
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 71, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
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Abstract. We prove that all entire stable W 1,p
loc solutions of weighted quasi-

linear problem

− div(w(x)|∇u|p−2∇u) = f(x)|u|q−1u

must be zero. The result holds true for p ≥ 2 and p − 1 < q < qc(p,N, a, b).
Here b > a− p and qc(p,N, a, b) is a new critical exponent, which is infinity in

low dimension and is always larger than the classic critical one, while w, f ∈
L1
loc(RN ) are nonnegative functions such that w(x) ≤ C1|x|a and f(x) ≥

C2|x|b for large |x|. We also construct an example to show the sharpness of
our result.

1. Introduction and statement of main results

In this article we assume that q > p−1 ≥ 1 and w, f ∈ L1
loc(RN ) are nonnegative

functions. Let us consider the following weighted quasilinear equation

− div(w(x)|∇u|p−2∇u) = f(x)|u|q−1u in RN . (1.1)

If w ≡ 1, the left hand side of (1.1) becomes the well-known p-Laplace operator. The
terms w(x) and f(x) are usually regarded as weights while |u|q−1u is the so-called
Lane-Emden nonlinearity. Because of the degenerate nature of the term |∇u|p−2
when p > 2, solutions to (1.1) must be understood in the weak sense. Moreover,
solutions to elliptic equations with Hardy potentials may possess singularities (see
Proposition 1.8 for an example). Therefore, it is natural to study weak solutions of
(1.1) in a suitable weighted Sobolev space. For this purpose, let us define

‖ϕ‖w =
(∫

RN
w(x)|∇ϕ|p dx

)1/p
for ϕ ∈ C∞c (RN ) and denote by W 1,p

0 (RN , w) the closure of C∞c (RN ) with respect

to the ‖ ·‖w-norm. Remark that for w ∈ L1
loc(RN ) we have C1

c (RN ) ⊂W 1,p
0 (RN , w)

and u ∈ W 1,p
loc (RN , w) means that if for any ϕ ∈ C∞c (RN ), there holds uϕ ∈

W 1,p
0 (RN , w). Let us make also the meaning of weak solution and stable solution

more precisely.
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Definition 1.1. A function u ∈W 1,p
loc (RN , w) is said to be a weak solution of (1.1)

if f(x)|u|q ∈ L1
loc(RN ) and∫

RN
w(x)|∇u|p−2(∇u,∇ϕ) dx =

∫
RN

f(x)|u|q−1uϕdx (1.2)

for all ϕ ∈ C1
c (RN ).

Definition 1.2. A weak solution u of (1.1) is stable if∫
RN

w(x)
[
|∇u|p−2|∇ϕ|2 + (p− 2)|∇u|p−4(∇u,∇ϕ)2

]
dx ≥ q

∫
RN

f(x)|u|q−1ϕ2 dx

(1.3)
for all ϕ ∈ C1

c (RN ).

We recall that the stability condition translates into the fact that the second
variation at u of the energy functional

E(u) =

∫
RN

(
w(x)|∇u|p

p
− f(x)|u|q+1

q + 1

)
dx

is nonnegative. Therefore all the local minima of the functional are stable weak
solutions of (1.1).

Proposition 1.3. If u is a stable solution of (1.1), then

(p− 1)

∫
RN

w(x)|∇u|p−2|∇ϕ|2 dx ≥ q
∫
RN

f(x)|u|q−1ϕ2 dx (1.4)

for every ϕ ∈ C1
c (RN ).

We remark that (1.3) and (1.4) hold for any ϕ ∈ W 1,p
0 (RN , w) by density argu-

ments.
In this article we prove a Liouville type theorem for stable solutions of (1.1). We

recall that Liouville type theorems concern about the nonexistence of nontrivial
solution in the entire Euclidean space RN . This type of theorems for (1.1) has
drawn much attention in the last four decades. Let us mention the pioneering
article [19], where Gidas and Spruck established the optimal nonexistence result
for positive solutions to the equation −∆u = |u|q−1u in RN . They proved that
this equation has no positive solution if and only if q is less than the critical exponent
N+2
N−2 , which is ∞ if N = 2.

In recent years, not only weak and positive solutions but also other types of
solutions to equation (1.1) such as stable solutions have been studied immensely by
several authors. Readers can find physical motivation and recent development on
the topic of stable solutions in monograph [10] by Dupaigne and references therein.

