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Abstract. We prove a global Orlicz estimate for the gradient of weak solu-

tions to a class of nonlinear obstacle problems with partially regular nonlinear-

ities in nonsmooth domains. It is assumed that the nonlinearities are merely
measurable in one spatial variable and have sufficiently small BMO semi-norm

in the other variables, and the boundary of underlying domain is Reifenberg

flat.

1. Introduction

Throughout this paper, let Ω be a bounded domain Rn for n ≥ 2 with the
non-smooth boundary specified later. Suppose that F = (f1, f2, . . . , fn) is a given
measurable vectorial-valued function, and a = a(ξ, x) : Rn×Ω→ Rn is assumed to
be a Carathéodory vectorial-valued function which is measurable in x ∈ Ω for each
ξ ∈ Rn and Lipschitz continuous in ξ ∈ Rn for each x ∈ Ω. Let ψ be an obstacle
function with

ψ ∈W 1,2(Ω), and ψ ≤ 0 on ∂Ω;

and recall an admissible set Kψ(Ω) by

Kψ(Ω) =
{
v ∈W 1,2

0 (Ω) : v ≥ ψ a. e. in Ω
}
.

We devote this present article to study a global estimate in Orlicz spaces for the
gradient of weak solutions to the following variational inequalities with some weak
regular assumptions on the datum in the sense of distribution.

Definition 1.1. We say that u is a weak solution of variational inequalities (1.1),
if u ∈ Kψ(Ω) satisfies∫

Ω

〈a(Du, x), D(u− v)〉 dx ≤
∫

Ω

〈F, D(u− v)〉 dx (1.1)

for all v ∈ Kψ(Ω).
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To ensure solvability in L2(Ω) of (1.1), it is necessary to impose some basic
structural assumptions on the nolinearities with ellipticity and growth: there exist
two constants 0 < ν ≤ Λ <∞ such that

〈Dξa(ξ, x)η · η〉 ≥ ν|η|2,
|a(ξ, x)|+ |ξ||Dξa(ξ, x)| ≤ Λ|ξ|

(1.2)

for a.e. x ∈ Ω and ξ, η ∈ Rn, where Dξ denotes the differentiation in ξ ∈ Rn, and
〈·, ·〉 is the standard inner product in Rn. Consequently, the condition (1.2) readily
yields that

a(0, x) = 0,

ν|ξ − η|2 ≤ 〈a(ξ, x)− a(η, x), ξ − η〉.
(1.3)

With (1.2) in hand, by the Minty-Browder argument then there exists a unique
weak solution u ∈ A to the variational inequality (1.1) with the usual L2-estimate∫

Ω

|Du|2 ≤ c
∫

Ω

(|F |2 + |Dψ|2) dx (1.4)

with a positive constant c = c(n, ν,Λ).
Let us review some recent progresses related to our research. The regularity

on nonlinear elliptic problems under the weak regular datum is a classical and im-
portant topic in the aspect of partial differential equations. Indeed, the Calderón-
Zygmund theory is an extremely popular research to various elliptic and parabolic
equations with some minimal regular datum, see [4, 5, 7, 8, 12, 18, 22]. In particu-
lar, the Calderón-Zygmund theory regarding elliptic problems with partially BMO
coefficients has been recently getting largely attention. As we know, Kim and
Krylov in [12] was first to obtain the Calderón-Zygmund theory to nondivergence
linear elliptic and parabolic equations with partially VMO coefficients. Then, this
study with partially regular coefficients was extended to divergence or nondiver-
gence linear elliptic and parabolic equations/system and linear equations of higher
order by Dong-Kim-Krylov, see [7, 8, 9] etc. Later, Byun and Palagachev [3] also
deduced a global weighted Lp-theory to linear elliptic problems with small par-
tially BMO coefficients over non-smooth domains via a rather different geometrical
approach. In particular, we would like to mentioned that Byun and Kim [4] very
recently attained the nonlinear Calderón-Zygmund theory to elliptic equations with
measurable nonlinearities in nonsmooth domains based on their usual geometrical
approach. In fact, this article is also motivated by Byun and Kim’s recent work.
We would like to remark that this partial BMO assumption is actually a sort of
minimal regular requirements on the coefficients for elliptic operators even for lin-
ear elliptic settings to ensure a satisfactory Calderón-Zygmund theory for all p > 1.
Indeed, this was verified by a famous counterexample due to Ural’tseva [19], where
he constructed an equation in Rd (d ≥ 3) with the coefficients depending only on
the first two coordinates so that there is no unique solvability in Sobolev spaces
W 1,p for any p > 1.

Nonlinear elliptic equations with discontinuous nonlinearities in the spatial vari-
able are related to nonlinear problems in medium composition materials. Especially,
these problems with partial regular nonlinearities are particularly attributed to the
so-called laminate materials [6]. Meanwhile, the relevant obstacle problems usually
appear in various fields such as physics, biology, economics, computer science and
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so on, which is to describe practical phenomena in a situation with a kind of con-
straint by the so-called obstacle function. Here, we would particularly like to point
out that the study of this article was inspired by a recent progress from Byun and
Kim’s work in [4], which is first concerned with the nonlinear Calderón-Zygmund
theory involved in the measurable nonlinearities. They actually considered the fol-
lowing nonlinear elliptic equation with partially BMO nonlinearities in Reifenberg
domains (see Definitions below):

div a(Du, x) = div F, in Ω,
u = 0, on ∂Ω,

and obtained that

F ∈ Lp(Ω,Rn)⇒ Du ∈ Lp(Ω,Rn), 2 ≤ p <∞

for the weak solutions u ∈W 1,2
0 (Ω).

