\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2018 (2018), No. 51, pp. 1--13.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu}
\thanks{\copyright 2018 Texas State University.}
\vspace{8mm}}
\begin{document}
\title[\hfilneg EJDE-2018/51\hfil Qualitative analysis of dynamic equations]
{Qualitative analysis of dynamic equations on time scales}
\author[Syed Abbas \hfil EJDE-2018/51\hfilneg]
{Syed Abbas}
\address{Syed Abbas \newline
School of Basic Sciences,
Indian Institute of Technology Mandi,
Kamand (H.P.) - 175 005, India}
\email{abbas@iitmandi.ac.in}
\dedicatory{Communicated by Mokhtar Kirane}
\thanks{Submitted August 8, 2017. Published February 20, 2018.}
\subjclass[2010]{34N05, 26E70, 34A12}
\keywords{Dynamic equations; time scale calculus; Weierstrass M-test;
\hfill\break\indent uniform convergence; Picard's iteration;
$\epsilon$-approximate solution}
\begin{abstract}
In this article, we establish the Picard-Lindel\"of theorem and
approximating results for dynamic equations on time scale.
We present a simple proof for the existence and uniqueness of the
solution. The proof is produced by using convergence and Weierstrass M-test.
Furthermore, we show that the Lispchitz condition is not necessary for
uniqueness. The existence of $\epsilon$-approximate solution is established
under suitable assumptions. Moreover, we study the approximate solution
of the dynamic equation with delay by studying the solution of the
corresponding dynamic equation with piecewise constant argument.
We show that the exponential stability is preserved in such approximations.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\allowdisplaybreaks
\section{Introduction}
In this article, we study the dynamic equation
\begin{equation} \label{meq}
x^{\Delta}(t)=f(t,x(t)), \quad x(t_0)=x_0, \quad t \in [a,b]\cap \mathbb{T},
\end{equation}
where $\Delta$ is delta derivative, $\mathbb{T}$ is a time scale and $f$
is a rd-continuous function defined on $([a,b]\cap \mathbb{T}) \times \mathbb{R}$.
We prove Picard-Lindel\"of theorem for \eqref{meq} using the assumption of
rd-continuity and Lipschtiz and then establish existence of $\epsilon$-approximate
solution. A solution of the above equation means a delta differentiable
function which satisfies \eqref{meq}.
The theory of time scale calculus was introduced in1988 by Stefan Hilger
\cite{hilger}. This new theory unifies the calculus of the theory of difference
equations with that of differential equations. It combines the analysis
for integral and differential calculus with the calculus of finite differences.
It gives a way to study hybrid discrete-continuous dynamical systems and has
applications in any field that requires simultaneous modelling of discrete
and continuous data. Hence, dynamic equations on a time scale have a potential
for applications. In the population dynamics, the insect population can
be better modelled using time scale calculus. The reason behind this is
that they evolve continuously while in season, die out in winter while
their eggs are incubating or dormant, and then hatch in a new season,
giving rise to a non-overlapping population.
Lots of excellent books, monographs and research papers are available in
this field majorally contributed by Martin Bohner, Allan Peterson,
Lynn Erbe, Ravi P. Agarwal, Samir H. Saker, Zhenlai Han, Qi Ru Wang,
Youssef N. Raffoul and many more, we refer to
\cite{14,aga1,16,7,boh3,boh4,17,18,cic,15,erbe1,erbe2,erbe3,9,8,10,raf1,
sak1,sak2,12,1,3,11,2} and references therein. The books \cite{boh1,geo1}
present a complete discussion on time scale calculus. A very nice survey
article is written by Agarwal et.al. \cite{aga2}. For results on ordinary
differential equations, we refer the books by Shair Ahmad and Rao, Arino
and Conrad \cite{ahmad,4,6}, which are nice books for qualitative theory
of ordinary differential equations. A linearlization method and topological
classification for equations on time scale is discussed by Yonghui Xia et al
in \cite{xia1,xia2}. In the paper \cite{cic}, M. Cicho\'{n} investigates a
counterexample to Peano's Theorem on a time scale with only one right dense point.