We should refer to the works [13, 14] by Farina for Lane-Emden equation

−∆u = |u|q−1u in RN ,

where he proved that all stable C2 solutions must be zero if 1 < q < qc(N), where
qc(N) is explicitly given and is always greater than the classic critical exponent
N+2
N−2 . Later, similar results were proved in [8] for stable C1 solutions of quasilinear

equation −∆pu = |u|q−1u.
The weighted semilinear elliptic equation

−div(w(x)∇u) = f(x)|u|q−1u in RN
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was also studied recently by some authors. In [7], several Liouville type theorems for
classical stable solutions of this equation were established under different assump-
tions on w and f . Paper [26] deals with more specific equation −∆u = |x|b|u|q−1u
but for stable solutions of class H1

loc, which covers solutions having singularities.
Related works on existence, nonexistence and bifurcation results for singular elliptic
problems can be found in [1, 12, 15, 16, 17, 18, 20, 23, 24] and references therein.

For other types of nonlinearities, we refer to paper [11] for stable C2 solutions of
semilinear equation −∆u = f(u) and papers [4, 22, 21, 25] for stable C1 solutions
of quasilinear equation −∆pu = f(u). In general, Liouville type theorems for stable
solutions of nonlinear elliptic equations are usually guaranteed in low dimensional
case.

The main purpose of this paper is to obtain a sharp Liouville type theorem
for stable solutions of class W 1,p

loc to equation (1.1). Our result therefore directly
extends the result in [6], which deals with equation

−∆pu = f(x)|u|q−1u in RN .
It should be noted that in [6], the author only considered the case p < N and

C1,δ
loc (RN ) solutions, which are locally bounded. This C1,δ

loc (RN ) regularity assump-
tion is natural when w ≡ f ≡ 1. However, if the weights w and f are Hardy
potentials, then solutions of equation (1.1) may have singularities and do not be-

long to class C1,δ
loc (RN ) anymore. Therefore, weak solutions of class W 1,p

loc are more
suitable settings for (1.1) and we will work with this type of solutions in this paper.
Furthermore, we also construct an example to show the sharpness of our result.

We begin with the following a priori estimate for stable solutions of (1.1).

Proposition 1.4. Suppose that q > p−1 and u is a stable solution of (1.1). Then
for any

α ∈
(

1,
2q − p+ 1 + 2

√
q(q − p+ 1)

p− 1

)
,

there exists a constant C = C(p, q, α) > 0 such that for any function η ∈ C1
c (RN )

with 0 ≤ η ≤ 1 and ∇η = 0 in a neighborhood of {x ∈ RN : f(x) = 0} we have∫
RN

(
w(x)|∇u|p|u|α−1 + f(x)|u|α+q

)
η
p(α+q)
q−p+1 dx

≤ C
∫
RN

w(x)
α+q
q−p+1 f(x)−

α+p−1
q−p+1 |∇η|

p(α+q)
q−p+1 dx.

(1.5)

With the help of Proposition 1.4, it is not hard to obtain our main result.

Theorem 1.5. Let b > a− p and C1, C2, R0 > 0. Suppose that w(x) ≤ C1|x|a and
f(x) ≥ C2|x|b for a.e. x ∈ RN \ B(0, R0), in addition, w(x) + f(x) > 0 for a.e.
x ∈ B(0, R0). Let u be a stable solution of equation (1.1). Assume that

p− 1 < q < qc(p,N, a, b), if N >
(p− a)(p+ 3) + 4b

p− 1
,

p− 1 < q <∞, if N ≤ (p− a)(p+ 3) + 4b

p− 1

with the critical exponent

qc(p,N, a, b) =
2(p− a+ b)

√
(p− 1)(p− a+ b)(Np+ bp+ a− b− p)

(N + a− p)[(p− 1)N − (p− a)(p+ 3)− 4b]
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+
(
p− 1)[N2(p− 1)− p(N(p+ 2)− p) + a(N(2a+ p)− 2p+ a)

+ b(N(p− 4)− p2 + pa− 2b)]
)

÷
(

(N + a− p)[(p− 1)N − (p− a)(p+ 3)− 4b]
)
.

Then u ≡ 0.

Remark 1.6. Since b > a− p, if N > (p−a)(p+3)+4b
p−1 , we deduce that a− p > −N

and qc(p,N, a, b) is well-defined. The assumption on q in Theorem 1.5 is equivalent
to

N <
(p− a+ b)(2q − p+ 1 + 2

√
q(q − p+ 1)) + q(p− a)(p− 1) + b(p− 1)2

(p− 1)(q − p+ 1)
.