Orlicz spaces are the natural generalizations of Lebesgue spaces, and the esti-
mates in Orlicz spaces for partial differential equations have become an extremely
popular research nowadays. Areas of its applications include the study of geometric,
probability, stochastic, Fourier analysis and so on, also see [15, 16]. The regularity
in Orlicz spaces is actually an extension of the classical Calderón-Zygmund esti-
mates for the theory of PDEs. Just for divergence elliptic case, under some regular
assumptions on the datum it implies that f ∈ B ⇒ Du ∈ B for a given Orlicz
space B. For instance, Azroul et al. [1] first proved that for each radial solution
u for Poisson equation −∆u = f , it satisfies ∂2u

∂xi∂xj
∈ LΦ

loc(Br) if f ∈ LΦ(Br) for
any Young function Φ with Φ(|f(x)|) log(|x|) being integrable. Later, Jia et al.
[10, 11] established Orlicz regularities for above-mentioned Poisson equation and
divergence linear elliptic equations with small BMO coefficients in Reifenberg or
quasicovex domains via the Hardy-Littlewood maximal functions, respectively. In
particular, Byun-Ok-Palagachev[5] proved the weighted Orlicz estimates for diver-
gence linear parabolic systems while the leading coefficients are assumed to be only
measurable in one spatial variable and have small BMO seminorms in the remain-
ing variables. In addition, there were various gradient estimates in Orlicz spaces
for p-Laplacian, quasilinear p-Laplacian and evolution p-Laplacian in Reifenberg
flat domain, respectively, see [20, 21]. Finally, we would also like to mention that
Li-Zhang-Zheng [14] obtained a local Orlicz estimate of the Hessian strong solutions
to a class of nondivergence linear elliptic equations aijDiju = f(x) with partially
BMO nonlinearities.

Let us start with related basic notations and definitions which will be useful in
this paper.

Definition 1.2. Let Φ be a nonnegative, increasing and convex real-valued function
on [0,+∞). If it satisfies

lim
ρ→0+

Φ(ρ)
ρ

= lim
ρ→+∞

ρ

Φ(ρ)
= 0, (1.5)

where Φ(0) = 0, Φ(∞) = limρ→+∞ Φ(ρ), then we say Φ is a Young function.

Definition 1.3. We say that the Young function Φ satisfies the ∆2∩∇2 condition,
denoted by Φ ∈ ∆2 ∩∇2, if
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(i) (∆2 condition) there exists a positive constant µ1 such that

Φ(2ρ) ≤ µ1Φ(ρ), ∀ρ > 0; (1.6)

(ii) (∇2 condition) there exists a constant µ2 > 1 such that

Φ(ρ) ≤ 1
2µ2

Φ(µ2ρ), ∀ρ > 0. (1.7)

Indeed, the limits (1.5) along with ∆2 ∩∇2 mean that

0 = Φ(0) = lim
ρ→0+

Φ(ρ), lim
ρ→+∞

Φ(ρ) = +∞,

which show that the limits are neither too slow nor too fast while ρ → 0+ and
ρ → +∞, see [16]. We also notice that the ∆2 condition implies that there exists
a constant µ(λ) > 1 such that

Φ(λρ) ≤ µ(λ)Φ(ρ), ∀ρ > 0, λ > 1.

Since Φ ∈ ∆2, there exist two constants t1 and t2 with 1 < t1 ≤ t2 <∞ such that

c−1 min{λt1 , λt2}Φ(ρ) ≤ Φ(λρ) ≤ cmax{λt1 , λt2}Φ(ρ), ∀ρ ≥ 0, λ ≥ 0, (1.8)

where the positive constant c is independent of λ and ρ, see [14].

Definition 1.4. For a Young function Φ ∈ ∆2 ∩ ∇2, the Orlicz spaces LΦ(Ω) is
defined to be the set of all measurable functions f : Ω→ R satisfying∫

Ω

Φ(|f |)dx <∞.

The Orlicz spaces LΦ(Ω) is an invariant Banach space with the Luxemburg norm

‖f‖LΦ(Ω) = inf
{
λ > 0 :

∫
Ω

Φ
( |f |
λ

)
dx ≤ 1

}
. (1.9)

As usual, the Orlicz Sobolev spaces W 1LΦ(Ω) is defined by the function spaces of
all measurable functions v ∈ LΦ(Ω) such that its gradient vector Dv ∈ LΦ(Ω) with
the norm

‖v‖W 1LΦ(Ω) = ‖v‖LΦ(Ω) + ‖Dv‖LΦ(Ω).

We can refer it to [13] for more details about Orlicz spaces. It is easy to observe
that Orlicz spaces LΦ generalize Lp spaces in the sense that if we take Φ(x) = xp

with p > 1 so that we have

LΦ(Ω) = Lp(Ω), W 1LΦ(Ω) = W 1,p(Ω).

