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FRACTIONAL-LIKE DERIVATIVE OF LYAPUNOV-TYPE
FUNCTIONS AND APPLICATIONS TO STABILITY ANALYSIS

OF MOTION

ANATOLIY A. MARTYNYUK, IVANKA M. STAMOVA

Abstract. This article discusses the application of a fractional-like derivative

of Lyapunov-type functions in the stability analysis of solutions of perturbed

motion equations with a fractional-like derivative of the state vector. The main
theorems of the direct Lyapunov method for this class of motion equations are

established.

1. Introduction

It is known that the Lyapunov function method (or the direct method of Lya-
punov) is extended to many classes of equations of perturbed motion, including
systems with distributed parameters and sets of equations in metric spaces. See,
for example [9] and the references therein. Recall that the stability of motion theory
in the sense of Lyapunov was created by him as a result of his work in 1889–1892 [8].
The key element of the direct Layapunov method is the opportunity to calculate
the total derivative of a composition of functions (chain rule) corresponding to an
auxiliary function under consideration and the perturbed motion equations.

The great interest in equations with fractional derivatives over the last two
decades (see [4, 7, 11, 12, 14] and the bibliography therein) has prompted many
researchers to generalize the direct Lyapunov method to this class of equations.
However, the lack of a simple formula for calculating the fractional derivative of a
composition of functions does not allow us to get results similar to those obtained
for many types equations for which the total derivative of the Lyapunov function
is calculated as in the classic analysis. Along with the most common definitions of
Riemann-Liouville, Hadamard, Grünwald-Letnikov, in 1969 Caputo (see [5]) pro-
posed his definition of a fractional derivative.

In contrast to the classical definitions of fractional derivatives, the Caputo defini-
tion allows ones to choose the initial values of the solutions of fractional differential
equations in the same way as for a system of ordinary differential equations. This
result made it possible to simplify somewhat the analysis of the equations of motion
with a Caputo’s fractional derivative. But, as for classical definitions the problem
for the evaluation of the Caputo-type fractional derivative of a composition of func-
tions remains open.
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It should be noted that some estimates of the Caputo derivative for simple func-
tions of Lyapunov (see [3, 10, 11] and the bibliography there) have expanded the
possibilities of the direct Lyapunov method when analyzing the equations of per-
turbed motion with Caputo derivatives of the state vector. The monograph [7]
contains the results for equations of this type, obtained up to 2009. Many of these
results are generalized later for functional fractional differential equations and im-
pulsive fractional differential equations [14].

Recently, in [1], a definition of a fractional derivative named “conformable frac-
tional derivative” has been proposed by the authors. In the opinion of the authors,
it is natural to named the new derivative as a “fractional-like derivative” (FLD).
In this article the same expression is used, since it reflects the essence of the new
definition of a fractional derivative.

This article is organized as follows. Section 2 provides definitions of a fractional-
like derivative and some rules for computing it for simple functions. In Section 3 our
concept of a fractional-like derivative of a Lyapunov-type function is introduced,
and a Yoshizawa-type relation is established for such derivatives. In addition, it is
shown here that for some simple Lyapunov functions of the type of quadratic forms,
the fractional-like derivative is an upper bound to the Caputo derivative of these
functions. In Section 4 sufficient conditions for stability, asymptotic stability and
instability of the trivial solution of equations of perturbed motion with a fractional-
like derivative of the state vector are presented. In Section 5 we prove the main
theorems of the comparison principle on the basis of the Lyapunov scalar and
vector functions for fractional-like equations. In Section 6 sufficient conditions for
the stability of motion on a finite interval are given. Finally, in Section 7 concluding
remarks are presented.

2. Fractional-like derivatives

Let q ∈ (0, 1], R+ = [0,∞), t0 ∈ R+ and given a continuous function x(t) :
[t0,∞)→ R.