Indeed, the critical exponent qc(p,N, a, b) is explicitly computed by solving the
above quadratic inequation in q.

Remark 1.7. If a = 0, then

qc(p,N, 0, b) =
2(p+ b)

√
(p− 1)(p+ b)(Np+ bp− b− p)

(N − p)[(p− 1)N − p(p+ 3)− 4b]

+
(p− 1)[N2(p− 1)− p(N(p+ 2)− p) + b(N(p− 4)− p2 − 2b)]

(N − p)[(p− 1)N − p(p+ 3)− 4b]
,

which is the critical exponent qc in [6]. Furthermore, if a = b = 0, then we obtain

qc(p,N, 0, 0) =
2p2
√

(p− 1)(N − 1) + (p− 1)[N2(p− 1)− p(N(p+ 2)− p)]
(N − p)[(p− 1)N − p(p+ 3)]

,

which equals the critical exponent pc in [8]. We observe that the critical exponent

qc(p,N, 0, 0) is always greater than the classic critical exponent N(p−1)+p
N−p . If a = 0

and p = 2, we find

qc(2, N, 0, b) =
2(b+ 2)

√
(b+ 2)(b+ 2N − 2) + (N − 2)2 − 2(b+ 2)(b+N)

(N − 2)(N − 4b− 10)
,

which is the critical exponent p(b) in [9]. Finally, if a = b = 0 and p = 2, we have

qc(2, N, 0, 0) =
8
√
N − 1 +N2 − 8N + 4

(N − 2)(N − 10)
.

It is the critical exponent pc in [14]. Therefore, our conclusion in Theorem 1.5

extends results in [6, 8, 9, 14] to stable solutions of class W 1,p
loc .

The assumption on q in Theorem 1.5 is optimal. Indeed, let us consider the limit
problem

− div(|x|a|∇u|p−2∇u) = |x|b|u|q−1u in RN . (1.6)

We have the following result.

Proposition 1.8. Let b > a − p. Suppose that N > (p−a)(p+3)+4b
p−1 and q ≥

qc(p,N, a, b), which is defined in Theorem 1.5, then U(x) = m/|x|n is a stable
solution of equation (1.6). Here,

n =
p− a+ b

q − p+ 1
and m = [np−1(N + a− 1− (n+ 1)(p− 1))]1/(q−p+1).
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2. Proofs

This section is devoted to the proofs of Proposition 1.4, Theorem 1.5 and Proposi-
tion 1.8. For convenience, we always denote by C a generic constant whose concrete
values may change from line to line or even in the same line. If this constant de-
pends on an arbitrary small number ε, then we may denote it by Cε. We also use
Young inequality in the form ab ≤ εap + Cεb

q for p, q > 0 satisfying 1
p + 1

q = 1.

Proof of Proposition 1.4. For each k ∈ N we define

ak(t) =

{
|t|α−1

2 t, |t| < k,

k
α−1
2 t, |t| ≥ k,

and bk(t) =

{
|t|α−1t, |t| < k,

kα−1t, |t| ≥ k.

It is easy to check that

ak(t)2 ≥ tbk(t), a′k(t)2 ≤ (α+ 1)2

4α
b′k(t),

|ak(t)|pa′k(t)2−p + |bk(t)|pb′k(t)1−p ≤ C|t|α+p−1
(2.1)

for all t ∈ R, where C depends only on p and α. Moreover, since u ∈W 1,p
loc (RN , w),

clearly ak(u), bk(u) ∈ W 1,p
loc (RN , w) for any k ∈ N. We split the proof into four

steps.

Step 1. For any ε ∈ (0, 1), any k ∈ N and any nonnegative function ψ ∈ C1
c (RN ),

there exists a constant Cε = C(p, ε) > 0 such that

(1− ε)
∫
RN

w(x)|∇u|pb′k(u)ψp dx

≤ Cε
∫
RN

w(x)|bk(u)|pb′k(u)1−p|∇ψ|p dx+

∫
RN

f(x)|u|q−1ubk(u)ψp dx.

(2.2)

To prove this, using ϕ = bk(u)ψp as a test function. Since

∇ϕ = b′k(u)ψp∇u+ pbk(u)ψp−1∇ψ,

using (1.2) we obtain∫
RN

w(x)|∇u|pb′k(u)ψp dx+ p

∫
RN

w(x)|∇u|p−2bk(u)ψp−1(∇u,∇ψ) dx

=

∫
RN

f(x)|u|q−1ubk(u)ψp dx.