Let us denote a type point by x = (x1, x′) = (x1, x2, . . . , xn) ∈ Rn, and let
Br = {x ∈ Rn : |x| < r} with Br(y) = Br + y, Q′r = {x′ ∈ Rn−1 : |x′| < r} with
Q′r(y) = Q′r + y′. Denote typical cylinders by Qr = (−r, r)×Q′r, Q+

r = Qr ∩ {x ∈
Rn : x1 > 0} with Qr(y) = Qr + y,Q+

r (y) = Q+
r + y; and some typical boundaries

by Ωr(y) = Qr(y) ∩ Ω, ∂ωΩr(y) = Qr(y) ∩ ∂Ω, Tr = Qr ∩ {x1 = 0}. We write an
average of f(x) in Qr for r > 0 to be

−
∫
Qr

f(x) dx =
1
|Qr|

∫
Qr

f(x) dx,

where |Qr| is n-dimensional Lebesgue measure of Qr. The (n − 1)-dimensional
average of f(x) in Q′r with respect to x′ by

f̄Q′r (x1) = −
∫
Q′r

f(x1, x′) dx′ =
1
|Q′r|

∫
Q′r

f(x1, x′) dx′
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with |Q′r| as the (n− 1)-dimensional Lebesgue measure of Q′r.
To impose a partially regular assumption on a(ξ, x) = a(ξ, x1, x′) (cf. [4, Defini-

tion 2.2]), we consider a function

θ(a, Qr(y)) = sup
ξ∈Rn\0

|a(ξ, x1, x′)− āQ′r(y′)(ξ, x1)|
|ξ|

(1.10)

with

āQ′r(y′)(ξ, x1) = −
∫
Q′r(y′)

a(ξ, x1, z′)dz′, (1.11)

where a(ξ, x) is zero extended from Ω ∩Q′r to Q′r \ Ω ∩Q′r,

Assumption 1.5. We say that (a(ξ, x),Ω) is (δ,R)-vanishing of codimension 1, if
for every point x0 ∈ Ω and for any 0 < r ≤ R with

dist(x0, ∂Ω) = min
z∈∂Ω

dist(x0, z) >
√

2r,

there exists a coordinate system depending only on x0 and r, whose variables are
still denoted by x, such that in the new coordinate system with x0 as the origin
and

−
∫
Qr

∣∣θ(a, Qr)(x)
∣∣2 dx ≤ δ2;

while, for x0 ∈ Ω with

dist(x0, ∂Ω) = min
z∈∂Ω

dist(x0, z) = dist(x0, z0) ≤
√

2r,

where z0 ∈ ∂Ω, one has that there exists a coordinate system depending on x0 and
0 < r < R so that in the new coordinate system z0 as the origin with

Q3r ∩ {x1 ≥ 3δr} ⊂ Q3r ∩ Ω ⊂ Q3r ∩ {x1 ≥ −3δr}, (1.12)

−
∫
Q3r

∣∣θ(a, Q3r)(x)
∣∣2 dx ≤ δ2, (1.13)

where a(x, ξ) is zero extended from Q3r ∩ Ω to Q3r, and the parameter δ > 0 will
be specified later.

Now we state our main result of this paper as follows.

Theorem 1.6. Let u ∈ Kψ(Ω) be a weak solution to the variational inequalities
(1.1) with nonlinearity a(ξ, x) satisfying the structural conditions (1.2), and let
(a(ξ, x),Ω) satisfy (δ,R)-vanishing of codimension 1 as Assumption 1.5. For the
Young function Φ ∈ ∆2∩∇2, if Ψ2 ∈ LΦ(Ω) with Ψ = |F |+ |Dψ|, then there exists
a small constant δ0 = δ0(n, ν,Λ, |Ω|,Φ) > 0 such that for every δ ∈ (0, δ0], we have
|Du|2 ∈ LΦ(Ω) with the estimate

‖|Du|2‖LΦ(Ω) ≤ c
(
‖Ψ2‖LΦ(Ω) + 1

)
, (1.14)

where the positive constant c is independent of u and Ψ.

Here, we reach it mainly based on the Byun-Wang’s geometric argument [2]. In
particular, our key argument was actually inspired by Byun et al’s recent papers
[4, 5], and we make use of the boundedness of the Hardy-Littlewood maximal func-
tions in Orlicz spaces, modified Vitali covering and an equivalent representation
of Orlicz norm to prove the main theorem for nonlinear elliptic obstacle problem
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under the minimal weak regular assumptions on the nonlinearities and the bound-
ary of domain. We would also like to point out that our consideration is twofolds:
one is to extend Byun-Wang’s work in [2] by assuming that the nonlinearities are
partially BMO instead of small BMO oscillations. The other is that our prob-
lems are involved in the obstacle constraints in more general Orlicz spaces instead
of Lebesgue spaces in [4]. For this, however some comparison estimates for the
reference problems can be cited from [4].

The rest of the paper is organized as follows. Section 2 is devoted to introduce
some useful lemmas. In section 3, we focus on proving our main theorem.

2. Technical tools

In the section we present some useful lemmas, which will play essential roles in
proving our main conclusions. We are mainly devoted to make some comparison
estimates to the reference problems, and we particularly make use of Byun-Kim’s
important work on the interior and boundary Lipschitz regularity for limiting equa-
tions whose nonlinearities depend on the gradients of weak solutions and only one
variable. Let us denote by c(n, ν,Λ, . . . ) a universal constant depending only on
prescribed quantities and possibly varying from line to line in the context. First
of all, let us introduce the Hardy-Littlewood maximal function and related basic
facts, see [2, 4].

Definition 2.1. Let f be a locally integrable function of Rn, the Hardy-Littlewood
maximal function Mf is defined by

Mf(x) = sup
r>0
−
∫
Br(x)

|f(y)|dy.

If f is confined in a bounded subset U of Rn, then we can define a restricted
maximal function MUf in the following form

MUf =M(fχU ),

where χU is the standard characteristic function on U .