Definition 2.1 ([1, 6]). For any q ∈ (0, 1] the fractional-like derivative Dqt0(x(t))
of the function x(t) of order 0 < q ≤ 1 is defined by

Dqt0(x(t)) = lim
{x(t+ θ(t− t0)1−q)− x(t)

θ
, θ → 0

}
.

If t0 = 0, then Dqt0(x(t)) has the form [6]

Dq0(x(t)) = lim
{x(t+ θt1−q)− x(t)

θ
, θ → 0

}
.

In the case t0 = 0, we will denote Dq0(x(t)) = Dq(x(t)).
If Dq(x(t)) exists on an open interval of the type (0, b), then

Dq(x(0)) = lim
t→0+

Dq(x(t)).

If the fractional-like derivative of x(t) of order q exists on (t0,∞), then the function
x(t) is said to be q-differentiable on the interval (t0,∞).

Proposition 2.2 ([6]). Let q ∈ (0, 1] and x(t), y(t) be q-differentiable at a point
t > 0. Then:

(a) Dqt0(ax(t) + by(t)) = aDqt0(x(t)) + bDqt0(y(t)) for all a, b ∈ R;
(b) Dqt0(tp) = ptp−q for any p ∈ R;
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(c) Dqt0(x(t)y(t)) = x(t)Dqt0(y(t)) + y(t)Dqt0(x(t));
(d)

Dqt0
(x(t)
y(t)

)
=
y(t)Dqt0(x(t))− x(t)Dqt0(y(t))

y2(t)
;

(e) Dqt0(x(t)) = 0 for any x(t) = λ, where λ is an arbitrary constant.

Proposition 2.3 ([1, 13]). Let h(y(t)) : (t0,∞)→ R. If h(·) is differentiable with
respect to y(t) and y(t) is q-differentiable, where 0 < q ≤ 1, then for any t ∈ R+,
t 6= t0 and y(t) 6= 0

Dqt0h(y(t)) = h′(y(t))Dqt0(y(t)),
where h′(t) is a partial derivative of h.

The fractional-like integral of order 0 < q ≤ 1 with a lower limit t0 is defined by
(see [6])

Iqt0x(t) =
∫ t

t0

(s− t0)q−1x(s)ds.

Proposition 2.4 ([6]). Let the function x(t) : (t0,∞) → R be q-differentiable for
0 < q ≤ 1. Then for all t > t0,

Iqt0(Dqt0x(t)) = x(t)− x(t0).

3. Fractional-like derivatives of Lyapunov-type functions

Consider a system of differential equations with fractional-like derivative of the
state vector

Dqt0x(t) = f(t, x(t)), (3.1)

x(t0) = x0, (3.2)

where x ∈ Rn, f ∈ C(R+ × Rn,Rn), t0 ≥ 0. It is further assumed that for
(t0, x0) ∈ int(R+ × Rn) the initial value problem (IVP) (3.1)–(3.2) has a solution
x(t, t0, x0) ∈ Cq([t0,∞),Rn) for all t ≥ t0. In addition, it is assumed that f(t, 0) = 0
for all t ≥ t0.

Let for equation (3.1) a Lyapunov-type function V (t, x) ∈ Cq(R+ × Rn,R+) be
constructed in some way such that V (t, 0) = 0 for all t ∈ Rn. Introduce the notation
Br = {x ∈ Rn : ‖x‖ < r}, r > 0.

Definition 3.1. Let V be a continuous and q-differentiable function (scalar or
vector), V : R+ × Br → Rs (s = 1 or s = m, respectively), and x(t, t0, x0) be the
solution of the IVP (3.1)–(3.2), which exists and is defined on R+ × Br. Then for
(t, x) ∈ R+ ×Br the expression:

(1)
+Dqt0V (t, x)

= lim sup
{V (t+ θ(t− t0)1−q, x(t+ θ(t− t0)1−q, t, x))− V (t, x)

θ
, θ → 0+

}
,

(3.3)

is the upper right fractional-like derivative of the Lyapunov function,
(2)

+Dqt0V (t, x)

