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TWO-POINT BOUNDARY PROBLEM FOR MODELING THE
JET FLOW OF THE ANTARCTIC CIRCUMPOLAR CURRENT

KATERYNA MARYNETS

Communicated by Adrian Constantin

Abstract. Using a functional-analytic approach for two-point boundary value
problems, for a large class of oceanic vorticities, we establish the existence of

solutions to a model for the jet flows of the Antarctic circumpolar current
with no azimuthal variations. In our approach we rely on the stereographic

projection to pass from spherical to planar coordinates.

1. Introduction

This article studies the flow of the Antarctic circumpolar current (ACC), one
of the strongest and largest currents in the oceans. Because the scales that are
relevant, we regard the ACC as a gyre flow – a large ocean flow driven by the
prevailing wind pattern and the forces created by Earth’s rotation, whose center
is located on the land mass of Antarctica. The ACC encircles the Southern ice-
covered continent, being with an overall length of about 24000 km the longest
oceanic current, flowing clockwise from west to east around Antarctica between
latitudes 45◦S and 55◦S, where there are no land masses to interfere with this
continuous stretch of water. Relatively slow, the ACC extends from the sea surface
to depths of 2000-4000 m reaching, unlike other major currents, from the surface to
the bottom of the ocean. Its width exceeds at places 2000 km and overall the ACC
has a very large volume transport (up to 150 times the volume of water flowing in
all of the world’s rivers), isolating Antarctica with a ring of cold water and being to
a large extent responsible for Antarctic permanent glaciation. The ACC plays an
important role in the global climate, being the major means of exchange of water
between the three great ocean basins (Atlantic, Indian and Pacific). The ACC
is composed of a number of high-speed coherent but narrow jets (about 40–50km
wide, with typical speeds exceeding 1 m/s), separated by zones of low-speed flow
(with speeds less than 20 cm/s), and remains one of the most poorly represented
components of global climate models (see the discussion in [6]). Many observations
of the ACC flow were gathered but the quest for realistic models is ongoing. With
regard to the large-scale dynamics of the ACC, the presence of surface waves is not
of relevance, even though the study of wave-current interactions in the Southern
Ocean is an active area of research (see [10]), especially since large waves (with
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heights of 35 m) are frequently encountered (see the data in [29]). We point out
that the Arctic and Antarctic regions have a quite different geography: the Arctic is
a semi-enclosed ocean, almost completely surrounded by land, while the Antarctic
region is almost a geographic opposite of the Arctic, being a land mass surrounded
by an ocean. We refer to [4] for a discussion of arctic gyres.

In this article we model the jets of the ACC using a recent model for gyres
[9], and, along the lines of the considerations pursued in [25, 26], considering the
setting of flows that are uniform in the azimuthal direction. This physically relevant
assumption has the consequence that the elliptic partial differential equation that
governs the large-scale motion in [9] in spherical coordinates reduces to a second-
order ordinary differential equation after suitable transformations which involve the
stereographic projection. T his leads us to two-point boundary-value problem with
Dirichlet boundary conditions. We investigate the existence of solutions for a larger
class of oceanic vorticities than those studied in [25, 26].

2. Preliminaries

In this section we briefly describe the main features of gyre flows and we also
explain how these considerations apply to the specific case of the ACC.

A gyre flow extends over very large ocean areas (measured in thousands of km2)
and has negligible vertical speeds, with the ratio of vertical speed to either of the
horizontal speed components typically about 10−3, so that we may realistically re-
gard ocean gyres as shallow water flows on a rotating sphere [9]. Consider spherical
coordinates, with θ ∈ [0, π) the polar angle (with θ = 0 corresponding to the North
Pole) and ϕ ∈ [0, 2π) the angle of longitude (or azimuthal angle), see Figure 1. We
recall that the Earth is rotating eastwards around the polar axis, turning counter-
clockwise if viewed from the North Pole star Polaris, with angular speed of about
7.29 ×10−5 radians per second (so that the Earth rotates once in about 24 hours);
the radius of the practically spherical Earth being about 6378 km.