For the Hardy-Littlewood maximal function, we immediately conclude the fol-
lowing two useful classical properties, for details see [17].

(i) (strong (p, p)-type) If f ∈ Lp(Rn) for 1 < p ≤ ∞, then Mf ∈ Lp(Rn) and

c−1(n, p)‖f‖Lp ≤ ‖Mf‖|Lp ≤ c(n, p)‖f‖Lp . (2.1)

(ii) (weak (1,1)-type) If f ∈ L1(Rn), then

|{x ∈ Rn :Mf(x) > α}| ≤ c(n)
α
‖f‖L1(Rn), ∀α > 0. (2.2)

Further, we have the following boundedness of the Hardy-Littlewood maximal func-
tion in Orlicz spaces.

Lemma 2.2. If Φ is a Young function satisfying the ∆2∩∇2-condition, then there
exists a positive constant c = c(n,Φ) such that∫

Rn

Φ(|f |)dx ≤
∫

Rn

Φ(Mf)dx ≤ c
∫

Rn

Φ(|f |)dx (2.3)
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for all f ∈ LΦ(Rn). In addition, we would like to point out that from inequality
(1.8) and the Luxemburg norm (1.9) we have

c−1(‖f‖αLΦ(U) − 1) ≤
∫
U

Φ(|f |)dx ≤ c(‖f‖β
LΦ(U)

+ 1), (2.4)

where α = t1, β = t2 satisfy (1.8) and the constant c > 1 is independent of f .

Next, we use that the nonlinear elliptic obstacle problems under consideration
is an invariant under scaling and normalization, see [4, Lemma 3.1].

Lemma 2.3. For each K, ρ > 0, we define

ã(ξ, x) =
a(Kξ, ρx)

K
, ũ(x) =

u(ρx)
Kρ

, F̃(x) =
F(ρx)
K

, ψ̃(x) =
ψ(ρx)
Kρ

and the set Ω̃ = {xρ : x ∈ Ω}, then we have

(i) If u ∈ Kψ(Ω) is a weak solution of (1.1), then ũ ∈ Kψ̃(Ω̃) is a weak solution
of ∫

Ω̃

〈ã(Dũ, x), D(ũ− ṽ)〉 dx ≤
∫

Ω̃

〈F̃, D(ũ− ṽ)〉 dx,

for all ṽ ∈ Kψ̃(Ω̃).
(ii) If the nonlinearity a(ξ, x) satisfies assumption (1.2), then so dose ã(ξ, x)

with the same constants ν,Λ.
(iii) If the nonlinearity (a(ξ, x),Ω) is (δ,R)-vanishing of codimension 1 in Ω,

then (ã(ξ, x),Ω) is (δ, Rρ )-vanishing of codimension 1 in Ω̃.

Let us now focus on some comparison estimates to a few of the related reference
problems. Recalling that the domain Ω is assumed to be the (δ,R)-Reifenberg
flatness as a necessary minimal geometric condition in the new coordinate system.
This leads to the following measure density conditions:

sup
0<r≤R

sup
x0∈∂Ω

|Br(x0)|
|Ω ∩Br(x0)|

≤
( 2

1− δ

)n
, inf

0<r≤R
inf

x0∈∂Ω

|Ωc ∩Br(x0)|
|Br(x0)|

≥
(1− δ

2

)n
.

Without loss of generality, by a scaling argument we let

Q+
6 ⊂ Ω6 ⊂ B6 ∩ {x1 > −16δ}, (2.5)

−
∫
Q6

|θ(a,Q6)|2dx ≤ δ2. (2.6)

Now we are mainly to focus on the boundary estimates for the reference problems
since the interior estimates are very similar to the boundary setting with a simpler
procedure. We consider a local weak solution u ∈ W 1,2(Ω6) of the variational
inequalities (1.1) in Ω6 with u = 0 on ∂ωΩ6. Note that it holds the measure density
for Reifenberg flat domain Ω, then we let k, v ∈ W 1,2(Ω6), w ∈ W 1,2(Ω5) and
h ∈W 1,2(Q+

5 ), respectively, be the weak solutions of the following boundary value
problems

div a(Dk, x) = div a(Dψ, x), in Ω6,

k = u, on ∂Ω6;
(2.7)

div a(Dv, x) = 0, in Ω6,

v = k, on ∂Ω6;
(2.8)
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div āQ′5(Dw, x1) = 0, in Ω5,

w = v, on ∂Ω5;
(2.9)

div āQ′5(Dh, x1) = 0, in Q+
5 ,

h = 0, on T5;
(2.10)

where

āQ′5(ξ, x1) =

{
−
∫

Ω∩Q′5
a(ξ, x1, x

′) dx′ x ∈ Ω ∩Q′5,
0 x ∈ Q′5\Ω ∩Q′5.

Here, we would particularly like to point that it is really our starting point on
the interior and boundary Lipschitz regularity for limiting problem (2.9), whose
nonlinearities depend on the gradients of weak solutions and only one variable x1,
for details see Section 4 in Byun and Kim’s work [4].

In what follows, we give some boundary comparison estimates among the above
various reference problems, whose argument is vary similar to Byun et al’s recent
series papers [2, 3, 4, 5]. The following comparison principle is rather necessary to
ensure that each solution satisfies the admissible test functions as for the variational
inequalities with an obstacle constraint.