= lim inf
{V (t+ θ(t− t0)1−q, x(t+ θ(t− t0)1−q, t, x))− V (t, x)

θ
, θ → 0+

}
,
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is the lower right fractional-like derivative of the Lyapunov function,
(3)
−Dqt0V (t, x)

= lim sup
{V (t+ θ(t− t0)1−q, x(t+ θ(t− t0)1−q, t, x))− V (t, x)

θ
, θ → 0−

}
,

is the upper left fractional-like derivative of the Lyapunov function,
(4)

−Dqt0V (t, x)

= lim inf
{V (t+ θ(t− t0)1−q, x(t+ θ(t− t0)1−q, t, x))− V (t, x)

θ
, θ → 0−

}
,

is the lower left fractional-like derivative of the Lyapunov function.

An efficient application of the upper right fractional-like derivatives of Lyapunov
functions in the construction of his direct method is based on the following result
(cf. [15]).

Lemma 3.2. Let V (t, x) be continuous, q-differentiable and locally Lipschitz with
respect to its second variable x on R+ × Br. Then the fractional-like derivative of
the function V (t, x) with respect to the solution x(t, t0, x0) is defined by

+Dqt0V (t, x)

= lim sup
{V (t+ θ(t− t0)1−q, x+ θ(t− t0)1−qf(t, x))− V (t, x)

θ
, θ → 0+

}
,

(3.4)

where (t, x) ∈ R+ ×Br.

If V (t, x(t)) = V (x(t)), 0 < q ≤ 1, the function V is differentiable on x, and the
function x(t) is q-differentiable on t for t > t0, then

+Dqt0 V (t, x) = V ′(x(t))Dqt0x(t),

where V ′ is a partial derivative of the function V .
Taking relations (3.3) and (3.4) into account, we obtain the result by Yoshizawa

[15] for a fractional-like derivative of the function V (t, x) in the form
+Dqt0V (t, x(t, t0, x0)) = +Dqt0 V (t, x)

∣∣
(3.1)

.

Definition 3.3. If the function V (t, x) together with one of its fractional-like
derivatives resolves the problem of stability (instability) of the solutions of (3.1),
we will call V (t, x) a Lyapunov function for the fractional-like system (3.1).

Example 3.4. Let t > t0, V (t, x) = V1(x) = x2(t), x ∈ R. Then, according to (c)
in Proposition 2.2, we have

+Dqt0 V (x(t)) =+ Dqt0(x(t)x(t)) = x(t)+Dqt0(x(t)),

++Dqt0(x(t))x(t) = 2x(t)+Dqt0(x(t)) (3.5)

for all t ≥ t0. Consider the following scalar fractional-like equation for 0 < q ≤ 1,

Dqt0x(t) = f(t, x(t)), t ≥ t0, (3.6)

where f : R × Rn → R, f(t, 0) = 0 for t ≥ t0. For the function V (x) = 1
2x

2(t),
considering (3.5), we obtain

+Dqt0V1(x(t))
∣∣
(3.6)

= x(t)+Dqt0x(t) = x(t)f(t, x(t)) (3.7)
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in the domain of the function f(t, x).
Let V (t, x) = V2(x) = xTx, x ∈ Rn. Then, according to (c) in Proposition 2.2,

we have
+Dqt0(V2(x(t)) =+ Dqt0(xT (t)x(t)) = 2xT (t)+Dqt0x(t)). (3.8)

Example 3.5. Let x1, x2 : [t0,∞) → R and x1, x2 be q-differentiable. Consider
the equations of perturbed motion with fractional-like derivatives in the form

Dqt0x1(t) = −µ(t)x2 − ν(t)x1,

Dqt0x2(t) = µ(t)x1 − ν(t)x2.
(3.9)

where µ(t) and ν(t) are continuous single-valued functions defined on t ≥ t0.
For the function V2(x1, x2) = 1

2 (x2
1 + x2

2) according to (c) in Proposition 2.2, we
obtain

+Dqt0
(1

2
(x2

1 + x2
2)
)

