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RADIAL SOLUTIONS FOR INHOMOGENEOUS BIHARMONIC

ELLIPTIC SYSTEMS

REGINALDO DEMARQUE, NARCISO DA HORA LISBOA

Abstract. In this article we obtain weak radial solutions for the inhomoge-

neous elliptic system

∆2u + V1(|x|)|u|q−2u = Q(|x|)Fu(u, v) in RN ,

∆2v + V2(|x|)|v|q−2v = Q(|x|)Fv(u, v) in RN ,

u, v ∈ D2,2
0 (RN ), N ≥ 5,

where ∆2 is the biharmonic operator, Vi, Q ∈ C0((0,+∞), [0,+∞)), i = 1, 2,

are radially symmetric potentials, 1 < q < N , q 6= 2, and F is a s-homogeneous

function. Our approach relies on an application of the Symmetric Mountain
Pass Theorem and a compact embedding result proved in [17].

1. Introduction

In this article concerns the existence of nontrivial solutions for the inhomoge-
neous biharmonic elliptic system

∆2u+ V1(|x|)|u|q−2u = Q(|x|)Fu(u, v) in RN ,

∆2v + V2(|x|)|v|q−2v = Q(|x|)Fv(u, v) in RN ,

u, v ∈ D2,2
0 (RN ), N ≥ 5,

(1.1)

where ∆2 is the biharmonic operator, Vi, Q ∈ C0((0,+∞), [0,+∞)), i = 1, 2,
are radially symmetric potentials, 1 < q < N , q 6= 2, and F is a s-homogeneous
function satisfying the following assumptions:

(A1) Vi ∈ C0((0,+∞), [0,+∞)), such that

lim inf
r→+∞

Vi(r)

ra
> 0, lim inf

r→0

Vi(r)

ra0
> 0, (1.2)

for some real numbers a and a0.
(A2) Q ∈ C0((0,+∞), [0,+∞)), is such that

lim sup
r→+∞

Q(r)

rb
<∞, lim sup

r→0

Q(r)

rb0
<∞, (1.3)

for some real numbers b and b0.
(A3) F ∈ C1(R×R,R) is a homogeneous function of degree s, with s > max{2, q}.
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(A4) There exists C > 0 such that

|Fu(u, v)| ≤ C(|u|s−1 + |v|s−1), (u, v) ∈ R2,

|Fv(u, v)| ≤ C(|u|s−1 + |v|s−1), (u, v) ∈ R2.
(1.4)

(A5) F (u, v) > 0, ∀ u, v > 0.

Nonlinear elliptic problems of fourth order without singularities in bounded do-
mains have been extensively studied by several authors, see [9, 20, 38, 40], and
references therein.

For application or motivation, we note that, when Ω ⊂ RN is a bounded domain,
the problem

∆2u+ c∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

which arises in the study of traveling waves in suspension bridges (see [16, 24, 28])
and in the study of the static deflection of an elastic plate in a fluid.

For studies on the existence and multiplicity of solutions for nonlinear bihar-
monic problems in unbounded domains, the reader is referred to [19, 30, 35] in the
radial case, and to [1] in the non-radial sub-(sup) linear case. Maximum principle
results for biharmonic equation in unbounded domains are obtained in [32]. Also
for unbounded domains, nontrivial solutions and multiplicity results are obtained
in [4, 5, 6, 15, 31, 39] and in references therein. Additional results in the scalar case
may be found in [34, 36, 37, 41, 42].

Elliptic systems may be used to describe the multiplicative chemical reactions
catalyzed by catalyst. For the existence of nontrivial solutions to nonvariational
systems, potential systems and Hamiltonian systems including critical exponents
case see, for instance, [3, 21, 25, 26, 42]. See also [2, 7, 12, 13, 14, 27, 29].

For results for fourth-order equations with singular potential see [30] and [6].
Alves et. al. in [6] proved the existence of solutions to the problem

∆2u+ V (x)|u|q−1u = |u|2
∗−2u, in Ω ⊂ RN

u ∈ D2,2
0 (Ω), N ≥ 5,

where 1 ≤ q ≤ 2∗ − 1 and V = V (x) is a potential that changes sign and has
singularities in Ω. Wang and Shen in [39] proved existence of sign-changing solutions
for the problem

∆2u = λ
|u|2∗∗(s)−2u

|x|s
+ βa(x)|u|r−2u, in Ω ⊂ RN

u ∈ D2,2
0 (Ω), N ≥ 5,

motivated by the Hardy-Rellich’s inequality

λ̄

∫
RN

u2

|x|4
dx ≤

∫
RN

|∆u|2dx,

as improved in their work. Radial solutions for the biharmonic equation

∆2u+ V (|x|)|u|q−2u = Q(|x|)f(u),

were obtained in [11], when q = 2, and in [17], when q 6= 2. Motivated by the work
of Alves [2] for elliptic systems, a natural question is whether or not the results of
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[17] can be extended to the elliptic system (1.1). Here we answer this question in
the affirmative when (A3) and (A4) are satisfied.