To implement the continuous model for simulation purpose, it is essential
to convert it into a discrete model. The resulting model will be a
discrete equation which is easy to solve and implement. In this case we
need to ensure that the discrete time model preserves the qualitative
properties of the continuous time model. We can then use the continuous
model without loss of functional similarity. It will also preserve the
physical and biological reality that the continuous time model exhibits.
In this work, we also consider a semilinear dynamic equation on time
scale and study its approximate solutions. We show that the approximation
preserves the exponential stability of the solution. For more details on
equations with piecewise constant arguments, we refer to \cite{gopal1,moh1}
and references therein.
The article is organized as follows:
In Section 2, we give necessary definitions and present some basic results,
Section 3 is devoted to the existence of solution and the existence of
$\epsilon$-approximate solution. Finally, in the last section, we
discuss the approximate solution of a semilinear dynamic equation
on time scale. We also establish the exponential stability of the solution.
\section{Preliminaries}
A time scale $\mathbb{T}$ is a nonempty closed subset of the real line
$\mathbb{R}$. The forward jump operator $\sigma(t)$ is defined by
$\sigma(t)=\inf\{s\in \mathbb{T}: s>t\}$. The right-dense point is defined
be a point $t$ when $t < \sup \mathbb{T}$ and $\sigma(t)=t$.
It is called right scattered if $\sigma(t)>t$. Similarly the backward
jump operator $\rho(t)$ is defined by $\rho(t)=\sup\{s \in \mathbb{T}: s\inf \mathbb{T}$
and $\rho(t)=t$. It is called left-scattered if $\rho(t)0$, there exists a neighbourhood $U$ of $t$ with the property
$$
|f(\sigma(t)-f(s))-f^{\Delta}(t)(\sigma(t)-s)| \le \epsilon |\sigma(t)-s|,
$$
for all $s \in U$.
\end{definition}
\begin{definition} \label{def2.3}\rm
The delta integral is defined as the antiderivative with respect to the
delta derivative. If $F(t)$ has a continuous derivative $f(t)=F^{\Delta }(t)$, then
$\int _{r}^{t}f(s)\Delta s=F(t)-F(r)$.
\end{definition}
\begin{remark} \label{rmk2.4}\rm
In the above definition, the integral inequality does not holds for all time scales.
For example in q-calculus the following relation is not correct:
$\int_a^b D_q f(t) d_qt= f(b)-f(a)$. For more detail we refer the readers
to \cite{boh1}.
\end{remark}
\begin{definition} \label{def2.5}\rm
The set $Reg=\{p: \mathbb{T} \to R: p \in C_{rd}(\mathbb{T},\mathbb{R}), \,
1+p(t)\mu(t) \neq 0\}$ defines the set of regressive functions, where
$\mu(t)=\sigma(t)-t$.
\end{definition}
For $p \in Reg$, the exponential function $e_p(\cdot,t_0)$ is defined as
the unique solution of the IVP $x^{\Delta}=p(t)x, \ x(t_0)=1$. Further
$Reg^+$ corresponds to $1+\mu(t)p(t)>0$, and for $p \in Reg^+$, $e_p(\cdot,t_0)>0$.
Now we define the concept of $\epsilon$-approximate solution for the equation
\eqref{meq}. Let $\Omega$ be any compact subset of
$([a,b]\cap \mathbb{T}) \times \mathbb{R}$.
\begin{definition} \label{def2.6}\rm
A function $x(t)$ is called $\epsilon$-approximate solution of the equation
\eqref{meq} if
\begin{itemize}
\item[(i)] $(t,x(t)) \in \Omega, t \in [a,b]\cap \mathbb{T}$.
\item[(ii)] $x^{\Delta}(t) \in C^1_{rd}$ on $[a,b]\cap \mathbb{T}$
except possibly on a finite set $S$ (or a set of measure zero),
where $x^{\Delta}$ may have simple discontinuities.
\item[(iii)] $\|x^{\Delta}(t)-f(t,x(t))\| \le \epsilon$ for each
$t \in [a,b]\cap \mathbb{T}\backslash S$.
\end{itemize}
\end{definition}
\begin{lemma}[Weierstrass M-test] \label{lem2.7}
Suppose that $\{\phi_n\}_{n \in N}$ is a sequence of real or complex-valued
functions defined on a set A, and that there is a sequence of positive numbers
$\{M_n\}$ satisfying
$\forall n\geq 1$, $\forall x\in A$:
$|f_{n}(x)|\leq M_{n}, \sum _{{n=1}}^{{\infty }}M_{n}<\infty$.
