

Lemma 2.8 ([8, 9]). Let J be an arbitrary compact subset of T and {xn}n∈N be
a sequence on J such that {xn}n∈N and {x∆

n }n∈N are uniformly bounded on J .
Then, there exists a subsequence {xnk

}nk∈N which converges uniformly on J .

Lemma 2.9 ([27]). Let {xn(t)}n∈N converge uniformly to x(t) on [a, b] ∩ T and
each xn(t) is continuous on [a, b] ∩ T. Then the function x(t) is continuous on
[a, b] ∩ T and

lim
n→∞

∫
[a,b]∩T

xn(s)∆s =
∫

[a,b]∩T
lim
n→∞

xn(s)∆s =
∫

[a,b]∩T
x(s)∆s.

Lemma 2.10 ([27]). Let {xn(t)}n∈N converge uniformly to x(t) on [a, b] ∩ T and
for each n ∈ N , xn(t) has continuous delta derivative x∆

n (t). Moreover if x∆
n (t) con-

verges uniformly to y(t), then x∆(t) = y(t), and xn(t) converges to x(t) uniformly
on [a, b] ∩ T.

The following Gronwall-Bellman inequality for time scale is established in [8].

Theorem 2.11. Let y ∈ Crd(T,R) and p ∈ Crd(T,R) such that p(t) ≥ 0, 1 +
µ(t)p(t) > 0. Then

y(t) ≤ α+
∫ t

t0

y(s)p(s)∆s

implies y(t) ≤ αep(t, t0), for t ∈ T, t ≥ t0.

Here the result still holds if α is replaced by any f ∈ Crd(T,R). For more details
see [8].
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3. Existence and uniqueness

The integral form of equation (1.1) is

x(t) = x0 +
∫

[t0,t]∩T
f(s, x(s))∆s.

Let us define D = {(t, x) : t ∈ [t0 − a, t0 + a] ∩ T, |x− x0| ≤ b}

Theorem 3.1 (Picard-Lindelöf). Let f be a function from D to R, rd-continuous
in t and Lipschitz in x with Lipschitz constant L. Furthermore, if an initial point is
not a right-dense point of T, then there exists h = min{a, bM }, such that the problem
has a unique solution in the interval [t0− h, t0 + h]∩T, where M = maxD |f(t, x)|.

Proof. We define Picard’s iterations

φ0(t) = x0

φ1(t) = x0 +
∫

[t0,t]∩T
f(s, φ0(s))∆s

. . .

φn(t) = x0 +
∫

[t0,t]∩T
f(s, φn−1(s))∆s .

It is enough to prove the result in the interval [t0, t0 + h] ∩ T. Now we prove the
above theorem in four steps.
Step 1: (Well-posedness) First we need to show that (t, φn(t)) ∈ D, when t ∈
[t0, t0 + h] ∩ T. For n = 1, |φ1(t) − x0| ≤

∫
[t0,t]∩T |f(s, φ0(s))|∆s. But since

(t, φ0(t)) ∈ D, we get continuity of f(t, φ0(t)) on D, which implies boundedness.
Hence, |φ1(t) − x0| ≤

∫
[t0,t]∩T M∆s ≤ M |t − t0| ≤ Mh ≤ b. Now assume that for

n− 1 we have |φn−1(t)− x0| ≤ b, we will prove |φn(t)− x0| ≤ b. We have

|φn(t)− x0| ≤
∫

[t0,t]∩T
|f(s, φn−1(s))|∆s.

Since (t, φn−1(t)) ∈ D, we have boundedness of f(t, φn−1(t)). Thus, we obtain

|φn(t)− x0| ≤
∫

[t0,t]∩T
M∆s ≤M |t− t0| ≤Mh ≤ b.

Hence (t, φn(t)) ∈ D for each t ∈ [t0, t0 + h] ∩ T.