Therefore,∫
RN

w(x)|∇u|pb′k(u)ψp dx

≤ p
∫
RN

w(x)|∇u|p−1|bk(u)|ψp−1|∇ψ| dx+

∫
RN

f(x)|u|q−1ubk(u)ψp dx

≤
∫
RN

ε
(
w(x)

p−1
p |∇u|p−1b′k(u)

p−1
p ψp−1

) p
p−1

+ Cε

(
w(x)1/p|bk(u)|b′k(u)

1−p
p |∇ψ|

)p
dx+

∫
RN

f(x)|u|q−1ubk(u)ψp dx

= ε

∫
RN

w(x)|∇u|pb′k(u)ψp dx+ Cε

∫
RN

w(x)|bk(u)|pb′k(u)1−p|∇ψ|p dx
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+

∫
RN

f(x)|u|q−1ubk(u)ψp dx,

which implies (2.2).

Step 2. For any ε ∈ (0, 1), any k ∈ N and any nonnegative function ψ ∈ C1
c (RN ),

there exists a constant Cε = C(p, ε) > 0 such that

q

∫
RN

f(x)|u|q−1ak(u)2ψp dx ≤ (p− 1 + ε)

∫
RN

w(x)|∇u|pa′k(u)2ψp dx

+ Cε

∫
RN

w(x)|ak(u)|pa′k(u)2−p|∇ψ|p dx.
(2.3)

To prove this, we use the stability assumption with ϕ = ak(u)ψp/2. Since

∇ϕ = a′k(u)ψp/2∇u+
p

2
ak(u)ψ

p−2
2 ∇ψ,

using (1.4) we obtain

q

∫
RN

f(x)|u|q−1ak(u)2ψp dx

≤ (p− 1)

∫
RN

w(x)|∇u|pa′k(u)2ψp dx

+ (p− 1)p

∫
RN

w(x)|∇u|p−1|ak(u)|a′k(u)ψp−1|∇ψ| dx

+
(p− 1)p2

4

∫
RN

w(x)|∇u|p−2ak(u)2ψp−2|∇ψ|2 dx.

(2.4)

Now we use Young inequality to estimate the last two terms

(p− 1)p

∫
RN

w(x)|∇u|p−1|ak(u)|a′k(u)ψp−1|∇ψ| dx

≤
∫
RN

ε

2

(
w(x)

p−1
p |∇u|p−1a′k(u)

2(p−1)
p ψp−1

) p
p−1

+ Cε

(
w(x)1/p|ak(u)|a′k(u)

2−p
p |∇ψ|

)p
dx

=
ε

2

∫
RN

w(x)|∇u|pa′k(u)2ψp dx+ Cε

∫
RN

w(x)|ak(u)|pa′k(u)2−p|∇ψ|p dx

and

(p− 1)p2

4

∫
RN

w(x)|∇u|p−2ak(u)2ψp−2|∇ψ|2 dx

≤
∫
RN

ε

2

(
w(x)

p−2
p |∇u|p−2a′k(u)

2(p−2)
p ψp−2

) p
p−2

+ Cε

(
w(x)

2
p ak(u)2a′k(u)

2(2−p)
p |∇ψ|2

)p/2
dx

=
ε

2

∫
RN

w(x)|∇u|pa′k(u)2ψp dx+ Cε

∫
RN

w(x)|ak(u)|pa′k(u)2−p|∇ψ|p dx.

Using these two estimates into (2.4), we obtain (2.3).
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Step 3. We claim that there exists a constant C = C(p, q, α) > 0 such that for
any nonnegative function ψ ∈ C1

c (RN ) we have∫
RN

(
w(x)|∇u|p|u|α−1 + f(x)|u|α+q

)
ψp dx ≤ C

∫
RN

w(x)|u|α+p−1|∇ψ|p dx. (2.5)

To prove this, we set βε = 1− (p−1+ε)(α+1)2

4(1−ε)αq . Since limε→0+ βε = 1− (p−1)(α+1)2

4αq >

0, we can fix some ε ∈ (0, 1) depending on p, q and α such that βε > 0.
Collecting (2.2), (2.3) and with the help of (2.1) we obtain

q

∫
RN

f(x)|u|q−1ak(u)2ψp dx

≤ (p− 1 + ε)