Before stating our results, we to introduce some notation. Let D2,2
0 (RN ) be

the closure of C∞0 (RN ) under the norm ‖∆u‖2 and D2,2
0,r(RN ) the set of radially

symmetric functions in D2,2
0 (RN ).

For p ≥ 1 and a function ν : RN → R define

Lp(RN ; ν) =
{
u : RN → R u is Lebesgue measurable and

∫
RN

ν(x)|u|pdx < +∞
}

endowed with the norm

‖u‖p,ν :=
(∫

RN

ν(x)|u|pdx
)1/p

.

Define the Banach space XVi
:= D2,2

0 (RN ) ∩ Lp(RN ;Vi), with the norm

‖u‖Vi = ‖∆u‖2 + ‖u‖p,Vi

and XVi,r the set of radially symmetric functions in XVi
, i = 1, 2.

We consider the product space X := XV1 ×XV2 endowed with the norm

‖(u, v)‖ :=
(∫

RN

(|∆u|2 + |∆v|2)dx
)1/2

+
(∫

RN

(V1(|x|)|u|q + V2(|x|)|v|q)dx
)1/q

,

and Xr := XV1,r×XV2,r. Also, we endow the space Ls(RN ;Q)×Ls(RN ;Q) endowed
with the norm

‖(u, v)‖s,Q =
(∫

RN

Q(|x|)(|u|s + |v|s)dx
)1/s

.

Let α∗ := N−4
2 + q−1

q (a + N) and α∗0 := N−4
2 + q−1

q (a0 + N). Now, as in [17],

we define some indexes that will appear in our results.
The bottom indices are defined as

s∗ :=



q, b ≤ a, b ≤ −N or b ≥ −N + q(N−4)
2 − ε,

2(N+b+ε)
N−4 , b ≤ a and −N < b < −N + q(N−4)

2 − ε,
q + q(b−a)

α∗ , b > a ≥ −N + q(N−4)
2 ,

q + 2(b−a)
N−4 , b > a, b > −N and −N + q(N−4)

2 − ε < a < −N + q(N−4)
2 ,

2(N+b+ε)
N−4 , b > a, b > −N and a ≤ −N + q(N−4)

2 − ε,
q + 2(b−a)

N−4 , a < b ≤ −N,

and the top indices are defined as

s∗ :=


2(N+b0−ε)

N−4 , a0 ≥ b0 > −N or b0 ≥ a0 ≥ −N + q(N−4)
2 + ε,

q + 2(b0−a0)
N−4 , b0 ≥ a0 and −N + q(N−4)

2 ≤ a0 < −N + q(N−4)
2 + ε,

q + q(b0−a0)
α∗0

, b0 ≥ a0 and −N − q(N−4)
2(q−1) < a0 < −N + q(N−4)

2 ,

+∞, b0 ≥ a0 and a ≤ −N − q(N−4)
2(q−1) .

Consider also s∗∗ := q + q(b0−a0)
α∗0

, with b0 ≤ a0 < −N − q(N−4)
2(q−1) .

Our main result is the following.
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Theorem 1.1. Let (A1)–(A5) be satisfied. If s∗ < s < s∗, then system (1.1) has a
nontrivial solution (u, v) ∈ Xr by which we mean∫

RN

(∆u.∆ϕ+ ∆v.∆ψ)dx+

∫
RN

(V1(|x|)|u|q−2uϕ+ V2(|x|)|v|q−2vψ)dx

=

∫
RN

Q(|x|)(ϕFu(u, v) + ψFv(u, v))dx ,

(1.5)

for all (ϕ,ψ) ∈ X. Moreover, if F (u, v) = F (−(u, v)) and there exists η > 0 such
that F (u, v) ≥ η(|u|s + |v|s), for all (u, v) ∈ R2, then system (1.1) has infinitely
many radial solutions (u, v) ∈ Xr, i = 1, 2.

The proof of Theorem 1.1 will be given using arguments similar to those devel-
oped in [17]. First we define an Euler functional I : Xr → R associated with the
equation (1.5). Then, we obtain a Principle of Symmetric Criticality result, which
yields that the critical points of I are solutions of the system. Finally, we prove that
this functional has the mountain pass geometry and apply the Symmetric Mountain
Pass Theorem to obtain the result.