Lemma 2.4. Let U ∈ Rn be a bounded open domain. Suppose that ψ, k ∈W 1,2(U)
satisfy

−div a(Dψ, x) ≤ −div a(Dk, x) in U,

ψ ≤ k, on ∂U,

in the weak sense that∫
U

〈a(Dψ, x)− a(Dk, x), Dϕ〉 ≤ 0 for all ϕ ∈W 1,2
0 (U) with ϕ ≥ 0 (2.11)

and (ψ − k)+ ∈W 1,2
0 (U). Then it holds ψ ≤ k, a. e. in U .

Proof. Taking ϕ = (ψ − k)+ as a test function in (2.11) yields

−
∫
{x∈U :ψ>k}

〈a(Dψ, x)− a(Dk, x), D(ψ − k)〉 ≤ 0.

From the monotonic increasing (1.3) of a(ξ, x), we find that

ν −
∫
{x∈U :ψ>k}

|Dψ −Dk|2dx = 0,

which implies that Dψ = Dk a.e. in {x ∈ U : ψ > k} and therefore D((ψ−k)+) = 0
a.e. in U . Since (ψ − k)+ ∈W 1,2

0 (U), we conclude that ψ ≤ k a.e. in U . �

Now we are in a position to show the comparison estimates among the various
reference problems.

Lemma 2.5. Let u ∈W 1,2(Ω6) be a local weak solution of (1.1) in Ω6 with u = 0 on
∂ωΩ6, and let v ∈W 1,2(Ω6) be the weak solution of (2.8). Under the normalization
conditions of

−
∫

Ω6

|Du|2dx ≤ 1, −
∫

Ω6

Ψ2dx ≤ δ2, (2.12)
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if for any o < ε < 1 there exists a constant δ = δ(n, ε, ν,Λ) such that (a(ξ, x),Ω)
satisfying (δ,R)-vanishing of codimension 1 shown as (2.5) and (2.6), then we
derive that

−
∫

Ω6

|Dv|2dx ≤ c, (2.13)

−
∫

Ω6

|Du−Dv|2dx ≤ ε. (2.14)

Proof. Thanks to the standard L2-estimates of (2.7) and (2.8), it follows from (2.12)
that

−
∫

Ω6

|Dv|2 dx ≤ c−
∫

Ω6

|Dk|2 dx ≤ c−
∫

Ω6

(|Du|2 + |Dψ|2) dx ≤ c(1 + δ2). (2.15)

In view of Lemma 2.4 and (2.7), we know that k ≥ ψ, a.e. in Ω6. By extending
k by u in Ω \Ω6, then it leads to k ∈ Kψ(Ω). Taking a test function k ∈W 1,2(Ω6)
into (1.1), we obtain∫

Ω6

〈a(Du, x), Dk −Du〉 dx ≥
∫

Ω6

〈F, Dk −Du〉 dx. (2.16)

Similarly, by taking a test function k − u ∈W 1,2
0 (Ω6) into (2.8) it yields∫

Ω6

〈a(Dk, x), Dk −Du〉 dx =
∫

Ω6

〈a(Dψ, x), Dk −Du〉 dx. (2.17)

Then, by subtracting (2.16) from (2.17), and by (1.3) we obtain

ν

∫
Ω6

|Dk −Du|2dx ≤
∫

Ω6

〈a(Dk, x)− a(Du, x), Dk −Du〉 dx

≤
∫

Ω6

〈a(Dψ, x)− F, Dk −Du〉 dx.
(2.18)

On the other hand, by (1.2), (2.12) and Young inequality with ε ∈ (0, 1) it follows
that ∫

Ω6

〈a(Dψ, x)− F, Dk −Du〉 dx

≤
∫

Ω6

(|a(Dψ, x)|+ |F|) |Dk −Du| dx

=
∫

Ω6

(Λ|Dψ|+ |F|) |Dk −Du| dx

≤ ε
∫

Ω6

|Dk −Du|2 dx+ c(ε)
∫

Ω6

(Λ|Dψ|+ |F|)2
dx

≤ ε
∫

Ω6

|Dk −Du|2 dx+ c(ε,Λ)δ2.

(2.19)

Putting (2.18) and (2.19) with ε = ν/2 together yields

−
∫

Ω6

|Dk −Du|2 dx ≤ cδ2 (2.20)

with c = c(ν,Λ).
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Next, we subtract (2.8) to (2.7), and take a testing function k − v ∈ W 1,2
0 (Ω6)

to obtain∫
Ω6

〈a(Dk, x)− a(Dv, x), Dk −Dv〉 dx =
∫

Ω6

〈a(Dψ, x), Dk −Dv〉 dx.

In a similar way as the above estimate (2.20), there exists δ > 0 such that

−
∫

Ω6

|Dk −Dv|2dx ≤ cδ2. (2.21)

Consequently, using (2.20) and (2.21), it yields

−
∫

Ω6

|Du−Dv|2dx ≤ 2−
∫

Ω6

|Du−Dk|2dx+ 2−
∫

Ω6

|Dk −Dv|2dx ≤ cδ2.

Since ε > 0 is arbitrary, we choose a small δ > 0 such that cδ2 = ε, which reduces
the desired estimate (2.14). With the corresponding δ = δ(n, ε, ν,Λ) and (2.15) we
obtain (2.13). �

Regarding the remainders of comparison estimates for the reference problems we
only recall Byun and Kim’s conclusions, see [4, Lemmas 5.6 and 5.8].