We denote by (u′, v′, w′) the velocity field in physical variables. If (er, eθ, eϕ) are
the unit vectors associated with a fixed point P on the rotating sphere, where er
points upwards, eϕ points from west to east, and eθ from north to south, then the
Euler equation and the equation for the mass conservation are( ∂

∂t′
+ u′

∂

∂r′
+
v′

r′
∂

∂θ′
+

w′

r′ sin θ
∂

∂

)
(u′, v′, w′)

+
1
r′
(
− v′2 − w′2, u′v′ − w′2 cot θ, u′w′ + v′w′ cot θ

)
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= − 1
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r′ sin θ

∂

∂θ
(v′ sin θ) +

1
r′ sin θ

∂w′
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= 0, (2.2)

respectively, where p′(r′, θ, ϕ) is the pressure in the fluid, ρ′ is the (constant) density
and (F ′r′ , F

′
θ, F

′
ϕ) = (−g′, 0, 0) is the body–force vector, while g′ ≈ 9.81ms−1 is the

(constant) gravitational acceleration of the Earth and Ω′ ≈ 7.29× 10−5 rad s−1 is
the constant rate of rotation of the Earth around the polar axis.
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Figure 1. Azimuthal and polar spherical coordinates ϕ and θ
of a point P on the spherical surface of the Earth: θ = 0 and
θ = π correspond to the North and South Pole, respectively, while
θ = π/2 corresponds to the Equator.

By defining a suitable length scale H ′ as the average depth of the ocean (with
H ′ ≈ 4km for the Southern Ocean) and the speed scale c′ =

√
g′H ′, the original

physical variables can be transformed as

z′ = H ′z, (u′, v′, w′) = c′(ku, v, w), p′ = ρ′c′2p,

where k is the scaling factor, associated with the vertical component of the velocity.
Typically, the ratio of vertical to horizontal speed is less than 10−4 (see [9]).

On setting ε = H ′/R′, where R′ ≈ 6378 km is the radius of the Earth, the
equations (2.1), (2.2) for a steady flow become(k

ε
u
∂
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+

v

1 + εz

∂

∂θ
+

w

(1 + εz) sin θ
∂
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+
1

1 + εz
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+ 2
Ω′R′

c′
(−w sin θ,−w cos θ, ku sin θ cos θ, 0)

− (1 + εz)
(Ω′R′

c′
)2(sin2 θ, sin θ cos θ, 0)

= −
(1
ε

∂p
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,

1
1 + εz

∂p

∂θ
,

1
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)
+
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(2.3)

k

ε(1 + εz)2

∂

∂z
{(1 + εz)2u}+

1
(1 + εz) sin θ

{ ∂
∂θ

(v sin θ) +
∂w

∂ϕ

}
= 0. (2.4)

The scaling factor k is taken equal to ε2 (see the discussion in [9]). Define

P = p+
H ′g′

c′2
z,
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to obtain the following form of the governing equations:(
εu
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+

v

1 + εz
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+
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(1 + εz) sin θ
∂
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)
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+
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1
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and
ε
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∂

∂z
{(1 + εz)2u}+

1
(1 + εz) sin θ

{ ∂
∂θ

(v sin θ) +
∂w
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= 0, (2.6)

where ω = Ω′R′

c′ is the non-dimensional form of the Coriolis parameter.
The leading-order problem in ε is obtained in the limit ε → 0, being therefore

given by

∂Π
∂z

= 0, (2.7)(
v
∂

∂θ
+

w

sin θ
∂

∂ϕ

)
v − w2 cot θ − 2ωw cos θ = −∂Π

∂θ
, (2.8)(

v
∂

∂θ
+

w

sin θ
∂

∂ϕ

)
w + vw cot θ + 2ωv cos θ = − 1

sin θ
∂Π
∂ϕ

, (2.9)

∂

∂θ
(v sin θ) +

∂w

∂ϕ
= 0, (2.10)

where

Π = P +
1
4
ω2 cos 2θ.