Then the series $\sum _{{n=1}}^{{\infty }}f_{n}(x)$ converges absolutely
and uniformly on $A$.
\end{lemma}
\begin{lemma}[\cite{boh1,boh2}] \label{lem2.8}
Let $J$ be an arbitrary compact subset of $T$ and $\{x_n\}_{n \in N}$ be a
sequence on $J$ such that $\{x_n\}_{n \in N}$ and $\{x_n^{\Delta}\}_{n \in N}$
are uniformly bounded on $J$. Then, there exists a subsequence
$\{x_{n_k}\}_{n_k \in N}$ which converges uniformly on $J$.
\end{lemma}
\begin{lemma}[\cite{li1}] \label{lem2.9}
Let $\{x_n(t)\}_{n \in N}$ converge uniformly to $x(t)$ on $[a,b]\cap T$
and each $x_n(t)$ is continuous on $[a,b]\cap \mathbb{T}$.
Then the function $x(t)$ is continuous on $[a,b]\cap \mathbb{T}$ and
$$
\lim_{n \to \infty} \int_{[a,b]\cap \mathbb{T}} x_n(s)\Delta s
=\int_{[a,b]\cap \mathbb{T}} \lim_{n \to \infty}x_n(s)\Delta s
=\int_{[a,b]\cap \mathbb{T}} x(s)\Delta s.
$$
\end{lemma}
\begin{lemma}[\cite{li1}] \label{lem2.10}
Let $\{x_n(t)\}_{n \in N}$ converge uniformly to $x(t)$ on $[a,b]\cap T$
and for each $n\in N$, $x_n(t)$ has continuous delta derivative $x_n^{\Delta}(t)$.
Moreover if $x_n^{\Delta}(t)$ converges uniformly to $y(t)$,
then $x^{\Delta}(t)=y(t)$, and $x_n(t)$ converges to $x(t)$ uniformly on
$[a,b]\cap \mathbb{T}$.
\end{lemma}
The following Gronwall-Bellman inequality for time scale is established
in \cite{boh1}.
\begin{theorem} \label{them2.11}
Let $y \in C_{rd}(\mathbb{T},\mathbb{R})$ and $p\in C_{rd}(\mathbb{T},\mathbb{R})$
such that $p(t)\ge 0, \ 1+\mu(t)p(t)>0$. Then
$$
y(t)\le \alpha+\int^t_{t_0}y(s)p(s)\Delta s
$$
implies
$y(t)\le \alpha e_p(t,t_0)$, for $t \in \mathbb{T}, \ t \ge t_0$.
\end{theorem}
Here the result still holds if $\alpha$ is replaced by any
$f \in C_{rd}(\mathbb{T},\mathbb{R})$. For more details see \cite{boh1}.
\section{Existence and uniqueness}
The integral form of equation \eqref{meq} is
$$
x(t)=x_0+\int_{[t_0,t]\cap \mathbb{T}} f(s,x(s))\Delta s.
$$
Let us define $D=\{(t,x): t \in [t_0-a, t_0+a]\cap \mathbb{T}, \, |x-x_0| \le b\}$
\begin{theorem}[Picard-Lindel\"of] \label{thm3.1} % mthm
Let $f$ be a function from $D$ to $\mathbb{R}$, rd-continuous in $t$
and Lipschitz in $x$ with Lipschitz constant $L$. Furthermore, if an
initial point is not a right-dense point of $\mathbb{T}$,
then there exists $h=\min\{a, \frac{b}{M}\}$, such that the problem has a
unique solution in the interval $[t_0-h,t_0+h]\cap \mathbb{T}$,
where $M=\max_{D}|f(t,x)|$.
\end{theorem}
\begin{proof}
We define Picard's iterations
\begin{gather*}
\phi_0(t)= x_0 \\
\phi_1(t)= x_0+\int_{[t_0,t]\cap \mathbb{T}} f(s,\phi_0(s))\Delta s \\
\dots \\
\phi_n(t)= x_0+\int_{[t_0,t]\cap \mathbb{T}} f(s,\phi_{n-1}(s))\Delta s\,.