Lemma 2.6. Assume that u ∈ W 1,2(Ω6) is a weak solution of (1.1) in Ω6 with
u = 0 on ∂ωΩ6 under the assumptions of (2.5), (2.6) and (2.12). If v, w, h are the
weak solutions of (2.8), (2.9) and (2.10), respectively, then we have

−
∫

Ω5

|Dw|2dx ≤ c−
∫

Ω6

|Dv|2dx ≤ c, ‖Dh̄‖L∞(Ω3) ≤ c1,

−
∫

Ω5

|Dv −Dw|2dx ≤ ε, −
∫

Ω3

|Dw −Dh̄|2dx ≤ ε,

where c1 = c1(n, ν,Λ), and h̄ is a zero extension of h from Q+
5 to Q5.

With Lemmas 2.5 and 2.6, we conclude the following estimates near the bound-
ary.

Lemma 2.7. Let u ∈ W 1,2(Ω6) of (1.1) in Ω6 with u = 0 on ∂ωΩ6. If, for
o < ε < 1 there exists a constant δ = δ(n, ε, ν,Λ) with (2.5), (2.6) and (2.12), then

−
∫

Ω3

|Du−Dh̄|2dx ≤ ε and ‖Dh̄‖L∞(Ω3) ≤ c1,

where h̄ is the zero extension of h from Q+
5 to Q5.

The following version of the modified Vitali covering plays an important role to
the Calderón-Zygmund type theory over a Reifenberg flat domain, see [2, 3, 4].

Lemma 2.8. Let C and D be measurable sets with C ⊂ D ⊂ Ω, and Ω be (δ, 1)-
Reifenberg flat for some small δ > 0. Assume that there exists a small ε > 0
with

|C| < ε|B1|,
further, for all x ∈ Ω and r ∈ (0, 1] with |C ∩Br(x)| ≥ |Br(x)| it holds Br(x)∩Ω ⊂
D. Then we have

|C| ≤
( 10

1− δ

)n
|D|.
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Thanks to the above boundary comparison estimates, we conclude the following
measure comparison estimate of distributions on the maximal function based on
the modified Vitali covering lemma concerning the invariance property under the
scaling argument and normalization.

Lemma 2.9. Let u ∈ W 1,2
0 (Ω) be the weak solution of (1.1). If, for any ε > 0

there exists a small δ = δ(n, ε, ν,Λ) such that

Q+
8 ⊂ Ω8 ⊂ Q̇8 ∩ {x1 > −16δ}, −

∫
Q8

|θ(a,Q8)|2dx ≤ δ2,

{x ∈ Ω2 :M(|Du|2) ≤ 1} ∩ {x ∈ Ω2 :M(Ψ2) ≤ δ2} 6= ∅;
then there exists a positive constant N1 = N1(n, ν,Λ) such that

|{x ∈ Ω2 :M(|Du|2) > N2
1 } ∩B1| ≤ ε|B1|.

Proof. This is very similar to the proof of Lemma 5.10 in [4] only replacing |F |2 by
Ψ2, and we here omit its proof. �

As for the interior comparison estimates, we only state the results since it is
simpler than that of the boundary case. By similar way we can also obtain the
corresponding estimates as the above Lemma 2.7 and 2.9 without the boundary
term. Without loss of generality we assume

Q7 ⊂ B7
√

2 ⊂ Ω. (2.22)

Lemma 2.10. Let u ∈ W 1,2(Q6) be a local weak solution of (1.1) in Q6 with the
normalization of

−
∫
Q6

|Du|2dx ≤ 1, −
∫
Q6

Ψ2dx ≤ δ2,

and w ∈ W 1,2(Q5) be the weak solution of (2.9) only replacing Ω5 by Q5. If, for
0 < ε < 1 there exists a constant δ = δ(n, ε, ν,Λ) > 0 such that a(ξ, x) satisfying
(δ,R)-vanishing of codimension 1 of (2.6), then we have

−
∫
Q5

|Du−Dw|2dx ≤ ε and ‖Dw‖L∞(Q4)dx ≤ c2,

where c2 = c2(n, ε, ν,Λ).

Lemma 2.11. Let u ∈ W 1,2
0 (Ω) be a weak solution of (1.1). If, for ε > 0 we

find a small δ = δ(n, ε, ν,Λ) > 0 such that a(ξ, x) satisfying (δ,R)-vanishing of
codimension 1 of (2.6) and

{x ∈ Q2 :M(|Du|2) ≤ 1} ∩ {x ∈ Q2 :M(Ψ2) ≤ δ2} 6= ∅,
then there exists a positive constant N2 = N2(n, ν,Λ) such that

|{x ∈ Q2 :M(|Du|2) > N2
2 } ∩B1| ≤ ε|B1|.

Further, we obtain the next lemma by a scaling invariance to the above lemma,
see also [4, Lemma 5.2].

Lemma 2.12. Let u ∈ W 1,2
0 (Ω) be a weak solution of the variational inequalities

(1.1). If, for ε > 0 we find an δ = δ(n, ε, ν,Λ) > 0 with a(ξ, x) satisfying (δ, 160)-
vanishing of codimension 1 and there exists a positive constant N2 = N2(n, ν,Λ)
such that

|{x ∈ Ω :M(|Du|2) > N2
2 } ∩Br(y)| ≥ ε|Br(y)|
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with Q7r(y) ⊂ B7
√

2r(y) ⊂ Ω for 0 < r ≤ 1; then we have

Br(y) ⊂ Qr(y) ⊂ {x ∈ Ω :M(|Du|2) > 1} ∪ {x ∈ Ω :M(Ψ2) > δ2}.