Using (2.10) one can introduce the stream function ψ by

v =
1

sin θ
ψϕ, w = −ψθ. (2.11)

The compatibility confirm generated by the elimination of Π from (2.7)–(2.9)
yields the vorticity equation

ψϕ

( 1
sin2 θ

ψϕϕ + ψϕ cot θ + ψθθ − 2ω cos θ
)
θ

− ψθ
( 1

sin2 θ
ψϕϕ + ψϕ cot θ + ψθθ − 2ω cos θ

)
ϕ

= 0.
(2.12)

Here the vorticity in the flow, at leading order, expressed in spherical coordinates,
is given by the expression

1
sin2 θ

ψϕϕ + ψϕ cot θ + ψθθ.

Defining
Ψ(θ, ϕ) = ω cos θ + ψ(θ, ϕ),
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as the vorticity of the underlying motion of the ocean (relative to the Earth’s surface
and not driven by the rotation of the Earth), equation (2.12) then becomes

(Ψ− ω cos θ)ϕ
( 1

sin2 θ
ψϕϕ + ψϕ cot θ + ψθθ

)
θ

− (Ψ− ω cos θ)θ
( 1

sin2 θ
ψϕϕ + ψϕ cot θ + ψθθ

)
ϕ

= 0.
(2.13)

In regions where ∇ (Ψ− ω cos θ) 6= 0, by the rank theorem (see [1]) the solution
of (2.13) can be expressed in the form

1
sin2 θ

Ψϕϕ + Ψθ cot θ + Ψθθ = F (Ψ− ω cos θ) , (2.14)

where F (Ψ−ω cos θ) is the oceanic vorticity, which is typically one order of magni-
tude larger than the planetary vorticity 2ω cos θ, generated by the Earth’s rotation
(see the data in [9]). The (total) vorticity of a the gyre flow is the sum of the oceanic
vorticity, F (Ψ − ω cos θ), and of the planetary vorticity 2ω cos θ. The planetary
vorticity is prescribed by the characteristics of the Earth’s rotation but the oceanic
vorticity can change from location to location, being dependent on specific features
(for example, the prevailing wind pattern, which induces near-surface currents) of
the type of ocean flow that is under consideration. The main sources of oceanic
vorticity are wind force [23] and the gravitational forces due to the relative motions
of the Moon, the Sun and the Earth in the form of the tidal currents – the horizon-
tal unidirectional movements of water associated with the rise and fall of the tide.
These two major types of oceanic vorticities can be regarded as non-zero constants
(see the discussions in [11], [15]), with the sign (positive or negative) depending on
the prevalent wind direction, and, respectively, on whether the tidal flow mode is
of ebb or flood type. Furthermore, non-constant oceanic vorticities are often en-
countered in gyre flows. Gyres exist at all latitudes, except near the Equator (see
discussions in [8, 16]).

Let us briefly explain why the ocean flow near the Equator is quite different from
other latitudes. In equation (2.1), the contributions from the rotation of the Earth
are

2Ω′(−w′ sin θ,−w′ cos θ, u′ sin θ + v′ cos θ)− r′Ω′2(sin2 θ, sin θ cos θ, 0)

and at the Equator θ = π
2 there become

Ω′(−w′, 0, u′)− r′Ω′2(1, 0, 0).