2. Existence results

In this section we will prove our main result. To do this, we will divide the
proof in some lemmas. Firstly, let us present the following embedding theorem
established in [17].

Theorem 2.1. Let Vi, i = 1, 2, and Q be functions satisfying (1.2) and (1.3). If
s∗ < s∗, then the embedding

XVi,r ↪→ Ls(RN ;Q),

is continuous for all s∗ ≤ s ≤ s∗ when s∗ < ∞, s∗ ≤ s < ∞ when s∗ = ∞ or
max{s∗, s∗∗} ≤ s <∞. Furthermore, the embedding is compact for all s∗ < s < s∗

or max{s∗, s∗∗} < s <∞.

Now let us define the Euler functional I : Xr → R by

I(u, v) =
1

2

∫
RN

(|∆u|2 + |∆v|2)dx+
1

q

∫
RN

(V1(|x|)|u|q + V2(|x|)|v|q)dx

−
∫
RN

Q(|x|)F (u, v) dx.

By conditions (A1)–(A4) and the continuous embeddings obtained in Theorem
2.1, we have that I ∈ C1(Xr;R) with Fréchet derivative in (u, v) ∈ Xr given by

〈I ′(u, v), (ϕ,ψ)〉

=

∫
RN

(∆u.∆ϕ+ ∆v.∆ψ)dx+

∫
RN

(V1(|x|)|u|q−2uϕ+ V2(|x|)|v|q−2vψ)dx

−
∫
RN

Q(|x|)(ϕFu(u, v) + ψFv(u, v))dx,

for all (ϕ,ψ) ∈ Xr.
The proof of the next lemma follows the arguments presented in [17].

Lemma 2.2. Every critical point of the functional I : Xr → R satisfies (1.5).
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Proof. Let (u, v) ∈ Xr be a critical point of I. Given (ϕ,ψ) ∈ X, define

ϕ̄(r) :=
1

|∂Br|

∫
∂Br

ϕ(ξ)dS(ξ), ψ̄(r) :=
1

|∂Br|

∫
∂Br

ψ(ξ)dS(ξ), (2.1)

where ∂Br denotes the sphere of center 0 and radius r and |∂Br| denotes its
Lebesgue measure.

Proceeding as in the proof of the mean-value formulas for Laplace’s equation
(see [18]), using polar coordinates in RN and divergence theorem, we conclude that

d

dr
ϕ̄(r) =

r

N |Br|

∫
Br

∆ϕ(ξ)dξ,

d

dr
ψ̄(r) =

r

N |Br|

∫
Br

∆ψ(ξ)dξ,

d2

dr2
ϕ̄(r) = −N − 1

r

d

dr
ϕ̄(r) +

1

|∂Br|

∫
∂Br

∆ϕ(ξ)dS(ξ)

d2

dr2
ψ̄(r) = −N − 1

r

d

dr
ψ̄(r) +

1

|∂Br|

∫
∂Br

∆ψ(ξ)dS(ξ).

Since ∆ϕ̄ = d2

dr2 ϕ̄+ N−1
r

d
dr ϕ̄ and ∆ψ̄ = d2

dr2 ψ̄ + N−1
r

d
dr ψ̄, we obtain

∆ϕ̄ =
1

|∂Br|

∫
∂Br

∆ϕ(ξ)dS(ξ) and ∆ψ̄ =
1

|∂Br|

∫
∂Br

∆ψ(ξ)dS(ξ). (2.2)

From this we see that (ϕ̄, ψ̄) ∈ Xr and then

〈I ′(u, v), (ϕ̄, ψ̄)〉

=

∫
RN

(∆u.∆ϕ̄+ ∆v.∆ψ̄)dx+

∫
RN

(V1(|x|)|u|q−2uϕ̄+ V2(|x|)|v|q−2vψ̄)dx

−
∫
RN

Q(|x|)(ϕ̄Fu(u, v) + ψ̄Fv(u, v))dx = 0.

Therefore, using polar coordinates in RN and Fubini’s Theorem again and the
identities (2.1) and (2.2) we obtain result. �

Before we prove the Palais-Smale condition for the functional I, we need to make
some remarks about assumptions of the function F .

Remark 2.3. (a) Since F is a C1 homogeneous function of degree s, then
sF (u, v) = uFu(u, v) + vFv(u, v) and ∇F is a homogeneous function of
degree s− 1.

(b) From (F1), (a) and the Young inequality we have |F (u, v)| ≤ C(|u|s + |v|s)
for all (u, v) ∈ R2.

(c) Our prototype of F is F (u, v) = (a|u| + b|v|)s + c|u|α|v|β , u, v ∈ R; a, b,
c > 0 and α+ β = s, with α, β > 1.