Now we write N3 = max{N1, N2, 1} with N1, N2 shown as in Lemma 2.9 and
2.12. By combining the interior estimate of Lemma 2.12 and the boundary estimate
of Lemma 2.9, then we have the following estimates, cf. [4, Lemmas 5.11 and 5.12].

Lemma 2.13. Let u ∈ W 1,2
0 (Ω) be a weak solution of (1.1). If for ε > 0 we

can find a small δ = δ(n, ε, ν,Λ) such that (a,Ω) satisfying (δ, 160)-vanishing of
codimension 1 and

|{x ∈ Ω :M(|Du|2) > N2
3 } ∩Br(y)| ≥ ε|Br(y)|

for y ∈ Ω with 0 < r ≤ 1, then

Br(y) ∩ Ω ⊂ {x ∈ Ω :M(|Du|2) > 1} ∪ {x ∈ Ω :M(Ψ2) > δ2}.

By an iterating argument we conclude the following power decay estimate of the
measure on the distribution concerning Hardy-Littlewood maximal functions.

Lemma 2.14. Let the assumptions of Lemma 2.13 hold and

|{x ∈ Ω :M(|Du|2) > N2
3 }| ≤ ε|Br(y)|. (2.23)

Then

|{x ∈ Ω :M(|Du|2) > N2k
3 }|

≤ εk1 |{x ∈ Ω :M(|Du|2) > 1}|+
k∑
i=1

εi1|{x ∈ Ω :M(Ψ2) > δ2N
2(k−i)
3 }|

with ε1 = ( 10
1−δ )nε.

We also need the following measure equivalency to represent Orlicz spaces, which
can be found in [2, 16].

Lemma 2.15. Let f be a nonnegative measurable function in U , and the Young
functions Φ ∈ ∆2 ∩ ∇2. Then, for γ > 0 and m > 1, we have f ∈ LΦ(U) if and
only if

S :=
∑
k≥1

Φ(mk)|{x ∈ U : f(x) > γmk}| <∞

and

c−1S ≤
∫

U
Φ(|f |)dx ≤ c(S + |U |),

where the constant c = c(γ,m,Φ) > 0.

3. Proof of Theorem 1.6

Note that Ψ2 ∈ LΦ(Ω) with Ψ = |F |+ |Dψ| for the Young function Φ ∈ ∆2∩∇2.
For any q0 > 1, we use formula (1.8) with t1 = t2 = q0, λ = Ψ2, ρ = 1 and the
relation of equivalence (2.4), Hölder inequality, Young inequality to get∫

Ω

Ψ2 dx ≤ c
∫

Ω

Ψ2q0dx+ c|Ω| ≤ c

Φ(1)

∫
Ω

Φ(Ψ2) dx+ c ≤ c
(
‖Ψ2‖β0

LΦ(Ω)
+ 1
)

(3.1)



EJDE-2018/58 GRADIENT ESTIMATE FOR ELLIPTIC OBSTACLE PROBLEMS 13

with c and β0 depending only on n,Φ, |Ω|. According to Lemma 2.3, by a scaling
argument it suffices to consider

u1 =
δu

(‖Ψ2‖LΦ(Ω))1/2
, Ψ1 =

δΨ
(‖Ψ2‖LΦ(Ω))1/2

. (3.2)

Then, (3.1) yields

∫
Ω

Ψ2
1 dx = δ2

∫
Ω

Ψ2

‖Ψ2‖LΦ(Ω)

dx ≤ cδ2
(∥∥∥ Ψ2

‖Ψ2‖LΦ(Ω)

∥∥∥β0

LΦ(Ω)
+ 1
)
≤ cδ2. (3.3)

To check condition (2.23), we use the weak (1, 1)-estimate (2.2) on the Hardy-
Littlewood maximal function, and the standard L2-estimate (1.4) on the variational
inequalities (1.1) to obtain that

∣∣{x ∈ Ω :M(|Du1|2) > N2
3

}∣∣ ≤ c(n)
N2

3

∫
Ω

|Du1|2 dx ≤ c
∫

Ω

Ψ2
1 dx ≤ cδ2 ≤ ε|B1|,

(3.4)
where we take δ > 0 sufficiently small so that the last inequality holds. Then, it
follows from Lemma 2.14 that

∞∑
k=1

Φ(N2k
3 )
∣∣{x ∈ Ω :M(|Du1|2) > N2k

3

}∣∣
≤
∞∑
k=1

Φ(N2k
3 )
(
εk1
∣∣{x ∈ Ω :M(|Du1|2) > 1

}∣∣
+

k∑
i=1

εi1
∣∣{x ∈ Ω :M(Ψ2

1) > δ2N
2(k−i)
3

}∣∣)
=
∞∑
k=1

Φ(N2k
3 )εk1

∣∣{x ∈ Ω :M(|Du1|2) > 1
}∣∣

+
∞∑
k=1

Φ(N2k
3 )

k∑
i=1

εi1
∣∣{x ∈ Ω :M(Ψ2

1) > δ2N
2(k−i)
3

}∣∣
:= I1 + I2.