∫
RN

w(x)|∇u|pa′k(u)2ψp dx

+ Cε

∫
RN

w(x)|ak(u)|pa′k(u)2−p|∇ψ|p dx

≤ (p− 1 + ε)(α+ 1)2

4α

∫
RN

w(x)|∇u|pb′k(u)ψp dx

+ Cε

∫
RN

w(x)|ak(u)|pa′k(u)2−p|∇ψ|p dx

≤ (p− 1 + ε)(α+ 1)2

4(1− ε)α

∫
RN

f(x)|u|q−1ubk(u)ψp dx

+ Cε

∫
RN

w(x)
[
|ak(u)|pa′k(u)2−p + |bk(u)|pb′k(u)1−p

]
|∇ψ|p dx

≤ (p− 1 + ε)(α+ 1)2

4(1− ε)α

∫
RN

f(x)|u|q−1ak(u)2ψp dx

+ Cε

∫
RN

w(x)|u|α+p−1|∇ψ|p dx.

Therefore,

qβε

∫
RN

f(x)|u|q−1ak(u)2ψp dx ≤ Cε
∫
RN

w(x)|u|α+p−1|∇ψ|p.

Letting k →∞, by the monotone convergence theorem we obtain∫
RN

f(x)|u|α+qψp dx ≤ C
∫
RN

w(x)|u|α+p−1|∇ψ|p, (2.6)

where C depends only on p, q and α. On the other hand, applying (2.2) for ε = 1/2,∫
RN

w(x)|∇u|pb′k(u)ψp dx

≤ C
∫
RN

w(x)|bk(u)|pb′k(u)1−p|∇ψ|p dx+ 2

∫
RN

f(x)|u|q−1ubk(u)ψp dx

≤ C
∫
RN

w(x)|u|α+p−1|∇ψ|p dx+ 2

∫
RN

f(x)|u|q−1ak(u)2ψp dx.

Letting k →∞, by the monotone convergence theorem and (2.6) we obtain∫
RN

w(x)|∇u|p|u|α−1ψp dx ≤ C
∫
RN

w(x)|u|α+p−1|∇ψ|p dx. (2.7)

Combining (2.6) and (2.7) we obtain (2.5).
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Step 4. We are now in a position to prove a priori estimate (1.5). Applying (2.5)

for ψ = η
α+q
q−p+1 to obtain∫

RN

(
w(x)|∇u|p|u|α−1 + f(x)|u|α+q

)
η
p(α+q)
q−p+1 dx

≤ C
∫
RN

w(x)|u|α+p−1|∇η|pη
p(α+p−1)
q−p+1 dx

≤
∫
RN

1

2

(
f(x)

α+p−1
α+q |u|α+p−1η

p(α+p−1)
q−p+1

) α+q
α+p−1

+ C
(
w(x)f(x)−

α+p−1
α+q |∇η|p

) α+q
q−p+1

dx

≤ 1

2

∫
RN

f(x)|u|α+qη
p(α+q)
q−p+1 dx+ C

∫
RN

w(x)
α+q
q−p+1 f(x)−

α+p−1
q−p+1 |∇η|

p(α+q)
q−p+1 dx.

Hence, (1.5) follows. �

Proof of Theorem 1.5. Applying (1.5) for a test function ηR ∈ C1
c (RN ) satisfying

0 ≤ ηR ≤ 1 in RN and

ηR = 1 in B(0, R),

ηR = 0 in RN \B(0, 2R),

|∇ηR| ≤
C

R
in B(0, 2R) \B(0, R).

Consequently, for all R > R0 there exists a constant C independent of R such that∫
B(0,R)

(
w(x)|∇u|p|u|α−1 + f(x)|u|α+q

)
dx ≤ CRθ, (2.8)

where

θ = N − (p− a)(α+ q) + b(α+ p− 1)

q − p+ 1
.

Note that α ∈ (1, α0(q)) where

α0(t) =
2t− p+ 1 + 2

√
t(t− p+ 1)

p− 1
.

Let us define the function

g(t) =
(p− a)(α0(t) + t) + b(α0(t) + p− 1)

t− p+ 1
, for t > p− 1.

Since

g′(t) =
p− a+ b

(t− p+ 1)2

(
− p−

√
t− p+ 1

t

)
< 0,

the function g(t) is decreasing in t > p− 1. On the other hand,

lim
t→(p−1)+

g(t) = +∞, lim
t→+∞

g(t) =
(p− a)(p+ 3) + 4b

p− 1
.