Step 2: (Estimate) We want to show here that |φn(t)−φn−1(t)| ≤MLn−1 (t−t0)n

n! =
MLn−1hn(t, t0). Again we use mathematical induction to establish this result. It
is easy to verify for n = 1. For n, let us compute,

|φn(t)− φn−1(t)| ≤
∫

[t0,t]∩T
|f(s, φn−1(s))− f(s, φn−2(s))|∆s

≤ L
∫

[t0,t]∩T
|φn−1(s)− φn−2(s)|∆s

≤ L
∫

[t0,t]∩T
MLn−2hn−1(s, t0)∆s

= MLn−1hn(t, t0).
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Step 3: (Convergence) We can write φn(t) = x0 +
∑n
i=1(φi(t) − φi−1(t)). Using

the above estimate, we obtain

|φn(t)− φn−1(t)| ≤MLn−1hn(t, t0) ≤MLn−1hn(a, t0) ≤MLn−1 (a− t0)n

n!
,

hence the series
∑∞
n=1(φn(t) − φn−1(t)) converges uniformly and absolutely on

t ∈ [t0, t0 + h] ∩ T. Hence φn(t) converges absolutely and uniformly to a function
φ(t). Now taking limit on both sides of the integral equation (3.1), we obtain

φ(t) = lim
n→∞

φn(t) = x0 + lim
n→∞

∫
[t0,t]∩T

f(s, φn−1(s))∆s.

Since f is continuous as the convergence is uniform on [t0, t0+h]∩T, we can take the
limit inside the integral, which gives φ(t) = x0 +

∫
[t0,t]∩T limn→∞ f(s, φn−1(s))∆s.

Since f is Lipschitz, we get limn→∞ f(t, φn(t)) = f(t, φ(t)). Thus φ(t) satisfies
φ(t) = x0 +

∫
[t0,t]∩T f(s, φ(s))∆s.

Step 4: (Uniqueness) Let φ, ψ are two solutions. Define Φ(t) = |φ(t)− ψ(t)|. It is
easy to see here that Φ(t0) = 0. Now we have

Φ(t) ≤
∫

[t0,t]∩T
|f(s, φ(s))− f(s, ψ(s))|∆s

≤ L
∫

[t0,t]∩T
|φ(s)− ψ(s)|∆s

≤ L
∫

[t0,t]∩T
Φ(s)∆s

≤ L
∫

[t0,σ(t)]∩T
Φ(s)∆s.

The above inequality is equivalent to

Φ(t)− L
∫

[t0,σ(t)]∩T
Φ(s)∆s ≤ 0.

Hence using Gronwall-Bellman inequality, we get Φ = 0 on [t0, t0 + h] ∩ T. This
completes the proof. �

To show that in many situations the Lipschitz condition is not necessary for
uniqueness, let us consider

x∆ = f(x), x(t0) = x0,

where f : R→ R is positive and continuous for all x ∈ R. To see the uniqueness, let
us define F (t) = x0 +

∫
[t0,t]∩T

1
f(x(s))∆s. Let us denote limt→±∞ F (t) = l±. Then

F is one-to-one. Moreover F is continuously differentiable and F∆(t) > 0. This
observation implies the existence of a rd-continuously differentiable inverse from
G : (l−, l+) → R. The observation G∆(t) = 1

F∆(F−1(t)) = f(F−1(t)) = f(G(t))
yields that G is a solution of our equation. Now let us assume that H is any other
solution from (t0, x0), which gives H∆(t)

f(H(t)) = 1 = (F (H(t)))∆ for all t ∈ [a, b] ∩ T.
Hence, F (H(t)) = t + c, so t0 + c = F (H(t0)) = F (x0) = t0, which implies c = 0.
The above analysis yields F (G(t)) = F (H(t)) = t, and since F is one to one, we
obtain G = H. Hence, we achieve uniqueness without using the Lipschitz condition.
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Theorem 3.2. Let f(t, x) is rd-continuous on B0 = {(t, x) : t ∈ [t0, t0 +a]∩T, |x−
x0| ≤ b}. Let M = maxB0 |f(t, x)|, h = min{a, bM }. Then for ε > 0, there exists an
ε-approximate solution of (1.1) on [t0, t0 + h] ∩ T.