= x1(t)+Dqt0x1(t) + x2(t)+Dqt0x2(t)

= −2ν(t)(x2
1(t) + x2

2(t)).
(3.10)

Remark 3.6. In [2] the authors obtain the following estimate for a fractional
derivative in the Caputo sense of the Lyapunov function V (t, x1, x2) = (x2

1 + x2
2)

with respect to the system (3.9)
c
t0D

q
t (V (t, x1, x2)) ≤ −2(x2

1(t) + x2
2(t))

for x ∈ R2. Comparing this estimate with the estimate (3.10), we see that when
estimating a fractional Caputo derivative we “lose” the effect of the function ν(t)
on the properties of the zero solution of the system of equations (3.9).

Lemma 3.7. Let x ∈ R, y ∈ Rn and P is an n× n constant matrix. Then for the
functions V1 = x2(t), V2 = yT (t)y(t), and V3 = yT (t)Py(t) the following estimates
hold:

(a) c
t0D

q
t (x2(t)) ≤+ Dqt0(x2(t)) for x ∈ R;

(b) c
t0D

q
t (yT (t)y(t)) ≤+ Dqt0(yT (t)y(t)) for y ∈ Rn;

(c) c
t0D

q
t (yT (t)Py(t)) ≤+ Dqt0(yT (t)Py(t)), for y ∈ Rn.

Proof. We apply [3, Lemma 1] to the Caputo fractional derivative of the function
V1 and obtain

c
t0D

q
t (x2(t)) ≤ 2x(t) ct0D

q
t (x(t)).

Similar estimates we can obtain for the functions V2 and V3. Taking this into
account the equalities (3.5) and (3.8), we obtain assertions (a)–(c) of Lemma 3.7.

�

From Lemma 3.7 it follows that the fractional-like derivative of a Lyapunov-type
function is an upper bound of the Caputo fractional derivatives of this Lyapunov
function.

4. Direct Lyapunov’s method and main results

The Lyapunov-type stability definitions for a fractional-like system (3.1) remain
the same as for ordinary differential equations and differential equations with Ca-
puto’s fractional derivatives. See, for example, [7, 14] and the references therein.

In our main theorems we will use the Hahn class of functions K = {a ∈
C[R+,R+] : a(u) is strictly increasing and a(0) = 0}.



6 A. A. MARTYNYUK, I. M. STAMOVA EJDE-2018/62

Theorem 4.1. Assume that for the fractional-like system (3.1) there exist a q-
differentiable function V (t, x), V (t, 0) = 0 for t ≥ t0 and functions a, b ∈ K such
that

(i) V (t, x) ≥ a(‖x‖), (t, x) ∈ R+ ×Br,
(ii) V (t, x) ≤ b(‖x‖), (t, x) ∈ R+ ×Br,

(iii)
+Dqt0(V (t, x(t))) ≤ 0 for (t, x) ∈ R+ ×Br. (4.1)

Then the state x = 0 of (3.1) is uniformly stable.

Proof. Let x(t) = x(t, t0, x0) be the solution of (3.1) for (t0, x0) ∈ (R+×Br) defined
for all t ≥ t0. Let t0 ∈ R+ and 0 < ε < r be given. By conditions (i), (ii) of Theorem
4.1 we can choose δ = δ(ε) > 0 so that

b(δ) < a(ε). (4.2)

We will prove that ‖x0‖ < δ implies ‖x(t)‖ < ε for all t ≥ t0. If this is not true
there exists a solution x(t, t0, x0) = x(t) of (3.1) such that for ‖x0‖ < δ there is
t1 > t0 for which

‖x(t1)‖ = ε, ‖x(t)‖ < ε for all t ∈ [t0, t1).