We observe a vanishing of the meridional component of the Coriolis terms, which
has the physical effect that the Equator works as a natural boundary, guiding the
flow propagation towards the east-west direction (see [16]). Furthermore, there is
a pronounced stratification in equatorial ocean regions, greater than anywhere else
in the ocean (see the discussion in [9]): this manifests itself by the presence of a
sharp thermocline which separates the near-surface layer from the deeper layer,
both being accurately described as having constant density with a difference in
density across the thermocline of about 1% (the deeper layer being denser, so that
we have stably stratified setting). Furthermore, the water masses of the Equatorial
undercurrents in the Pacific Ocean and in the Atlantic Ocean move from westwards
in the upper layers to eastwards in the lower ones, while at the depth of about
240m we observe a motionless still water. The situation in the Indian Ocean is
even more complicated, with flow direction reversal due to the monsoon seasons
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(see the discussion in [7]). For these reasons, in dealing with ocean flows, at the
Equator, one has to account for strong currents which are depth–dependent, and
this places such type of considerations outside the scope of the study [9] and of
the present considerations. Though the study of wave-current interactions in flows
with vorticity is a topic of great current interest (see the discussions in [5], [12]–[14],
[18]–[20], [28]), at the large scales that are relevant for the ACC these are secondary
effects that can be ignored.

To avoid the complications associated with the use of spherical coordinates we
rely on the stereographic projection of the unit sphere centred at origin from the
North Pole to the equatorial plane (see Figure 2). The model (2.14) in spherical
coordinates is thus transformed into an equivalent planar elliptic partial differential
equation [9]: in our coordinates the stereographic projection is defined by

ξ = r ei φ with r = cot
(θ

2

)
=

sin θ
1− cos θ

, (2.15)

where (r, φ) are the polar coordinates in the equatorial plane, and it transforms
(2.14) into

ψξξ̄ + 2ω
1− ξξ̄

(1 + ξξ̄)3
− F (ψ)

(1 + ξξ̄)2
= 0 .

The above equation is equivalent, using the Cartesian coordinates (x, y) in the
complex ξ-plane, to the following semilinear elliptic partial differential equation

∆ψ + 8ω
1− (x2 + y2)
(1 + x2 + y2)3

− 4F (ψ)
(1 + x2 + y2)2

= 0 , (2.16)

where ∆ = ∂2
x + ∂2

y denotes the Laplace operator.
The ACC presents a considerable uniformity in the azimuthal direction and this

feature is helpful to simplify the problem further. Indeed, gyres with no variation
in the azimuthal direction correspond to radially symmetric solutions ψ = ψ(r) of
problem (2.16). In this setting, performing the change of variables

ψ(r) = U(s) , s1 < s < s2 , (2.17)

with
r = e−s/2 for 0 < s1 = −2 ln(r+) < s2 = −2 ln(r−) , (2.18)

for 0 < r− < r+ < 1, transforms the semilinear elliptic partial differential equation
(2.16) to the second-order ordinary differential equation

U ′′(s)− es

(1 + es)2
F (U(s)) +

2ωes(1− es)
(1 + es)3

= 0 , s1 < s < s2 . (2.19)

The flow in a jet component of the ACC, between the parallels of latitude defined
by an appropriate choice of r± ∈ (0, 1) with r+/r− ∈ (1, 2), is modelled by coupling
(2.19) with the boundary conditions

U(s1) = U(s2) = 0 . (2.20)

expressing the fact that the boundary of the jet is a streamline – since the flow
is steady, this means that a particle there will be confined to the boundary at all
times. We therefore propose (2.19)-(2.20) as a model for a jet component of the
ACC. In this formulations the choice of the oceanic vorticity F entails different
properties of the solution U , which determines the entire flow pattern.
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Figure 2. The stereographic projection P 7→ P ′ from the North
Pole to the equatorial plane: for any point P in the Southern Hemi-
sphere, the straight line connecting it to the North Pole intersects
the equatorial plane in a point P ′ belonging to the interior of the
circular region delimited by the Equator. The depicted thick band,
delimited by two parallels of latitude, represents one of the jets of
the Antarctic Circumpolar Current and is mapped bijectively into
an annular planar region concentric with the Equator.