\end{gather*}
It is enough to prove the result in the interval $[t_0,t_0+h]\cap \mathbb{T}$.
Now we prove the above theorem in four steps.
\smallskip
\noindent\textbf{Step 1:} (Well-posedness)
First we need to show that $(t, \phi_n(t)) \in D$, when
$t\in [t_0,t_0+h]\cap \mathbb{T}$. For $n=1$,
$|\phi_1(t)-x_0| \le \int_{[t_0,t]\cap \mathbb{T}} |f(s,\phi_0(s))|\Delta s$.
But since $(t,\phi_0(t)) \in D$, we get continuity of $f(t,\phi_0(t))$ on $D$,
which implies boundedness. Hence,
$|\phi_1(t)-x_0| \le \int_{[t_0,t]\cap \mathbb{T}} M \Delta s
\le M |t-t_0| \le Mh \le b$. Now assume that for $n-1$ we have
$|\phi_{n-1}(t)-x_0| \le b$, we will prove $|\phi_n(t)-x_0| \le b$. We have
$$
|\phi_n(t)-x_0| \le \int_{[t_0,t]\cap \mathbb{T}} |f(s,\phi_{n-1}(s))|\Delta s.
$$
Since $(t, \phi_{n-1}(t)) \in D$, we have boundedness of $f(t, \phi_{n-1}(t))$.
Thus, we obtain
$$
|\phi_n(t)-x_0| \le \int_{[t_0,t]\cap \mathbb{T}} M\Delta s
\le M|t-t_0| \le Mh \le b.
$$
Hence $(t, \phi_{n}(t)) \in D$ for each $t \in [t_0,t_0+h]\cap \mathbb{T}$.
\smallskip
\noindent\textbf{Step 2:} (Estimate)
We want to show here that $|\phi_n(t)-\phi_{n-1}(t)|
\le M L^{n-1} \frac{(t-t_0)^n}{n!}=M L^{n-1}h_n(t,t_0)$.
Again we use mathematical induction to establish this result.
It is easy to verify for $n=1$. For $n$, let us compute,
\begin{align*}
|\phi_n(t)-\phi_{n-1}(t)|
&\le \int_{[t_0,t]\cap \mathbb{T}} |f(s, \phi_{n-1}(s))-f(s,\phi_{n-2}(s))|\Delta s \\
& \le L \int_{[t_0,t]\cap \mathbb{T}} |\phi_{n-1}(s)-\phi_{n-2}(s)|\Delta s \\
& \le L \int_{[t_0,t]\cap \mathbb{T}} ML^{n-2}h_{n-1}(s,t_0)\Delta s \\
& = M L^{n-1}h_n(t,t_0).
\end{align*}
\smallskip
\noindent\textbf{Step 3:} (Convergence)
We can write $\phi_n(t)=x_0+\sum_{i=1}^n (\phi_i(t)-\phi_{i-1}(t))$.
Using the above estimate, we obtain
$$
|\phi_n(t)-\phi_{n-1}(t)| \le M L^{n-1}h_n(t,t_0)
\le M L^{n-1}h_n(a,t_0) \le M L^{n-1}\frac{(a-t_0)^n}{n!},
$$
hence the series $\sum_{n=1}^{\infty}(\phi_n(t)-\phi_{n-1}(t))$ converges
uniformly and absolutely on $t \in [t_0,t_0+h]\cap \mathbb{T}$.
Hence $\phi_n(t)$ converges absolutely and uniformly to a function $\phi(t)$.
Now taking limit on both sides of the integral equation (3.1), we obtain
$$
\phi(t)=\lim_{n \to \infty}\phi_n(t)=x_0+\lim_{n \to \infty}\int_{[t_0,t]
\cap \mathbb{T}} f(s,\phi_{n-1}(s))\Delta s.
$$
Since $f$ is continuous as the convergence is uniform on
$[t_0,t_0+h]\cap \mathbb{T}$, we can take the limit inside the integral,
which gives $\phi(t)=x_0+\int_{[t_0,t]\cap \mathbb{T}}
\lim_{n \to \infty}f(s,\phi_{n-1}(s))\Delta s$. Since $f$ is Lipschitz,
we get $\lim_{n \to \infty}f(t,\phi_{n}(t))=f(t,\phi(t))$. Thus
$\phi(t)$ satisfies $\phi(t)=x_0+\int_{[t_0,t]\cap \mathbb{T}} f(s,\phi(s))\Delta s$.