By Proposition 2.4 and condition (4.1), the Lyapunov relation

V (t, x(t))− V (t0, x0) = Iqt0(+Dqt0(V (t, x(t))))

becomes
V (t, x(t))− V (t0, x0) ≤ 0. (4.3)

For t = t1 we have from (4.3),

a(ε) ≤ V (t1, x(t1)) ≤ V (t0, x0) ≤ b(‖x0‖) < a(ε). (4.4)

This inequality contradicts condition (4.2). This completes the proof. �

Example 3.4 continued. From (3.7) and Theorem 4.1 it follows that the state
x = 0 of the fractional-like equation (3.6) is uniformly stable if

x(t)f(t, x(t)) ≤ 0

for (t, x) ∈ R+ ×Br.

Theorem 4.2. Let the condition of Theorem 4.1 be satisfied and instead of (4.1)
the following estimate hold

+Dqt0(V (t, x(t))) ≤ −d(‖x‖) (4.5)

for (t, x) ∈ R+ × Br, where d ∈ K. Then the state x = 0 of system (3.1) is
uniformly asymptotically stable.

Proof. Since all conditions of Theorem 4.1 are satisfied the state x = 0 is uniformly
stable. We will prove that it is uniformly asymptotically stable.

Let 0 < ε < r and δ = δ(ε) > 0 be the same as in in Theorem 4.1. For ε0 ≤ r
we choose δ0 = δ0(ε0) > 0 and consider the solution x(t, t0, x0) with initial data
t0 ∈ R+ and ‖x0‖ < δ0. Let for t0 < t ≤ t0+T (ε), where T (ε) ≥

(
qb(δ0)/d(δ(ε))

)1/q
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for x(t) we have ‖x(t)‖ ≥ δ(ε). We will show that this is not possible under the
conditions of Theorem 4.2. From the Lyapunov relation we obtain

V (t, x(t))− V (t0, x0) = Iqt0(+Dqt0(V (t, x(t))

≤ −Iqt0(d(‖x(t)‖)) = −
∫ t

t0

(s− t0)q−1d(‖x(s)‖)ds.
(4.6)

From (4.6) we obtain

V (t, x(t)) ≤ V (t0, x0)−
∫ t

t0

(s− t0)q−1d(‖x(s)‖)ds

≤ b(δ0)− d(δ(ε))
(t− t0)q

q
.

(4.7)

For t = t0 + T (ε) by (4.7) we have

0 < a(δ(ε)) ≤ V (t0 + T (ε), x(t0 + T (ε))

≤ b(δ0)− d(δ(ε))
T (ε)q

q
≤ 0,

which is a contradiction.
The above contradiction shows that there exists t1 ∈ [t0, t0 + T (ε)] such that

‖x(t1)‖ < δ(ε). Hence ‖x(t)‖ < ε for all t ≥ t0 + T (ε) as far as ‖x0‖ < δ0 and
lim ‖x(t)‖ = 0 as t→∞ uniformly on t0 ∈ R+. This completes the proof. �

Example 3.5 continued. It follows from (3.5) and conditions of Theorem 4.2
that the state x1 = x2 = 0 of (3.9) will be uniformly asymptotically stable if the
function ν(t) satisfies the condition ν(t) ≥ ν0 > 0, since in this case we have

+Dqt0(V (x1(t), x2(t))) ≤ −2ν0(x2
1(t) + x2

2(t)) < 0

for all t ≥ t0 and 0 < q ≤ 1.
In the next theorem, we will establish conditions for the instability of the state

x = 0 of system (3.1).

Theorem 4.3. Let for the system (3.1) there exists a q-differentiable function
V (t, x) : R+ ×Bε → R, such that on [t0,∞)×G(h), where G(h) ⊂ Bε, t0 ≥ 0, the
following conditions are satisfied:

(1) 0 < V (t, x) ≤ c <∞ for some constant c;
(2) +Dqt0 V (t, x)

∣∣
(3.1)
≥ a(V (t, x)), where a ∈ K, 0 < q ≤ 1;

(3) the state x = 0 belongs to ∂G(h);
(4) V (t, x)=0 for [t0,∞)× (∂G(h) ∩Bε).