Lemma 2.4. The functional I : Xr → R satisfies the Palais-Smale condition.

Proof. Let {(un, vn)} be a sequence Xr such that I ′(un, vn)→ 0 and I(un, vn)→ c,
as n → +∞. We shall see that {(un, vn)} is bounded in X. Indeed, since
I ′(un, vn) → 0, we have ‖I ′(un, vn)‖ < 1 for all n sufficiently large, and so,
|〈I ′(un, vn), (un, vn)〉| ≤ ‖(un, vn)‖. Since {I(un, vn)} is convergent sequence, there
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exists a positive constant C0 such that |I(un, vn)| ≤ C0. In this case, from (F0)
and the Remark (a), we have

C0 +
1

s
‖(un, vn)‖

≥ I(un, vn)− 1

s
〈I ′(un, vn), (un, vn)〉

≥ C
[ ∫

RN

(|∆un|2 + |∆vn|2)dx+

∫
RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx
]
,

(2.3)

where C0 and C are positive constants. To conclude that {(un, vn)} is bounded,
we will split our arguments in the cases: 1 < q < 2 and q > 2.

Case q > 2. Suppose {(un, vn)} is unbounded. Then, up to a subsequence,
‖(un, vn)‖ → +∞, as n→ +∞. From (2.3) we see that

C0

‖(un, vn)‖2
+

1

s

1

‖(un, vn)‖

≥ C

‖(un, vn)‖2
[ ∫

RN

(|∆un|2 + |∆vn|2)dx

+

∫
RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx
]
,

(2.4)

for some positive constants C0 and C.
If
{ ∫

RN (V1(|x|)|un|q +V2(|x|)|vn|q)dx
}

is an unbounded sequence, then, up to a
subsequence,∫

RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx→ +∞, as n→ +∞.

This implies that
∫
RN (V1(|x|)|un|q + V2(|x|)|vn|q)dx > 1, for n sufficiently large.

Consequently, since q > 2, we obtain

‖(un, vn)‖2 ≤ 2
[ ∫

RN

(|∆un|2 + |∆vn|2)dx+

∫
RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx
]
.

Combining this with (2.4) we deduce that

C0

‖(un, vn)‖2
+

1

s

1

‖(un, vn)‖
≥ C

2
,

for some constants C0, C > 0 and for n sufficiently large. So we obtain a contra-
diction.

On the other hand, if
{ ∫

RN (V1(|x|)|un|q + V2(|x|)|vn|q)dx
}

is bounded, we con-
clude that ∫

RN

(|∆un|2 + |∆vn|2)dx→ +∞, as n→ +∞,

up to a subsequence. Using (2.4) we see that, for some positive constants C0 and
C,

C0

‖(un, vn)‖2
+

1

s

1

‖(un, vn)‖2
≥ C
‖∆un‖22 + ‖∆vn‖22 + ‖un‖qq,V1

+ ‖vn‖qq,V2

‖(un, vn)‖2

= C
1 +

‖un‖qq,V1
+‖vn‖qq,V2

‖∆un‖22+‖∆vn‖22[
1+

(‖un‖qq,V1
+‖vn‖qq,V2

)1/q

(‖∆un‖22+‖∆vn‖22)1/2

]2 → C,
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as n→ +∞. Here we also have a contradiction.

Case 1 < q < 2. If
{ ∫

RN (|∆un|2 + |∆vn|2)dx
}

is an unbounded sequence, then,
up to a subsequence,∫

RN

(|∆un|2 + |∆vn|2)dx→ +∞, as n→ +∞.

As a consequence
∫
RN (|∆un|2 + |∆vn|2)dx > 1, for n sufficiently large. Since

1 < q < 2, it follows that

‖(un, vn)‖q

≤ 2q
[( ∫

RN

(|∆un|2 + |∆vn|2)dx
) q

2

+

∫
RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx
]

≤ 2q
[ ∫

RN

(|∆un|2 + |∆vn|2)dx+

∫
RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx
]
.

Using this and (2.3) we conclude that, for some positive constants C0 and C,

C0 +
1

s
‖(un, vn)‖ ≥ C

2q
‖(un, vn)‖q,

for n sufficiently large. But this is a contradiction.
Now, if

{ ∫
RN (|∆un|2 + |∆vn|2)dx

}
is bounded, then, up to a subsequence,∫

RN

(V1(|x|)|un|q + V2(|x|)|vn|q)dx→ +∞, as n→ +∞.