3. Main results

Given 0 < s1 < s2, the change of variables

u(t) = U(s) with t =
s− s1

s2 − s1
, (3.1)

transforms the second-order differential equation (2.19) with the boundary condi-
tions (2.20) to the equivalent two-point boundary-value problem

u′′ = a(t)F (u) + b(t) , 0 < t < 1 , (3.2)

u(0) = u(1) = 0 , (3.3)

where

a(t) =
(s2 − s1)2 e(s2−s1)t+s1

(1 + e(s2−s1)t+s1)2
> 0 ,

b(t) = −2ω(s2 − s1)2e(s2−s1)t+s1(1− e(s2−s1)t+s1)
(1 + e(s2−s1)t+s1)3

,

for t ∈ [0, 1]. Boundary-value problem (3.2)-(3.3) is called non-resonant if it has
a solution for every continuous forcing b, while resonance refers to the fact that
it is solvable only for suitable continuous functions b. However, in our setting the
functions a and b are fixed and of interest are various choices for the nonlinearity F .
Explicit solutions for F constant and for F (u) = −2u were provided in [25], while
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the existence of solutions for a special class of nonlinear functions F was proved in
[26].

Considering a function F : R→ R having the decomposition

F (u) = −λu+ f(u) , (3.4)

for a suitable parameter λ and some function f : R → R, the linear problem
associated with (3.2)-(3.3) is

u′′ = −λa(t)u+ b(t) , 0 < t < 1 , (3.5)

u(0) = u(1) = 0 . (3.6)

Since a(t) > 0 on (0, 1) has a second derivative that admits a continuous extension
to [0, 1], the corresponding homogeneous linear problem,

u′′ + λa(t)u = 0 , 0 < t < 1 , (3.7)

u(0) = u(1) = 0 , (3.8)

can be transformed into the problem

w′′ + [λA2 + A(T )]w = 0 , 0 < T < 1 , (3.9)

w(0) = w(1) = 0 , (3.10)

by the Liouville transformation (see [24, Chapter III])

T =
1
A

∫ t

0

√
a(τ) dτ , A =

∫ 1

0

√
a(τ) dτ , (3.11)

w(T ) = 4
√
a(t)u(t) , A(T ) =

1
4
√
a(t)

d2 4
√
a(t)

dT 2
, (3.12)

whose inverse is given by

t = A

∫ T

0

1
[a∗(ξ)]2

dξ ,
1
A

=
∫ 1

0

1
[a∗(ξ)]2

dξ , (3.13)

where a∗(T ) = 4
√
a(t) is, for T ∈ (0, 1), a positive solution of the differential

equation
da∗

dT 2
= A(T )a∗(T ) .

On the other hand, the nonlinear boundary-value problem (3.2)-(3.3) is transformed
by means of (3.11)-(3.12) into

w′′ + [λA2 + A(T )]w = F(w, T ) +B(T ) , 0 < T < 1 , (3.14)

w(0) = w(1) = 0 , (3.15)

where

F(w, T ) =
A2

[a∗(T )]3
f
( w(T )
a∗(T )

)
,

B(T ) =
A2

[a∗(T )]3
b(t) ,

(3.16)

for T ∈ [0, 1] and w ∈ R. Setting F ≡ 0 in (3.14) yields the transformation of the
inhomogeneous boundary-value problem (3.5)-(3.6) by means of (3.11)-(3.12) into

w′′ + [λA2 + A(T )]w = B(T ) , 0 < T < 1 , (3.17)

w(0) = w(1) = 0 . (3.18)
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3.1. Linear models. Multiplying (3.7) by u(t) and integrating the outcome on
[0, 1] yields

λ

∫ 1

0

a(t)u2(t) dt =
∫ 1

0

[u′(t)]2 dt ,

which shows that all eigenvalues λ of the weighted Sturm-Liouville problem (3.7)-
(3.8) are strictly positive (since u′ ≡ 0 forces u ≡ 0). On the other hand, the
Liouville transformation ensures that all these Dirichlet eigenvalues are all simple
(that is, the corresponding eigenspace is one-dimensional), countable in number and
accumulating at +∞ (see [24]); we denote them by {λn}n≥1, in increasing order.
Moreover, given B ∈ L2[0, 1], let S(B) ∈ H2(0, 1) be the unique solution of u′′ = B
in (0, 1), with u(0) = u(1) = 0; we have that

(S(B))(T ) =
∫ T

0

(T − T ′)B(T ′) dT ′ , T ∈ [0, 1] .