Then the state x = 0 of system (3.1) is unstable.

Proof. It follows from condition (3) of Theorem 4.3 that for any δ > 0 there exists
a x0 ∈ G(h) ∩Bδ such that V (t0, x0) > 0. For the solution x(t) = x(t, t0, x0) while
x(t) ∈ G(h) from conditions (3.1), (2) we have

c ≥ V (t, x(t))− V (t0, x0) ≥ Iqt0a(V (t, x(t))

≥ V (t0, x0) + a(V (t0, x0))
(t− t0)q

q
.

(4.8)

From this inequality it follows that the solution x(t) must leave the domain G(h)
at some moment t1 > t0.
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Since condition (4) of Theorem 4.3 is satisfied, then x(t) can not leave the domain
G(h) across the boundary ∂G(h), because G(h) ⊂ Bε. Therefore x(t) will leave Bε,
i.e. ‖x(t1)‖ ≥ ε. This completes the proof. �

From Theorem 4.3, we have the following corollary.

Corollary 4.4. Suppose that all conditions of Theorem 4.3 hold and conditions (1)
and (2) are replaced by the following conditions, respectively:

(1*) 0 < V (t, x) ≤ b(‖x‖),
(2*) +Dqt0V (t, x) ≥ a(‖x‖), where a, b ∈ K.

Then the state x = 0 of system (3.1) is unstable.

Corollary 4.5. Suppose that all conditions of Theorem 4.3 hold and condition (2)
is replaced by

+Dqt0V (t, x) = λV (t, x) +W (x(t)), t ∈ [t0,∞), x ∈ G(h), λ > 0, (4.9)

where the function W is continuous and W (x) ≥ 0. Then the state x = 0 of system
(3.1) is unstable.

Proof. Relation (4.9) can be represented in the integral form

V (t, x(t)) = V (t0, x(t0)) exp
(
λ

(s− t0)q

q

)
+
∫ t

t0

exp
(
λ

(s− t0)q

q

)
× exp

(
− λ (s− t0)q

q

)
(s− t0)q−1W (x(s))ds.

From the above relation, since the second term is positive by the conditions of
Corollary 4.5, for any 0 < q ≤ 1 we have

V (t, x(t)) ≥ V (t0, x(t0)) exp
(
λ

(t− t0)q

q

)
, t ≥ t0, (4.10)

Let the initial state of the solution x(t) = x(t, t0, x0) be x0 ∈ U , where U is
a neighborhood of the origin x = 0. Since for any t ≥ t0 the estimate (4.10) is
satisfied with respect to the solution x(t), then for t → ∞ the function V (t, x(t))
increases while, by the conditions of Theorem 4.3 it is bounded. Hence for x(t)
there exists t∗ such that x(t∗) will leave Br. This proves the instability of the state
x = 0 of system (3.1). �

Example 4.6. Consider the fractional-like system for 0 < q ≤ 1,
Dqt0x(t) = n(t)y − xg(t, x, y), x(t0) = x0;

Dqt0y(t) = −n(t)x− yg(t, x, y), y(t0) = y0,
(4.11)

where n(t) is a continuous function for all t ≥ t0, g(t, x, y) is a sum of a convergent
power series, g(t, 0, 0) = 0 for t ≥ t0. Applying the function 2V (x, y) = x2 + y2 to
system (4.11) we have

+Dqt0 V (x(t)), y(t)) = −(x2 + y2)g(t, x, y). (4.12)

Performing a q-integration of (4.12), we obtain the Lyapunov relation

V (x(t), y(t))− V (x0, y0) ≤ −r2
∫ t

t0

g(s, x(s), y(s))
(s− t0)1−q

ds (4.13)

on the domain x2 + y2 ≤ r2 of the equilibrium state x = y = 0. From the relation
(4.12) and inequality (4.13) it follows that:
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(a) By Theorem 4.1 the state x = y = 0 of (4.11) is uniformly stable provided
the function is such that g(t, x, y) ≥ 0 for t ≥ t0;

(b) By Theorem 4.2 the state x = y = 0 of system (4.11) is uniformly asymp-
totically stable, if g(t, x, y) > 0 on the domain x2 + y2 ≤ r2 for t ≥ t0;

(c) By Theorem 4.3 the state x = y = 0 of system (4.11) is unstable if
g(t, x, y) < 0 for t ≥ t0 on a sufficiently small neighborhood.