Hence, using (2.3) again, we obtain

C0

‖(un, vn)‖q
+

1

s

1

‖(un, vn)‖q−1
≥ C
‖∆un‖22 + ‖∆vn‖22 + ‖un‖qq,V1

+ ‖vn‖qq,V2

‖(un, vn)‖q

= C

‖∆un‖22+‖∆vn‖22
‖un‖qq,V1

+‖vn‖qq,V2

+ 1[
(‖∆un‖22+‖∆vn‖22)1/2

(‖un‖qq,V1
+‖vn‖qq,V2

)1/q
+ 1
]q → C,

as n→ +∞. We have again a contradiction and, therefore, {(un, vn)} is bounded in
Xr. Consequently, {un} and {vn} are also bounded in Xr,V1

and Xr,V2
, respectively.

Using the fact that Xr,Vi
, i ∈ {1, 2}, is reflexive, we conclude that there exist u ∈

Xr,V1
and v ∈ Xr,V2

such that un ⇀ u weakly in Xr,V1
and vn ⇀ v weakly in

Xr,V2 , as n→ +∞ , up to subsequences. Hence (un, vn) ⇀ (u, v) weakly in Xr, as
n → +∞, up to a subsequence. Since Xr,Vi

is compactly imbedded in Ls(RN ;Q),
i ∈ {1, 2} (see Theorem 2.1), we deduce that un → u and vn → v strongly in
Ls(RN ;Q), as n → +∞. As a consequence, un → u and vn → v a.e. in RN , as
n→ +∞.

Now we shall prove that

〈I ′(un, vn), (ϕ,ψ)〉 → 〈I ′(u, v), (ϕ,ψ)〉,

for all (ϕ,ψ) ∈ Xr, as n→ +∞.
For (ϕ,ψ) ∈ Xr, we define

F(ϕ,ψ)(u, v) :=

∫
RN

[∆u∆ϕ+ ∆v∆ψ]dx.
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Note that F(ϕ,ψ) ∈ X ′r and

〈F ′(ϕ,ψ)(u, v), (z, w)〉 =

∫
RN

[∆z∆ϕ+ ∆w∆ψ]dx,

for all (z, w) ∈ Xr. Since (un, vn) ⇀ (u, v) weakly in Xr, as n → +∞, we deduce
that F(ϕ,ψ)(un, vn)→ F(ϕ,ψ)(u, v) strongly in Xr, as n→ +∞, for all (ϕ,ψ) ∈ Xr,
that is, ∫

RN

[∆un∆ϕ+ ∆vn∆ψ]dx→
∫
RN

[∆u∆ϕ+ ∆v∆ψ]dx, (2.5)

as n→ +∞, for all (ϕ,ψ) ∈ Xr.
We consider (ϕ,ψ) ∈ Xr and define

gn := (V1)
q−1
q |un|q−2un, hn := (V2)

q−1
q |vn|q−2vn,

g := (V1)
q−1
q |u|q−2u, h := (V2)

q−1
q |v|q−2v.

So, gn → g and hn → h a.e. in RN . Moreover, {gn} and {hn} are bounded in
Lq/(q−1)(RN ). It follows from Brézis and Lieb lemma [10] (see also [22, Lemma
4.8]) that ∫

RN

gnϕdx→
∫
RN

gϕdx and

∫
RN

hnψdx→
∫
RN

hψdx,

as n → +∞, for all ϕ,ψ ∈ Lq(RN ). In particular, given (ϕ,ψ) ∈ Xr, we have
(V1)1/qϕ, (V2)1/qψ ∈ Lq(RN ), so that,∫

RN

gn(V1(|x|))1/qϕdx→
∫
RN

g(V1(|x|))1/qϕdx

and ∫
RN

hn(V2(|x|))1/qψdx→
∫
RN

h(V2(|x|))1/qψdx,

as n→ +∞. Hence,∫
RN

V1(|x|)|un|q−2unϕdx→
∫
RN

V1(|x|)|u|q−2uϕdx

and ∫
RN

V2(|x|)|vn|q−2vnψdx→
∫
RN

V2(|x|)|v|q−2vψdx,

as n→ +∞. Consequently,∫
RN

(V1(|x|)|un|q−2unϕ+ V2(|x|)|vn|q−2vnψ)dx

→
∫
RN

(V1(|x|)|u|q−2uϕ+ V2(|x|)|v|q−2vψ)dx,

(2.6)

as n→ +∞, for all (ϕ,ψ) ∈ Xr.
We define K : Xr → X ′r by

〈K(u, v), (ϕ,ψ)〉 :=

∫
RN

Q(|x|)[ϕFu(u, v) + ψFv(u, v)]dx.