Proof. Since the function f(t, x) is rd-continuous on a compact set B0, we can claim
rd-uniform continuity on this set. Hence, for each ε > 0, there exists a δ > 0 such
that

|f(t, x)− f(s, y)| ≤ ε,
whenever |t−s| ≤ δ and |x−x0| ≤ δ, for (t, x), (s, y) ∈ B0. The interval [t0, t0+h]∩T
can be divided into n subintervals

t0 < t1 < t2 < · · · < tn = t0 + h,

where each subinterval is taken as intersection with the time scale T. It is easy to
note that max |tk − tk−1| ≤ min{δ, δM }. Now we define a function x(t) such that

x(σ(t)) =

{
x0, t = t0

x(tk−1) + (σ(t)− tk−1)f(tk−1, x(tk−1)), t ∈ (tk−1, tk] ∩ T,

for k = 1, 2, . . . , n. It is easy to verify that x(t) is rd-continuously differentiable
function on the interval [t0, t0 + h] ∩ T. Further,

|x(t)− x(s)| ≤M |t− s|, t, s ∈ [t0, t0 + h] ∩ T.
Now for t ∈ (tk−1, tk) ∩ T, it follows that |x(t) − x(tk−1)| ≤ δ. Combining all the
above arguments, we have

|x∆(t)− f(t, x(t))| = |f(tk−1, x(tk−1))− f(t, x(t))| ≤ ε,
which implies the existence of ε-approximate solution. This completes the proof. �

Remark 3.3. For x ∈ Rn, the same proof will work by replacing modulus by
Euclidean norm.

Example 3.4. Consider the following equation on T , x∆ =
√
x, x(0) = 0. If

T = R, then equation becomes x′ =
√
x, x(0) = 0, which has more than one

solution, namely x(t) = 0 and x(t) = t2

4 and combination of theses. Further when
T = Z, the equation becomes ∆x =

√
x, x(0) = 0, we have x = 0 is solution. This

suggests that Lipschitz condition is required for uniqueness. At the same time if
we drop the Lipschitz condition, then we have at least one solution. Similarly for
T = N, Cantor set etc such that µ > 0, we have unique solution. For the time
scale T = {qn : n ∈ N} ∪ {0} such that q > 0, then x∆ =

√
x, x(0) = 0 has

unique solution x = 0. So, we conclude that the condition of the Picard-Lindelöf is
sufficient but not necessary for the existence of unique solution on any time scale
T. Also the nature changes when we move from R to any other time scale.

Remark 3.5. One can also show the existence of solution of the dynamic equation
on time scale with delay. Let us consider

x∆(t) = f(t, x(t− τ)), t ∈ [a, b] ∩ T,
x(t) = h(t), t ∈ [a− τ, a) ∩ T.

(3.1)

The method is the usual method of steps. In the interval [a, a + τ ] ∩ T, one can
use Theorem 3.1 to show the existence of solutions and then proceed with other
intervals. When t ∈ [a, a + τ ] ∩ T, then t − τ ∈ [a − τ, a] ∩ T. In this case, our
equation is x∆(t) = f(t, h(t − τ)). The last equation can be solved easily. Now
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after getting the solution in the time scale interval [a, a+ τ ]∩T, one can solve it in
the interval [a+ τ, a+ 2τ ] ∩ T and so on.