\smallskip
\noindent\textbf{Step 4:} (Uniqueness)
Let $\phi,\psi$ are two solutions. Define $\Phi(t)=|\phi(t)-\psi(t)|$.
It is easy to see here that $\Phi(t_0)=0$. Now we have
\begin{align*}
\Phi(t) &\le \int_{[t_0,t]\cap \mathbb{T}} |f(s,\phi(s))-f(s,\psi(s))|\Delta s \\
&\le L \int_{[t_0,t]\cap \mathbb{T}} |\phi(s)-\psi(s)|\Delta s \\
&\le L \int_{[t_0,t]\cap \mathbb{T}} \Phi(s)\Delta s \\
&\le L \int_{[t_0,\sigma(t)]\cap \mathbb{T}} \Phi(s)\Delta s.
\end{align*}
The above inequality is equivalent to
$$
\Phi(t)-L\int_{[t_0,\sigma(t)]\cap \mathbb{T}} \Phi(s)\Delta s \le 0.
$$
Hence using Gronwall-Bellman inequality, we get $\Phi=0$ on
$[t_0,t_0+h]\cap \mathbb{T}$. This completes the proof.
\end{proof}
To show that in many situations the Lipschitz condition is not necessary
for uniqueness, let us consider
$$
x^{\Delta}=f(x), \ x(t_0)=x_0,
$$
where $f:\mathbb{R} \to \mathbb{R}$ is positive and continuous for all
$x\in \mathbb{R}$. To see the uniqueness, let us define
$F(t)=x_0+\int_{[t_0,t]\cap \mathbb{T}} \frac{1}{f(x(s))}\Delta s$.
Let us denote $\lim_{t \to \pm \infty} F(t)=l_{\pm}$.
Then $F$ is one-to-one. Moreover $F$ is continuously differentiable
and $F^{\Delta}(t) >0$. This observation implies the existence of a
rd-continuously differentiable inverse from $G:(l_{-}, l_{+}) \to \mathbb{R}$.
The observation $G^{\Delta}(t)=\frac{1}{F^{\Delta}(F^{-1}(t))}=f(F^{-1}(t))=f(G(t))$
yields that $G$ is a solution of our equation. Now let us assume that $H$
is any other solution from $(t_0,x_0)$, which gives
$\frac{H^{\Delta}(t)}{f(H(t))}=1=(F(H(t)))^{\Delta}$ for all
$t\in [a,b]\cap \mathbb{T}$. Hence, $F(H(t))=t+c$, so
$t_0+c=F(H(t_0))=F(x_0)=t_0$, which implies $c=0$.
The above analysis yields $F(G(t))=F(H(t))=t$, and since $F$ is one to one,
we obtain $G=H$. Hence, we achieve uniqueness without using the
Lipschitz condition.
\begin{theorem} \label{thm3.2}
Let $f(t,x)$ is rd-continuous on
$B_0=\{(t,x): t \in [t_0,t_0+a]\cap \mathbb{T}, \, |x-x_0| \le b\}$.
Let $M=\max_{B_0}|f(t,x)|, h=\min\{a, \frac{b}{M}\}$. Then for $\epsilon>0$,
there exists an $\epsilon$-approximate solution of \eqref{meq} on
$[t_0,t_0+h]\cap \mathbb{T}$.
\end{theorem}
\begin{proof}
Since the function $f(t,x)$ is rd-continuous on a compact set $B_0$,
we can claim rd-uniform continuity on this set. Hence, for each $\epsilon>0$,
there exists a $\delta>0$ such that
$$
|f(t,x)-f(s,y)| \le \epsilon,
$$
whenever $|t-s| \le \delta$ and $|x-x_0| \le \delta$, for $(t,x), (s,y) \in B_0$.
The interval $[t_0, t_0+h] \cap \mathbb{T}$ can be divided into $n$ subintervals
$$
t_0 0$, we have unique solution.
For the time scale $\mathbb{T}=\{q^n: n \in \mathbb{N}\}\cup \{0\}$ such that
$q>0$, then $x^{\Delta}=\sqrt{x}, \ x(0)=0$ has unique solution $x=0$.