First, we prove that

‖Fu(un, vn)− Fu(u, v)‖ s
s−1 ,Q

→ 0 and ‖Fv(un, vn)− Fv(u, v)‖ s
s−1 ,Q

→ 0,
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as n→ +∞. By using (A4), we will deduce that

Q(|x|)|Fu(un, vn)− Fu(u, v)|
s

s−1 ≤ h(x)

a.e. x ∈ RN , for some function h ∈ L1(RN ). In fact, since ‖Q 1
s un −Q1/su‖s → 0

and ‖Q 1
s vn −Q1/sv‖s → 0, as n→ +∞, we conclude that

(1) Q1/sun → Q1/su and Q1/svn → Q1/sv a.e. in RN , as n→ +∞;

(2) |Q1/sun| ≤ h1 and |Q 1
s vn| ≤ h2 a.e. in RN , where h1, h2 ∈ L1(RN ).

Hence, for some positive constant C,

Q(|x|)|Fu(un, vn)− Fu(u, v)|
s

s−1

≤ 2
s

s−1Q(|x|)
(
|Fu(un, vn)|

s
s−1 + |Fu(u, v)|

s
s−1

)
≤ C

(
Q(|x|)|un|s +Q(|x|)|vn|s +Q(|x|)|u|s +Q(|x|)|v|s

)
≤ h(x),

where h(x) = C
(

(h1(x))s + (h2(x))s +Q(|x|)|u|s +Q(|x|)|v|s
)

.

SinceQ(|x|)|Fu(un, vn)−Fu(u, v)|
s

s−1 → 0 a.e. in RN , as n→ +∞, we see, by the
Dominated Convergence Theorem of Lebesgue, that ‖Fu(un, vn)−Fu(u, v)‖ s

s−1 ,Q
→

0, as n→ +∞. Similarly, ‖Fv(un, vn)− Fv(u, v)‖ s
s−1 ,Q

→ 0, as n→ +∞.

On the other hand, using Hölder’s inequality and the continuous embedding
Xr,V i ↪→ Ls(RN , Q), i ∈ {1, 2}, we have, for all (ϕ,ψ) ∈ Xr,

|〈K(un, vn)−K(u, v), (ϕ,ψ)〉|

≤
∫
RN

Q(|x|)|Fu(un, vn)− Fu(u, v)||ϕ|dx

+

∫
RN

Q(|x|)|Fv(un, vn)− Fv(u, v)||ψ|dx

≤ ‖Fu(un, vn)− Fu(u, v)‖ s
s−1 ,Q

‖ϕ‖s,Q + ‖Fv(un, vn)− Fv(u, v)‖ s
s−1 ,Q

‖ψ‖s,Q
≤ C‖Fu(un, vn)− Fu(u, v)‖ s

s−1 ,Q
‖(ϕ,ψ)‖

+ C‖Fv(un, vn)− Fv(u, v)‖ s
s−1 ,Q

‖(ϕ,ψ)‖,

for some positive constant C. Using this we see that

‖K(un, vn)−K(u, v)‖X′r ≤ C[‖Fu(un, vn)− Fu(u, v)‖ s
s−1 ,Q

+ ‖Fv(un, vn)− Fv(u, v)‖ s
s−1 ,Q

]→ 0,

as n → +∞, so that, we obtain 〈K(un, vn) − K(u, v), (ϕ,ψ)〉 → 0, as n → +∞;
that is,

〈K(un, vn), (ϕ,ψ)〉 → 〈K(u, v), (ϕ,ψ)〉,
as n→ +∞, for all (ϕ,ψ) ∈ Xr. Consequently,∫

RN

Q(|x|)[ϕFu(un, vn) + ψFv(un, vn)]dx

→
∫
RN

Q(|x|)[ϕFu(u, v) + ψFv(u, v)]dx,

(2.7)

as n → +∞, for all (ϕ,ψ) ∈ Xr. Moreover, since (un, vn) ⇀ (u, v) in Xr and
K(un, vn)→ K(u, v) in X ′r, as n→ +∞, it follows that

〈K(un, vn), (un, vn)〉 → 〈K(u, v), (u, v)〉, (2.8)
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as n→ +∞; that is,∫
RN

Q(|x|)[Fu(un, vn)un + Fv(un, vn)vn]dx→
∫
RN

Q(|x|)[Fu(u, v)u+ Fv(u, v)v]dx,

as n→ +∞. Combining (2.5), (2.6) and (2.7) we obtain

〈I ′(un, vn), (ϕ,ψ)〉 → 〈I ′(u, v), (ϕ,ψ)〉,
as n→ +∞, for all (ϕ,ψ) ∈ Xr. Hence, as I ′(un, vn)→ 0, as n→ +∞, we deduce
that I ′(u, v) = 0. This implies

0 = 〈I ′(u, v), (u, v)〉

=

∫
RN

[|∆u|2 + |∆v|2]dx+

∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx− 〈K(u, v), (u, v)〉.