4. Approximation

In this section, we suppose that sup T =∞. Now, let us consider the equations

x∆(t) = A(t)x(t),

where A(t) is n × n matrix which is continuous. Further, consider the dynamic
equation with delay (DED)

y∆(t) = A(t)y(t) + f(t, y(t− τ)), τ > 0,

with history η(t) in the interval [−τ, 0]∩T. The corresponding differential equation
with piecewise constant argument (DEPCA) is given by

z∆
h (t) = A(t)zh(t) + f(t, zh(γh(t− τ))),

with history zh(nh) = η(nh) for n = −k, . . . , 0. The step h = τ
k and k ≥ 1 is an

integer and γh(t−τ) =
[
s
h−[ τh ]

]
h, where [·] is greatest integer function. The solution

of the above problem is a function zh which is continuous on T+ = T ∩ [0,∞) and
z∆
h (t) exists for each t ∈ T+ with possible exception on kh, where one sided limit

exist and it satisfies DEPCA on each interval Ik : [kh, (k + 1)h] ∩ T.
Our aim here is to compare the solutions of DED and DEPCA. Since as h →

0, [t]h → t, uniformly on T, for 0 < h ≤ h0, it is expected that the solutions of
both equations show similar qualitative properties. In the interval Ii, the DEPCA
can be written as

z∆
h (t) = A(t)zh(t) + f(t, zh(h(i− k))),

with the same initial condition. Now we can use the variation of parameter formula
(for details, we refer to [8, 28]) to express the solution, which is

zh(t) = eA(t)(t, ih)zh(ih) +
∫

[ih,t]∩T
eA(t)(t, σ(s))f(s, zh((i− k)h))∆s.

Now taking t→ (i+ 1)h, we get

zh((i+ 1)h) = eA(t)((i+ 1)h, ih)zh(ih)

+
∫

[ih,(i+1)h]∩T
eA(t)((i+ 1)h, σ(s))f(s, zh((i− k)h))∆s.

Now we define a sequence ah(i) = zh(ih). One can easily check that it satisfies the
difference equation

ah(n+ 1) = eA(t)((i+ 1)h, ih)ah(n)

+
∫

[ih,(i+1)h]∩T
eA(t)((n+ 1)h, σ(s))f(s, ah((n− k)))∆s,

ah(n) = φ(nh),

(4.1)

for n = 0, 1, . . . , −λ ≤ −nh ≤ 0. So, we have obtained an approximation of the
original problem DED. Now we can compute few values of ah for n = 0, 1, 2.

ah(0) = φ(0),

ah(1) = eA(t)(h, 0)ah(0) +
∫

[0,h]∩T
eA(t)(h, σ(s))f(s, ah((−k)))∆s,
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and

ah(2) = eA(t)(2h, h)ah(1) +
∫

[h,2h]∩T
eA(t)(2h, σ(s))f(s, ah((1− k)))∆s

= eA(t)(2h, h)
(
eA(t)(h, 0)ah(0)

+
∫

[0,h]∩T
eA(t)(h, σ(s))f(s, ah((0− k)))∆s

)
+
∫

[h,2h]∩T
eA(t)(2h, σ(s))f(s, ah((1− k)))∆s

= eA(t)(2h, 0)φ(0) +
∫

[0,h]∩T
eA(t)(2h, σ(s))f(s, ah((0− k)))∆s

+
∫

[h,2h]∩T
eA(t)(2h, σ(s))f(s, ah((1− k)))∆s.

Hence, we obtain the relation

ah(n) = eA(t)(nh, 0)φ(0) +
n−1∑
i=0

∫
[ih,(i+1)h]∩T

eA(t)(nh, σ(s))f(s, ah((i− k)))∆s.

Using the above expressions, we get the following representation of zh(t):

zh(t) = eA(t)(t, nh)ah(n) +
∫

[nh,t]∩T
eA(t)(t, σ(s))f(s, ah((n− k)))∆s.

Substituting the value of ah(n), we obtain

zh(t) = eA(t)(t, 0)φ(0) +
n−1∑
i=0

∫
[ih,(i+1)h]∩T

eA(t)(t, σ(s))f(s, ah((i− k)))∆s

+
∫

[nh,t]∩T
eA(t)(t, σ(s))f(s, ah((n− k)))∆s,

for nh ≤ t ≤ (n + 1)h. Using the above observation, we can state the following
theorem.