5. Comparison principle

We continue our consideration of system (3.1) together with the q-differentiable
function V (t, x) ∈ C(R+ ×Rn,R+). Consider the total fractional-like derivative of
the function V (t, x) of the type (3.4).

As in the general theory of stability of motion, the application of the compari-
son principle allows us to indicate in a general form the structure of the stability
conditions for fractional-like equations of perturbed motion. We will show that the
following comparison theorem holds.

Theorem 5.1. Assume that:

(1) For the system (3.1) there exists a q-differentiable function V (t, x) with
fractional-like derivative of the type (3.4);

(2) There exists a function g(t, u) ∈ C(R2
+,R) such that

+Dqt0 V (t, x) ≤ g(t, V (t, x)), (5.1)

for (t, x) ∈ R+ × Rn and 0 < q ≤ 1;
(3) There exists a maximal solution r(t) = r(t, t0, r0) ∈ Cq([t0,∞),R) of the

comparison scalar fractional-like equation

Dqt0 u(t) = g(t, u), u(t0) = u0 ≥ 0 (5.2)

for all t ≥ t0.

Then along the solutions of system (3.1) the estimate

V (t, x(t)) ≤ r(t), (5.3)

is valid for all t ≥ t0 whenever V (t0, x0) ≤ u0.

Proof. Let the solution x(t) = x(t, t0, x0) of the IVP (3.1)–(3.2) exists on t ∈ [t0,∞)
and V (t0, x0) ≤ u0. Denote by m(t) = V (t, x(t)) and evaluate the fractional-like
derivative of the function m(t) by the formula (3.4). From condition (2) of Theorem
5.1 we obtain

Dqt0 m(t) ≤ g(t, V (t, x)) = g(t,m(t)). (5.4)

Similar to [7, Theorem 2.8.3] we have

Dqt0 u(t) = g(t, u) + ε, u(t0) = u0 + ε ≥ 0, ε > 0. (5.5)

From this equality it follows that

Dqt0u(t, ε) = g(t, u(t, ε)) + ε > g(t, u(t, ε)),

so m(t) < u(t, ε) and, hence limu(t, ε) = r(t) as ε→ 0, uniformly on t for t0 ≤ t <
T < +∞. This completes the proof. �
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Further, we will represent the fractional-like system (3.1) in the form

Dqt0 xi(t) = fi(t, xi) +Ri(t, x1(t), . . . , xm(t)), (5.6)

where xi ∈ Rni ,
∑m
i=1 ni = n, fi ∈ C(R+ × Rni ,Rni), Ri ∈ C(R+ × Rn1 × . . . ×

Rnm ,Rni), and fi(t, 0) = 0 for t ≥ t0.
Suppose that for the independent subsystems

Dqt0 xi(t) = fi(t, xi), i = 1, 2, . . . ,m (5.7)

Lyapunov-type functions Vi(t, xi) exist such that
+Dqt0 (Vi(t, xi(t)))

∣∣
(27)
≤ −di(‖xi‖) + wi(t, xi, x). (5.8)

Here di(·) are functions of the Hahn class of functions K, wi(t, ·, ·) are continuous
with respect to t functions, and wi(t, 0, 0) = 0 for t ≥ t0.

If for the right-hand side of (5.8) there is a majorizing function H(t;u) which is
quasi-monotonic (see [7, 14, 15]) non-decreasing with respect to u and such that

+Dqt0V (t, x(t)) ≤ H(t, V (t, x(t))), (5.9)

where V (t, x) = (V1(t, x1), . . . , Vm(t, xm)), then the following theorem holds.