Therefore,

〈K(u, v), (u, v)〉 =

∫
RN

[|∆u|2 + |∆v|2]dx+

∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx. (2.9)

On the other hand,∫
RN

[|∆un|2 + |∆vn|2]dx+

∫
RN

[V1(|x|)|un|q + V2(|x|)|vn|q]dx

= 〈I ′(un, vn), (un, vn)〉+ 〈K(un, vn), (un, vn)〉.
(2.10)

From (2.8), (2.9) and (2.10) we have∫
RN

[|∆un|2 + |∆vn|2]dx+

∫
RN

[V1(|x|)|un|q + V2(|x|)|vn|q]dx

→
∫
RN

[|∆u|2 + |∆v|2]dx+

∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx,
(2.11)

as n→ +∞. As before, from the Brezis-Lieb Lemma, we can show that∫
RN

V1(|x|)|un|qdx−
∫
RN

V1(|x|)|un − u|qdx→
∫
RN

V1(|x|)|u|qdx,∫
RN

V2(|x|)|vn|qdx−
∫
RN

V2(|x|)|vn − v|qdx→
∫
RN

V2(|x|)|v|qdx,∫
RN

|∆un|2dx−
∫
RN

|∆(un − u)|2dx→
∫
RN

|∆u|2dx,∫
RN

|∆vn|2dx−
∫
RN

|∆(vn − v)|2dx→
∫
RN

|∆v|2dx,

as n→ +∞. This implies∫
RN

[V1(|x|)|un|q + V2(|x|)|vn|q]dx−
∫
RN

[V1(|x|)|un − u|q + V2(|x|)|vn − v|q]dx

→
∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx

(2.12)
and ∫

RN

[|∆un|2 + |∆vn|2]dx−
∫
RN

[|∆(un − u)|2 + |∆(vn − v)|2]dx

→
∫
RN

[|∆u|2 + |∆v|2]dx,

(2.13)
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as n→ +∞. By (2.11), (2.12) and (2.13), we obtain∫
RN

[|∆(un−u)|2 + |∆(vn−v)|2]dx+

∫
RN

[V1(|x|)|un−u|q +V2(|x|)|vn−v|q]dx→ 0,

as n→ +∞. As a consequence, we deduce that

‖(un, vn)− (u, v)‖ =
(∫

RN

(|∆(un − u)|2 + |∆(vn − v)|2)dx
)1/2

+
(∫

RN

(V1(|x|)|un − u|q + V2(|x|)|vn − v|q)dx
)1/q

→ 0,

as n→ +∞. Therefore, (un, vn)→ (u, v) in Xr, as n→ +∞. �

Lemma 2.5 (Geometry of the Mountain Pass Theorem). The functional I : Xr →
R satisfies the following conditions:

(a) I(0, 0) = 0 and there exist c > 0, ρ > 0 such that I(u, v) ≥ c for ‖(u, v)‖ =
ρ;

(b) There exists (u, v) ∈ Xr, with ‖(u, v)‖ > ρ, such that I(u, v) < 0.

Proof. First we note that I(0, 0) = 0. Now, taking q0 := max{2, q} and using the
Remark 2.3 item (b), we conclude that

I(u, v) ≥ 1

q0

[ ∫
RN

[|∆u|2 + |∆v|2]dx+

∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx
]

− C
∫
RN

Q(|x|)[|u|s + |v|s]dx,
(2.14)

for some constant C > 0. By the continuous embedding Xr,Vi ↪→ Ls(RN ;Q), i = 1,
2, we deduce that∫

RN

Q(|x|)|u|sdx ≤ C‖(u, v)‖s,
∫
RN

Q(|x|)|v|sdx ≤ C‖(u, v)‖s,

for some positive constant C. This and (2.14) implies that

I(u, v) ≥ 1

q0

[ ∫
RN

[|∆u|2 + |∆v|2]dx+

∫
RN

[V1(|x|)|u|q + V2(|x|)|v|q]dx
]

−C‖(u, v)‖s,
(2.15)

for some constant C > 0. For 0 < ‖(u, v)‖ < 1, we have

‖(u, v)‖q0

≤ 2q0
[( ∫

RN

(|∆u|2 + |∆v|2)dx
)q0/2

+
(∫

RN

(V1(|x|)|u|q + V2(|x|)|v|q]dx
)q0/q]

≤ 2q0
[ ∫

RN

(|∆u|2 + |∆v|2)dx+

∫
RN

(V1(|x|)|u|q + V2(|x|)|v|q)dx
]
.