In general, functions in the Sobolev space H2(0, 1) are continuously differentiable
on [0, 1] and thus, in particular, they have a trace on the boundary. The problem
(3.14)-(3.15) with F ≡ 0 is equivalent to finding a solution w ∈ H1(0, 1) of the
functional equation w = S(B − [λA2 + A]w). Since the operator T : H1(0, 1) →
H1(0, 1) defined by Tw = −S([λA2+A]w) is compact, the Fredholm alternative (see
[2], Chapter 8) yields that problem (3.17)-(3.18) has a solution for every B ∈ L2[0, 1]
if and only if the only solution of (3.9)-(3.10) is w ≡ 0, that is, if and only if λ is
not a Dirichlet eigenvalue of (3.7)-(3.8); this solution being unique. On the other
hand, if λ > 0 is a Dirichlet eigenvalue with corresponding eigenfunction w0, then
problem (3.17)-(3.18) has a solution if and only if∫ 1

0

B(T )w0(T ) dT = 0 , (3.19)

relation that, in view of (3.16) and (3.11)-(3.12), we can recast as∫ 1

0

b(t)u0(t) dt = 0 , (3.20)

in terms of the corresponding eigenfunction u0(t) of (3.7)-(3.8). If the orthogonality
condition (3.19) is satisfied, the solution to (3.17)-(3.18) is not unique, as any
two solutions differ by a solution of (3.9)-(3.10); equivalently, if the orthogonality
condition (3.20) is satisfied, then the solution to (3.5)-(3.6) is not unique since any
two solutions differ by a solution of (3.7)-(3.8).

Remark 3.1. The considerations in [25] show, by finding an explicit set of funda-
mental solutions, that λ = 0 and λ = 2 are not eigenvalues for (3.7)-(3.8). Note
that we can deal with the case of constant F by merely taking F ≡ 0 (which corre-
sponds to F (u) = −λu with λ = 0) and adding a suitable multiple of the function
a to the forcing term n. �

Let us now prove the following result.

Theorem 3.2. For any linear oceanic vorticity of the type F (u) = −λu with λ ≤ 2,
there exists a uniquely determined stream function that arises as a solution to the
problem (3.2)-(3.3).
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Proof. Using the variational characterization of the first smallest eigenvalue for
(3.7)-(3.8), along the lines of the considerations made in [5, Section 3.1] for a similar
type of problem, we find that

λ1 = inf
u∈H1

0 (0,1):u6≡0

{ ∫ 1

0
[u′(t)]2 dt∫ 1

0
a(t)u2(t) dt

}
, (3.21)

where H1
0 (0, 1) is the Hilbert space {u ∈ H1(0, 1) : u(0) = u(1) = 0}. Since

s2 − s1 = ln(r+/r−) < 1, we have that

2a(t) = (s2 − s1)2 2 e(s2−s1)t+s1

(1 + e(s2−s1)t+s1)2
≤ (s2 − s1)2 < 1 , t ∈ [0, 1] .

On the other hand, if t0 ∈ (0, 1) is the point in [0, 1] where the maximum of
t 7→ u2(t) is attained for u ∈ H1

0 (0, 1), u 6≡ 0, then

u2(t0) =
(∫ t0

0

u′(t) dt
)2

≤
(∫ 1

0

|u′(t)| dt
)2

≤
∫ 1

0

[u′(t)]2 dt .