So, we conclude that the condition of the Picard-Lindel\"of is sufficient
but not necessary for the existence of unique solution on any time scale
$\mathbb{T}$. Also the nature changes when we move from $\mathbb{R}$
to any other time scale.
\end{example}
\begin{remark} \label{rmk3.5}\rm
One can also show the existence of solution of the dynamic equation on
time scale with delay. Let us consider
\begin{equation} \label{dmeq}
\begin{aligned}
x^{\Delta}(t) &= f(t,x(t-\tau)), \quad t \in [a, b]\cap \mathbb{T},\\
x(t)&= h(t), \quad t \in [a-\tau, a)\cap \mathbb{T}.
\end{aligned}
\end{equation}
The method is the usual method of steps. In the interval
$[a,a+\tau]\cap \mathbb{T}$, one can use Theorem \ref{thm3.1}
to show the existence of solutions and then proceed with other intervals.
When $t \in [a,a+\tau]\cap \mathbb{T}$, then
$t-\tau \in [a-\tau,a]\cap \mathbb{T}$. In this case, our equation is
$x^{\Delta}(t)= f(t,h(t-\tau))$. The last equation can be solved easily.
Now after getting the solution in the time scale interval
$[a,a+\tau]\cap \mathbb{T}$, one can solve it in the interval
$[a+\tau,a+2\tau]\cap \mathbb{T}$ and so on.
\end{remark}
\section{Approximation}
In this section, we suppose that $\sup\mathbb{T}=\infty$. Now, let us
consider the equations
$$
x^{\Delta}(t)=A(t)x(t),
$$
where $A(t)$ is $n \times n$ matrix which is continuous. Further, consider
the dynamic equation with delay (DED)
$$
y^{\Delta}(t)=A(t)y(t)+f(t,y(t-\tau)), \quad \tau>0,
$$
with history $\eta(t)$ in the interval $[-\tau,0]\cap \mathbb{T}$.
The corresponding differential equation with piecewise constant argument
(DEPCA) is given by
$$
z_h^{\Delta}(t)=A(t)z_h(t)+f(t,z_h(\gamma_h(t-\tau))),
$$
with history $z_h(nh)=\eta(nh)$ for $n=-k,\dots,0$. The step
$h=\frac{\tau}{k}$ and $k \ge 1$ is an integer and
$\gamma_h(t-\tau)=\big[\frac{s}{h}-[\frac{\tau}{h}]\big]h$,
where $[\cdot]$ is greatest integer function.
The solution of the above problem is a function $z_h$ which is
continuous on $\mathbb{T}^+=\mathbb{T} \cap [0,\infty)$ and
$z_h^{\Delta}(t)$ exists for each $t\in \mathbb{T}^+$ with possible exception on
$kh$, where one sided limit exist and it satisfies DEPCA on each interval
$I_k:[kh, (k+1)h]\cap \mathbb{T}$.
Our aim here is to compare the solutions of DED and DEPCA. Since as
$h \to 0, \ [t]_h \to t$, uniformly on $\mathbb{T}$, for $00$,
the above relation implies $y(\phi)(t)$ tends to zero as $t$ tends to infinity.
Hence, the solution $z_h(\phi)(t)$ tends to zero when $t \to \infty$.
Therefore the system DEPCA is exponentially stable. This completes the proof.
\end{proof}
\subsection*{Acknowledgement}
We are thankful to the anonymous reviewers and editor for their constructive
comments and suggestions, which helped us to improve the manuscript considerably.
\begin{thebibliography}{9}
\bibitem{14} R. P. Agarwal, R. R. Mahmoud, S. H. Saker, C. Tunc;
\emph{New generalizations of Nemeth-Mohapatra type inequalities on time scales},
Acta Mathematica Hungarica, 152 (2017), pp. 383-403.
\bibitem{aga1} R. P. Agarwal, M. Bohner;
\emph{Basic calculus on time scales and some of its applications},
Results Math., 35 (1999), pp. 3-22.