(2.16)
Combining (2.15) with (2.16) we obtain

I(u, v) ≥ 1

q02q0
‖(u, v)‖q0 − C‖(u, v)‖s,

for some positive constant C and for 0 < ‖(u, v)‖ < 1. So, there exist 0 < ρ < 1
sufficiently small and c > 0 such that I(u, v) ≥ c > 0 for all (u, v) ∈ X, with
‖(u, v)‖ = ρ. This completes the proof of (a).



12 R. DEMARQUE, N. H. LISBOA EJDE-2018/67

Fixing (u0, v0) ∈ Xr such that F (u0, v0) > 0, we have, for all t > 0,

I(t(u0, v0)) =
t2

2

∫
RN

[|∆u0|2 + |∆v0|2]dx+
tq

q

∫
RN

[V1(|x|)(u0)q + V2(|x|)(v0)q]dx

− ts
∫
RN

Q(|x|)F (u0, v0)dx.

This implies

I(t(u0, v0))→ −∞ as t→ +∞.
Thus, for t > 0, sufficiently large, ‖t(u0, v0)‖ > ρ and I(t(u0, v0)) < 0. Therefore,
(b) follows. This completes the proof. �

Finally, we can prove our main result.

Proof of Theorem 1.1. As a consequence of Lemma 2.4 and Lemma 2.5, we con-
clude, by using the Mountain Pass Theorem, due to Ambrosetti-Rabinowitz [8],
that there exists a sequence {(un, vn)} in X so that

I(un, vn)→ c > 0 and I ′(un, vn)→ 0,

as n → +∞. By Lemma 2.4, (un, vn) → (u, v) in Xr, as n → +∞, up to a
subsequence. In view of I ∈ C1(Xr,R), it follows that

I(un, vn)→ I(u, v) and I ′(un, vn)→ I ′(u, v),

as n→ +∞. This implies that I ′(u, v) = 0 and I(u, v) = c 6= 0, that is, (u, v) ∈ Xr

is a nontrivial critical point of I. By Lemma 2.2, we conclude that (u, v) is a radial
solution for the system (1.1) in the sense of equation (1.5).

Our next goal is to apply the Symmetric Mountain Pass Theorem [33, Theorem
6.5] to complete the proof of Theorem 1.1. So, we need to show that I satisfies the
following conditions:

(a) I(−(u, v)) = I(u, v), for all (u, v) ∈ Xr;
(b) For any nontrivial finite dimensional subspace U ⊂ Xr, there exists R > 0

such that I(u, v) ≤ 0 for all (u, v) ∈ U , with ‖(u, v)‖ ≥ R.

Since F (u, v) = F (−(u, v)), (a) occurs.
Now, suppose that (b) is not true. Therefore, there exists a nontrivial fi-

nite dimensional subspace U ⊂ Xr and a sequence {(un, vn)} in U such that
‖(un, vn)‖ → +∞, as n→ +∞, and I(un, vn) > 0, for all n ∈ N. Since U has finite
dimension, all norms are equivalent on U . In this case, since F (u, v) ≥ η(|u|s+ |v|s)
for all (u, v) ∈ R2, we obtain∫

RN

Q(|x|)F (un, vn)dx ≥ η
∫
RN

Q(|x|)(|un|s + |vn|s)dx

= η‖(un, vn)‖ss,Q ≥ C‖(un, vn)‖s,

for some positive constant C. Since s > max{2, q} = q0 and ‖(un, vn)‖ → +∞, as
n→ +∞, we deduce that

I(un, vn) ≤ 1

2

∫
RN

[|∆un|2 + |∆vn|2]dx+
1

q

∫
RN

[V1(|x|)|un|q + V2(|x|)|vn|q]dx

− C‖(un, vn)‖s

≤ 1

2
‖(un, vn)‖2 +

1

q
‖(un, vn)‖q − C‖(un, vn)‖s
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≤
(1

2
+

1

q

)
‖(un, vn)‖q0 − C‖(un, vn)‖s,

for n sufficiently large and for some positive constant C. As a consequence,

lim
n→+∞

I(un, vn) = −∞;

that is, there exists n, sufficiently large, such that I(un, vn) < 0, which is a contra-
diction. This completes the proof of (b).

So, by Symmetric Mountain Pass Theorem, there exists an unbounded sequence
of critical values for I, which corresponds to the existence of a sequence of nontrivial
critical points for I. Consequently, by Lemma 2.2, equation (1.5) holds, which
completes the proof of Theorem 1.1. �
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