Theorem 4.1. Under the assumptions of Theorem 3.1, the DEPCA with given
initial condition has solution of the form

zh(t) = eA(t)(t, 0)φ(0) +
n−1∑
i=0

∫
[ih,(i+1)h]∩T

eA(t)(t, σ(s))f(s, ah((i− k)))∆s

+
∫

[nh,t]∩T
eA(t)(t, σ(s))f(s, ah((n− k)))∆s,

(4.2)

for t ∈ T+ and the sequence ah(·) satisfies the nonlinear difference equation (4.1).

We note the importance of uniqueness of the solution. Otherwise, the approxi-
mate method with piecewise constant argument may not work.

Now we establish a connection between exponential stability of the solution of
a linear system with the approximation of the solution of DED for large t. This
implies that if the zero solution of the linear system is exponentially stable, then the
approximate solution tends to solution as t approaches infinity. Here we consider
the real delay τ and T+ = T ∩ R+. Let us assume the following:
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(A1) A(t) is regressive and rd-continuous matrix.
(A2) The fundamental matrix eA(t)(t, s) satisfies |eA(t)(t, s)| ≤ Me−λ(t−s), for

t ≥ s and M,λ are positive constants.
(A3) f : T+ × Rn → Rn satisfies f(t, 0) = 0 and

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖.

Lemma 4.2. Under the assumptions (A1)–(A3), if the zero solution of DED is
exponentially stable, then the solution satisfies

‖y(t− τ)− y(γh(t− τ))‖ ≤M∗e−λs s ≥ 2τ,

where M∗ = Me2λτ
∫

[γh(t−τ),t−τ ]∩T(‖A(s)‖ + Leλτ )∆s, which tends to zero as h
tends to zero.

Proof. We have

‖y(t− τ)− y(γh(t− τ))‖

= ‖
∫

[γh(t−τ),t−τ ]∩T
y∆(s)∆s‖

= ‖
∫

[γh(t−τ),t−τ ]∩T
(A(s)y(s) + f(s, y(s− τ)))∆s‖

≤
∫

[γh(t−τ),t−τ ]∩T
‖A(s)y(s) + f(s, y(s− τ))‖∆s

≤
∫

[γh(t−τ),t−τ ]∩T
‖A(s)y(s) + f(s, y(s− τ))− f(s, 0) + f(s, 0)‖∆s

≤
∫

[γh(t−τ),t−τ ]∩T
(‖A(s)‖‖y(s)‖+ L‖y(s− τ)‖+ ‖f(s, 0)‖)∆s

=
∫

[γh(t−τ),t−τ ]∩T
(‖A(s)‖‖y(s)‖+ L‖y(s− τ)‖)∆s.

Since solutions are exponentially stable, we have ‖y(s)‖ ≤Me−λs, and from here

‖y(t− τ)− y(γh(t− τ))‖ ≤
∫

[γh(t−τ),t−τ ]∩T
(‖A(s)‖Me−λs + LMe−λ(s−τ))∆s

≤Me−λ(t−τ−h)

∫
[γh(t−τ),t−τ ]∩T

(‖A(s)‖+ Leλτ )∆s

≤Me−λte2λτ

∫
[γh(t−τ),t−τ ]∩T

(‖A(s)‖+ Leλτ )∆s.

It is easy to see that the measure of the interval [γh(t− τ), t− τ ] ∩ T is h and the
function A(s) is regressive and rd-continuous. Therefore

e2λτ

∫
[γh(t−τ),t−τ ]∩T

(‖A(s)‖+ Leλτ )∆s→ 0, h→ 0,

which implies our result. �

Now we can use the above lemma to derive the result for approximate solution
zh(t).
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Theorem 4.3. Under the assumptions A1 − A3, if the zero solution of DED is
exponentially stable and following condition holds eλτL ≤ λ, we have that for every
h ∈ (0, h0] the following holds

y(φ)(t)−zh(t) ≤
(
v(0)+

∫
[2τ,t]∩T

LM∗∆s+w(y, h, 2τ)
∫

[0,2τ ]∩T
eλsL∆s

)
e−λ0(1, 0),

where w(y, h, 2τ) = max{‖y(s − τ) − y(γh(s − τ))‖ : 0 ≤ s ≤ 2τ} and λ0 =
λ− eλ(2h+τ)L.