(3.5)

The condition Φ ∈ ∆2 ∩ ∇2 implies Φ(N2
3 ) ≤ µΦ(1) for some constant µ > 1

depending on N2
3 . Iterating this inequality, we obtain Φ(N2k

3 ) ≤ µkΦ(1), then

I1 ≤ Φ(1)|Ω|
∞∑
k=1

(µε1)k. (3.6)

Similarly, it follows from Φ(N2k
3 ) ≤ µiΦ(N2(k−i)

3 ), the relation of equivalence (2.4),
Lemma 2.2 and Lemma 2.15, that
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I2 ≤
∞∑
i=1

(µε1)i
∞∑
k=i

Φ(N2(k−i)
3 )

∣∣{x ∈ Ω :M(Ψ2
1) > δ2N

2(k−i)
3

}∣∣
=
∞∑
i=1

(µε1)i
∞∑
k=i

Φ(N2(k−i)
3 )

∣∣{x ∈ Ω :M(
Ψ2

1

δ2
) > N

2(k−i)
3

}∣∣
≤ c

∞∑
i=1

(µε1)i
∫

Ω

Φ
(
M
(Ψ2

1

δ2

))
dx

≤ c
∞∑
i=1

(µε1)i
∫

Ω

Φ
(Ψ2

1

δ2

)
dx

≤ c
∞∑
i=1

(µε1)i
(
‖Ψ2

1

δ2
‖β1
LΦ(Ω)

+ 1
)

≤ c
∞∑
i=1

(µε1)i,

(3.7)

where 1 < β1 < ∞ is a constant. Combining (3.3), (3.6) and (3.7) together, then
we obtain

∞∑
k=1

Φ(N2k
3 )
∣∣{x ∈ Ω :M(|Du1|2) > N2k

3

}∣∣ ≤ c ∞∑
i=1

(µε1)i ≤ c,

where in the last inequality we take ε > 0 small enough such that µε1 = µ( 10
1−δ )nε ≤

1/2. Then we find a corresponding δ > 0 such that Lemma 2.13 and the estimate
(3.4) hold. Finally, using Lemma 2.2 and Lemma 2.15 with γ = 1,m = N2

3 again,
it yields∫

Ω

Φ(|Du1|2) dx ≤
∫

Ω

Φ(M(|Du1|2)) dx

≤
∞∑
k=1

Φ(N2k
3 )
∣∣{x ∈ Ω :M(|Du1|2) > N2k

3

}∣∣+ c ≤ c.

Furthermore, by (2.4), we have

‖|Du1|2‖LΦ(Ω) ≤
(
c

∫
Ω

Φ(|Du1|2) + 1
)1/α1

≤ c,

where 1 < α1 <∞. By recalling the definition of u1 in (3.2), we obtain the desired
estimate (1.14).

Acknowledgements. This research was supported by the National Natural Sci-
ence Foundation of China grant No. 11371050.

References

[1] Azroul, E. H.; Benkirane, A.; Tienari, M.; On the regularity of solutions to the Poisson
equations in Orlicz spaces, Bull Belg Math Soc (1)., 7 (2000), 1–12.

[2] Byun, S. S.; Wang, L. H.; Nonlinear gradient estimates for elliptic equations of general type,

Calc. Var. Partial Differ. Equ., 45 (3-4) (2012), 403–419.
[3] Byun, S. S.; Palagachev, D. K.; Weighted Lp-estimates for elliptic equations with measurable

coefficients in nonsmooth domains, Potential Anal., 41 (2014), 51–79.
[4] Byun, S. S.; Kim, Y.; Elliptic equations with measurable nonlinearities in nonsmooth do-

mains, Adv. Math., 288 (2016), 152–200.



EJDE-2018/58 GRADIENT ESTIMATE FOR ELLIPTIC OBSTACLE PROBLEMS 15

[5] Byun, S. S.; Ok, J.; Palagachev, D. K.; Parabolic systems with measurable coefficients in

weighted Orlicz spaces, Commun. Contemp. Math., 18 (2) (2016), 1550018, 19 pages.

[6] Chipot, M.; Kinderlehrer, D.; Vergara-Caffarelli, G.; Smoothness of linear laminates, Arch.
Ration. Mech. Anal., 96 (1986), 81–96.

[7] Dong, H. J.; Kim, D.; Elliptic equations in divergence form with partially BMO coefficients,

Arch. Ration. Mech. Anal., 196 (2010), 25–70.
[8] Dong, H. J.; Kim, D.; Parabolic and elliptic systems in divergence form with variably partially

BMO coefficients, SIAM J. Math. Anal., 43 (3) (2011), 1075–1098.

[9] Dong, H. J.; Kim, D.; On the Lp-solvability of higher order parabolic and elliptic systems
with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889–941.

[10] Jia, H. L.; Li, D. S.; Wang, L. H.; Regularity in Orlicz spaces for the Poisson equation,

Manuscripta Math., 122 (2007), 265–275.
[11] Jia, H. L.; Li, D. S.; Wang, L. H.; Global regularity for divergence form elliptic equations in

Orlicz spaces on quasiconvex domains, Nonlinear Anal., 74 (2011), 1336–1344.
[12] Kim, D.; Krylov, N. V.; Elliptic differential equations with coefficients measurable with respect

to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2007), 489–

506.
[13] Kokilashvili, V.; Krbec, M.; Weighted inequalities in Lorentz and Orlicz spaces, Singapore:

World Scientific Publishing Co., 1991.

[14] Li, H. Z.; Zhang, J. J.; Zheng, S. Z.; Orlicz estimates for nondivergence linear elliptic equa-
tions with partially BMO coefficients, Complex Variables and Elliptic Equations, Published

online: 28 Jul 2017, https://doi.org/ 10.1080/17476933.2017.1351960.
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