Theorem 5.2. Assume that V ∈ C(R+ × Rn,Rm+ ) is q-differentiable,
+Dqt0(V (t, x(t))) ≤ H(t, V (t, x(t))),

where H ∈ C(R+ × Rm+ ,Rm) and for all t ≥ t0 there exists the maximal solution
u(t) of the fractional-like equation

Dqt0 u(t) = H(t, u), u(t0) = u0,

for values 0 < q ≤ 1. Then V (t0, x0) ≤ u0 implies

V (t, x(t)) ≤ u(t), t ≥ t0. (5.10)

Proof. The proof of Theorem 5.2 is similar to the proof of [7, Theorem 4.2.1], taking
into account that the total fractional-like derivative of the Lyapunov is evaluated
according to Proposition 2.3. �

Estimates (5.3) and (5.10) allow us to establish stability criteria for the state
x = 0 of system (3.1) in the same way as it is done the monograph [7].

Corollary 5.3. If in the estimate (5.1) the majorizing function

g(t, V (t, x)) ≤ kV (t, x), k = const > 0,

then

V (t, x(t)) ≤ V (t0, x0) exp
(
k

(t− t0)q

q

)
(5.11)

for all t ∈ [t0, t0 + T ] and any values of 0 < q ≤ 1.

Corollary 5.4. If in estimate (4.13) the majorizing function

g(t, V (t, x)) ≤ k(t)V (t, x),

where k(t) is a q-differentiable function, then

V (t, x(t)) ≤ V (t0, x0) exp
(∫ t

t0

k(s)(s− t0)q−1ds
)

(5.12)

for all t ∈ [t0, t0 + T ] and any values of 0 < q ≤ 1.
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6. Stability on a finite interval

For the fractional-like system (3.1) we give the following definition of the stability
on a finite interval.

Definition 6.1. System (3.1) is stable on a finite interval, if for given 0 < c1 < c2,
t0 and T > 0 the solution x(t) satisfies the estimate

V (t, x(t)) ≤ c2 for all t ∈ [t0, t0 + T ]

whenever V (t0, x0) < c1.

The following theorem follows directly from the estimates (5.11) and (5.12).

Theorem 6.2. If for system (3.1) there exists a q-differentiable function V (t, x) ∈
C(R+ × Rn,R+), such that the conditions of corollaries 3 or 4 are satisfied, then
system (3.1) is stable on a finite interval if one of the conditions:

(1) exp
(
k (t−t0)q

q

)
≤ c2

c1
for all t ∈ [t0, t0 + T ] and any values of 0 < q ≤ 1;

(2) exp
( ∫ t

t0
k(s)(s − t0)q−1ds

)
≤ c2

c1
for all t ∈ [t0, t0 + T ] and any values of

0 < q ≤ 1 is satisfied, respectively.

Concluding remarks. For systems of equations with Caputo fractional deriva-
tives of the state vector there exist several definitions of fractional derivatives of a
Lyapunov-type function (see, [2, 7]). The actual calculation of the Caputo fractional
derivative for a Lyapunov-type function is difficult due to the absence of a chain rule
for this derivative, as for other fractional derivatives (Riemann-Liouville, Grünwald-
Letnikov, etc.). For this reason, when considering particular examples, it is neces-
sary to estimate the fractional derivative of the Lyapunov function [2, 3, 10, 11].

In this paper, the direct Lyapunov method is extended to systems of equations of
perturbed motion with fractional-like derivatives. Theorems of the direct Lyapunov
method and the comparison principle are established for the scalar and vector
Lyapunov functions, taking into account that for a fractional-like derivative, a chain
rule takes place. The relationship between a fractional-like derivative and a Caputo
fractional derivative (Lemma 3.7) indicates that the fractional-like derivative of
Lyapunov functions under consideration is a majorant for the Caputo fractional
derivative of these functions. This circumstance should be taking into account
when considering specific problems of the stability of motions.
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of this approach.
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