Proof. We can claim that there exists h0 such that eλ(2h0+τ)L = λ. Let us define
Eh(t) = y(t)− zh(t) for t ∈ In. Taking ∆-derivative of Eh, we obtain

E∆
h (t) = y∆(t)− z∆

h (t)

= A(t)Eh(t) + f(t, y(t− τ))− f(t, zh(h(n− k)))

= A(t)Eh(t) + f(t, y(t− τ))− f(t, zh(h(n− k)))

+ f(t, y(h(n− k)))− f(t, y(h(n− k))).

The last equation is a dynamic equation in Eh and its solution can be represented
by

Eh(t) = eA(t)(t, 0)Eh(0) +
∫

[0,t]∩T
eA(t)(t, σ(s))F (s, y(s− τ), zh(s))∆s.

Taking norm on both sides of the last equation and using our assumptions, we
obtain

‖Eh(t)‖ ≤ e−λtEh(0) +
∫

[0,t]∩T
e−λ(t−σ(s))L‖Eh(γh(s− τ))‖∆s

+
∫

[0,t]∩T
e−λ(t−σ(s))L‖y(s− τ)− y(γh(s− τ))‖∆s.

Using the Lemma 4.2, we get

‖Eh(t)‖ ≤ e−λtEh(0) +
∫

[0,t]∩T
e−λ(t−σ(s))L‖Eh(γh(s− τ))‖∆s

+
∫

[0,2τ ]∩T
e−λ(t−σ(s))L‖y(s− τ)− y(γh(s− τ))‖∆s

+
∫

[2τ,t]∩T
e−λtLM∗∆s.

The above relation implies

eλt‖Eh(t)‖ ≤ Eh(0) + L

∫
[0,t]∩T

eλ(σ(s)−γh(s−τ))eλγh(s−τ)‖Eh(γh(s− τ))‖∆s

+ L

∫
[0,2τ ]∩T

eλσ(s)‖y(s− τ)− y(γh(s− τ))‖∆s+
∫

[2τ,t]∩T
LM∗∆s.

Now let us define v(t) = sups∈[−r,t] e
λs‖Eh(s)‖. Then we get

v(t) ≤ v(0) + L

∫
[0,t]∩T

eλ(σ(s)−γh(s−τ))v(s)∆s

+ L

∫
[0,2τ ]∩T

eλσ(s)‖y(s− τ)− y(γh(s− τ))‖∆s+
∫

[2τ,t]∩T
LM∗∆s.
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Applying the Gronwall-Bellman inequality, we obtain

v(t) ≤
(
v(0) + w(y, h, 2τ)

∫
[0,2τ ]∩T

eλσ(s)∆s+
∫

[2τ,t]∩T
LM∗∆s

)
ep(t, 0), (4.3)

where p(s) = Leλ(σ(s)−γh(s−τ)).
We can easily observe that σ(s)−γh(s−τ) = σ(s)−([s]h−[τ ]h) ≤ h+[τ ]h ≤ 2h+τ .

Hence, we finally get

v(t) ≤
(
v(0) + w(y, h, 2τ)

∫
[0,2τ ]∩T

eλσ(s)∆s+
∫

[2τ,t]∩T
LM∗∆s

)
eq(t, 0), (4.4)

where q = eλ(2h+τ)L− λ.
From here, it follows with q = −λ0. Moreover, since it is assumed that the zero

solution of the equation DED is exponentially stable and λ0 > 0, the above relation
implies y(φ)(t) tends to zero as t tends to infinity. Hence, the solution zh(φ)(t)
tends to zero when t → ∞. Therefore the system DEPCA is exponentially stable.
This completes the proof. �
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