\bibitem{aga2} R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson;
\emph{Dynamic equations on time scales: a survey},
J. Comput. Appl. Math. 141 (2002), no. 1-2, pp. 1-26.
\bibitem{16} H. A. Agwa, Ahmed M. M. Khodier, Heba M. Arafa;
\emph{New oscillation results of second order mixed nonlinear neutral
dynamic equations with damping on time scales},
J. Ana. Num. Theor. 5 No:2 (2017), pp. 137-145.
\bibitem{ahmad} S. Ahmad, R .M. Rao;
\emph{Theory of ordinary differential equations with applications in biology
and engineering}. Affiliated East-West Press Pvt. Ltd., New Delhi, 1999.
viii+335, ISBN: 81-85938-94-6.
\bibitem{7} D. R. Anderson, R. J. Krueger, A. Peterson;
\emph{Delay dynamic equations with stability}, Advances in Difference Equations,
Volume 2006, Article ID 94051, (2006), pp. 1-19.
\bibitem{4} J. Arino;
\emph{Fundamental theory of ordinary differential equations}, Lecture Notes,
Department of Mathematics University of Manitoba Fall 2006.
\bibitem{boh1} M. Bohner, A. Peterson;
\emph{Dynamic equations on time scales: An introduction with applications}.
Birkhauser Boston, Inc., Boston, MA, 2001, ISBN: 0-8176-4225-0.
\bibitem{boh2} M. Bohner, G. Guseinov, A. Peterson;
\emph{Introduction to the time scales calculus: Advances in dynamic equations
on time scales}, 1-15, Birkhauser Boston, Boston, MA, 2003.
\bibitem{boh3} M. Bohner, L. Erbe, A. Peterson;
\emph{Oscillation for nonlinear second order dynamic equations on a time scale},
J. Math. Anal. Appl. 301 (2005), no. 2, pp. 491-507.
\bibitem{boh4} M. Bohner, A. Peterson;
\emph{First and second order linear dynamic equations on time Scales},
J. Differ. Eqns. Appl., 7 (2001), pp. 767-792.
\bibitem{17} Y. K. Chang, W. T. Li;
\emph{Existence results for second-order dynamic inclusion with m-point boundary
value conditions on time scales}, Appl. Math. Lett. 20 (2007), no. 8, pp. 885-891.
\bibitem{18} Y. K. Chang, W. T. Li;
\emph{On boundary value problems of second order perturbed dynamic inclusions
on time scales}, Nonlinear Anal. 67 (2007), no. 2, pp. 633-640.
\bibitem{cic} M. Cicho\'on;
\emph{A note on Peano’s Theorem on time scales},
Applied Mathematics Letters., 23(10), (2010), pp. 1310-1313.
\bibitem{6} B. P. Conrad;
\emph{Ordinary Differential Equations: A Systems Approach}, November 24, 2010.
\bibitem{15} A. Dogan;
\emph{On the existence of positive solutions of the p-Laplacian dynamic
equations on time scales}, Math. Meth. Appl. Sci. 40 (2017), pp. 4385-4399.
\bibitem{erbe1} L. Erbe, T. S. Hassan, A. Peterson;
\emph{Oscillation criteria for forced second-order functional dynamic equations
with mixed nonlinearities on time scales}, Adv. Dyn. Syst. Appl. 5 (2010), no. 1,
pp. 61-73.
\bibitem{erbe2} L. Erbe, T. S. Hassan, A. Peterson;
\emph{Oscillation of third order functional dynamic equations with mixed arguments
on time scales}, J. Appl. Math. Comput. 34 (2010), no. 1-2, pp. 353-371.
\bibitem{erbe3} L. Erbe, T. S. Hassan, A. Peterson;
\emph{Oscillation of third order nonlinear functional dynamic equations on time
scales}, Differ. Equ. Dyn. Syst. 18 (2010), no. 1-2, pp. 199-227.
\bibitem{gopal1} K. Gopalsamy, M. R. S. Kulenovi\'c, G. Ladas;
\emph{On a logistic equation with piecewise constant arguments},
Differential Integral Equations 4 (1991), no. 1, pp. 215-223.
\bibitem{geo1} Svetlin G. Georgiev;
\emph{Fractional dynamic calculus and fractional dynamic equations on time scales},
Springer, USAM, 2018, ISBN 978-3-319-73954-0.