Therefore, if N ≤ (p−a)(p+3)+4b
p−1 , then N < g(q) since q > p− 1. Hence if we fix

α ∈ [1, α0(q)), suitably near α0(q), we obtain

N <
(p− a)(α+ q) + b(α+ p− 1)

q − p+ 1
,
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which means that θ < 0. Then the desired result follows by letting R→∞ in (2.8).

Assume now N > (p−a)(p+3)+4b
p−1 . Since g is decreasing, we obtain in this case a

critical value qc(p,N, a, b) such that N < g(q) for 1 < q < qc(p,N, a, b). From this,
the desired result follows again by letting R → ∞ in (2.8). Clearly, qc(p,N, a, b)
may be deduced from the equation N = g(q), which is given the value in Theorem
1.5 (see also Remark 1.6). Then we complete the proof. �

Proof of Proposition 1.8. Direct calculation yields that U is a weak solution of
(1.6). In order to show that U is stable, we need the following inequality (see
[3, 5]).

Lemma 2.1 (Caffarelli-Kohn-Nirenberg inequality). Let r < N−2
2 , then for all

ϕ ∈ C1
c (RN ) we have∫

RN

|∇ϕ|2

|x|2r
dx ≥

(N − 2− 2r

2

)2 ∫
RN

|ϕ|2

|x|2r+2
dx. (2.9)

Applying (2.9) with r = (n+1)(p−2)−a
2 we obtain∫

RN

|∇ϕ|2

|x|(n+1)(p−2)−a dx ≥
(N − 2− (n+ 1)(p− 2) + a

2

)2 ∫
RN

ϕ2

|x|n(q−1)−b
dx.

(2.10)
Since U is radially symmetric and decreasing in |x|, by arguing as in [2, Remark

1.7] it is necessary to check stability of U for all radially symmetric test function
ϕ ∈ C1

c (RN ). For such ϕ we have∫
RN

[
|x|a|∇U |p−2|∇ϕ|2 + (p− 2)|x|a|∇U |p−4(∇U,∇ϕ)2 − q|x|b|U |q−1ϕ2

]
dx

=

∫
RN

[
(p− 1)|x|a|∇U |p−2|∇ϕ|2 − q|x|b|U |q−1ϕ2

]
dx

=

∫
RN

[
(mn)p−2(p− 1)

|∇ϕ|2

|x|(n+1)(p−2)−a − qm
q−1 ϕ2

|x|n(q−1)−b
]
dx

≥
∫
RN

[
(mn)p−2(p− 1)

(
N − 2− (n+ 1)(p− 2) + a

2

)2

− qmq−1
] ϕ2

|x|n(q−1)−b
dx,

where we have used (2.10) in the last estimate. Direct computation yields

(mn)p−2(p− 1)
(N − 2− (n+ 1)(p− 2) + a

2

)2
− qmq−1

= (mn)p−2
[
(p− 1)

(
N − 2− (n+ 1)(p− 2) + a

2

)2

− nq (N + a− 1− (n+ 1)(p− 1))
]
.

We want to show that

(p− 1)
(N − 2− (n+ 1)(p− 2) + a

2

)2
− nq [N + a− 1− (n+ 1)(p− 1)] ≥ 0.

After substituting n = p−a+b
q−p+1 , this inequality is equivalent to

N ≥
(p− a+ b)(2q − p+ 1 + 2

√
q(q − p+ 1)) + q(p− a)(p− 1) + b(p− 1)2

(p− 1)(q − p+ 1)
.
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The last inequality is verified by Remark 1.6 and assumption q ≥ qc(p,N, a, b).
Thus, U is stable. �
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[15] R. Filippucci, P. Pucci, V. Rădulescu; Existence and non-existence results for quasilinear

elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential
Equations 33 (2008), 706–717.

[16] R. Filippucci, P. Pucci, F. Robert; On a p-Laplace equation with multiple critical nonlinear-

ities, J. Math. Pures Appl. 91 (2009), 156–177.
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262 (2012), 1705–1727.

Phuong Le

Department of Mathematical Economics, Banking University of Ho Chi Minh City, Viet-

nam
E-mail address: phuongl@buh.edu.vn

Vu Ho (corresponding author)
Division of Computational Mathematics and Engineering, Institute for Computational

Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City,
Vietnam

E-mail address: hovu@tdt.edu.vn


	1. Introduction and statement of main results
	2. Proofs
	References