Consequently

2
(s2 − s1)2

∫ 1

0

a(t)u2(t) dt <
∫ 1

0

u2(t) dt ≤ u2(t0) ≤
∫ 1

0

[u′(t)]2 dt ,

which yields λ1 ≥ 2
(s2−s1)2 > 2. This prevents resonance for any linear function

F (u) = −λu with λ ≤ 2, in view of the considerations that precede the statement,
and the proof is complete. �

3.2. Nonlinear models. For a small nonlinear perturbation of a non-resonant
linear state of the form u 7→ −λu (that is, with λ not an eigenvalue), the existence
of solutions of (3.2)-(3.3) is established by our next result.

Theorem 3.3. Assume that F is of the form (3.4), with λ ∈ R not an eigenvalue
of the Dirichlet problem (3.7)-(3.8), and with the continuous function f : R → R
uniformly bounded. Then there exists a solution to (3.2)-(3.3).

Proof. Let C[0, 1] be the Banach space of all continuous functions u : [0, 1] → R,
endowed with the norm ‖u‖ = supt∈[0,1]{|u(t)|} and let C2

0 [0, 1] be the Banach space
of all twice continuously differentiable functions u : [0, 1]→ R with u(0) = u(1) = 0,
endowed with the norm obtained by taking the maximum over [0, 1] of the absolute
values of the derivatives of u of order k ≤ 2 (that is, max{‖u‖, ‖u′‖, ‖u′′‖}). The
assumption that λ is not a Dirichlet eigenvalue ensures (along the lines of the
arguments presented in [3]) that the linear operator L : C2

0 [0, 1] → C[0, 1] defined
by Lu = u′′ + λau is ivertible. Its inverse L−1 : C[0, 1] → C2

0 [0, 1], expressible by
means of a Green’s function, takes bounded subsets of C[0, 1] to bounded subsets
of C2

0 [0, 1]. Note that a solution of (3.2)-(3.3) is a fixed point of the operator
L−1(a + f(u)) in C[0, 1]. Since f is uniformly bounded, we can find a closed
ball in C[0, 1], centered at the origin, that is mapped into itself by the compact
operator u 7→ L−1(a + f(u)); the compactness being a consequence of the Arzelà-
Ascoli theorem (see [3]). The existence of a fixed point u ∈ C[0, 1] follows now
from Schauder’s theorem (see [3]), and a glance at the range of L−1 confirms that
actually u ∈ C2

0 [0, 1]. �
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Remark 3.4. The requirements of Theorem 3.3 are only sufficient. Indeed, in
[26] we showed that in the case λ = 0, solutions to (3.2)-(3.3) exist for continuous
functions f : R → R for which we can find constants m0, M0 > 0 with uf(u) +
m0|u| ≥ 0 for |u| ≥M0, and this setting comprises the example f(u) = u which does
not enter into the framework of Theorem 3.3. On the other hand, for F (u) = −λu
with λ > 0 different from the discrete set {λn}n≥1 of the Dirichlet eigenvalues of
(3.7)-(3.8), the existence of a solution to (3.2)-(3.3) follows either from Theorem
3.2 or from Theorem 3.3 while the result in [26] is not applicable.

Remark 3.5. If F is of the form (3.4), with λ ∈ R an eigenvalue of the Dirichlet
problem (3.7)-(3.8), the discussion preceding Theorem 3.2 shows that linear res-
onance will occur if f ≡ 0, in which case (3.20) is the necessary and sufficient
condition for the existence of solutions to (3.2)-(3.3). The issue of the existence
of nonlinear perturbations f 6≡ 0 which ensure the solvability of (3.2)-(3.3) has
been addressed in the research literature (see the discussion in [22]) but the results
that we are aware of are of limited practical interest since they involve as a crucial
constraint the validity of a constraint of the type (3.20) with an eigenfunction u0(t)
that is not available in explicit form. �
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