\bibitem{9} Z. He;
\emph{Double poisitive solutions of three point boundary value problems for
p-Laplacian dynamic equtions on time scales},
Journal of Computational and Applied Mathematics, 182
(2005), pp. 304-315.
\bibitem{8} R. J. Higgins;
\emph{Oscillation Theory of Dynamic Equations on time scales},
University of Nebraska at Lincoln, May, 2008.
\bibitem{hilger} S. Hilger;
\emph{Ein Makettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten}.
Universität Wurzburg, 1998.
\bibitem{10} M. Hu, H. Lv;
\emph{Almost periodic solutions of a single-species system with feedback
control on time scales}, Advances in Difference Equations, (2013), 2013:196,
pp. 1-14.
\bibitem{kau1} E. R. Kaufmann, Y. N. Raffoul;
\emph{Positive solutions for a nonlinear functional dynamic equation on a
time scale}, Nonlinear Anal. 62 (2005), no. 7, pp. 1267-1276.
\bibitem{li1} Y. Li, C. Wang;
\emph{Uniformly almost periodic functions and almost periodic solutions
to dynamic equations on time scales}, Abstr. Appl. Anal. 2011, Art. ID 341520,
pp. 1-22.
\bibitem{lak} V. Laksmikantham, N. Shahzad, S. Sivasundaram;
\emph{Nonlinear variation of parameters formula for dynamical systems on
measure chains}, Dynam. Contin. Discrete Impuls. Systems, 1(2) (1995), pp. 255-265.
\bibitem{5} W. Lin;
\emph{Global existence theory and chaos control of fractional differential
equations}, Journal of Mathematical Analysis and Applications,
332 (2007), pp. 709-726.
\bibitem{moh1} S. Mohamad, K. Gopalsamy;
\emph{Exponential stability of continuous-time and discrete-time cellular
neural networks with delays}, Appl. Math. Comput. 135 (2003), no. 1, pp. 17-38.
\bibitem{raf1} Y. N. Raffoul;
\emph{Necessary and sufficient conditions for stability of Volterra integro-dynamic
equation on time scales}, Arch. Math. (Brno) 52 (2016), no. 1, pp. 21-33.
\bibitem{sak1} S. H. Saker, D. O'Regan, R. P. Agarwal;
\emph{Some new dynamic inequalities on discrete time scales},
Dynam. Systems Appl. 24 (2015), no. 1-2, pp. 113-128.
\bibitem{sak2} S. H. Saker, R. P. Agarwal, D. O'Regan;
\emph{Higher order dynamic inequalities on time scales},
Math. Inequal. Appl. 17 (2014), no. 2, pp 461-472.
\bibitem{12} C. Song, C. Xiao;
\emph{Positive solutions for p-Laplacian functional dynamic equations
on time scales}, Nonlinear Analysis: TMA, 66, 9, (2007), pp. 1989-1998.
\bibitem{xia1} Y. H. Xia, J. Li, P. J. Y. Wong;
\emph{On the topological classification of dynamic equations on time scales},
Nonlinear Analysis: RWA, 14 (2013), no. 6, pp. 2231-2248.
\bibitem{xia2} Y. H. Xia, J. Cao, M. Han;
\emph{A new analytical method for the linearization of dynamic equation on
measure chains}, J. Differential Equations, 235 (2007), no. 2, pp. 527-543.
\bibitem{1} L. Yang, Y. Liao, Y. Li;
\emph{Existence and exponential stability of periodic solutrions for a class
of Hamiltonian systems on time scales},
Advances in Difference Equations, (2013), 2013:180, pp. 1-10.
\bibitem{3} X. Yang, Y. Liu;
\emph{Picard iterative processes for initial value problems of singular
fractional differential equations},
Advances in Difference Equations, (2014), 2014:102, pp. 1-17.
\bibitem{11} L. Yang, Y. Liao, Y. Li;
\emph{Existence and exponential stability of periodic solutions for a class
of Hamiltonian systems on time scales}, Advances in Difference Equations,
(2013), 2013:180, pp. 1-10.
\bibitem{2} X. Zhang, C. Zhu;
\emph{Periodic boundary value problems for first order dynamic equations
on time scales}, Advances in Difference Equations, (2012), 2012:76, pp. 1-16.
\end{thebibliography}
\end{document}