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Abstract. We apply some generalized maximum principles for establishing

uniqueness and nonexistence results concerning maximal spacelike hypersur-
faces immersed in a generalized Robertson-Walker (GRW) spacetime, which

is supposed to obey the so-called timelike convergence condition (TCC). As

application, we study the uniqueness and nonexistence of entire solutions of a
suitable maximal spacelike hypersurface equation in GRW spacetimes obeying

the TCC.

1. Introduction

In the previous decades, the study of spacelike hypersurfaces immersed in a
Lorentz manifold has been of substantial interest from both physical and mathe-
matical points of view. For instance, it was pointed out by Marsden and Tipler
[24] and Stumbles [37] that spacelike hypersurfaces with constant mean curvature
in a spacetime play an important role in General Relativity, since they can be used
as initial hypersurfaces where the constraint equations can be split into a linear
system and a nonlinear elliptic equation.

From a mathematical point of view, spacelike hypersurfaces are also interesting
because of their Bernstein-type properties. One can truly say that the first remark-
able results in this branch were the rigidity theorems of Calabi [13] and Cheng and
Yau [15], who showed (the former for n ≤ 4, and the latter for general n) that the
only maximal (that is, with zero mean curvature) complete spacelike hypersurfaces
of the Lorentz-Minkowski space Ln+1 are the spacelike hyperplanes. However, in
the case that the mean curvature is a positive constant, Treibergs [38] astonish-
ingly showed that there are many entire solutions of the corresponding constant
mean curvature equation in Ln+1, which he was able to classify by their projective
boundary values at infinity.

Later on, Ishihara [22] showed that the only complete maximal spacelike hyper-
surfaces immersed in a Lorentz manifold with nonnegative constant curvature are
the totally geodesic ones. For the case of ambient spacetimes with negative constant
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curvature, he obtained a sharp estimate for the norm of the second fundamental
form of a maximal spacelike hypersurface. In [14], the first author jointly with Ca-
margo have obtained rigidity results for complete maximal spacelike hypersurfaces
in the anti-de Sitter space, imposing suitable conditions on both the norm of the
second fundamental form and a certain height function naturally attached to these
hypersurfaces.

In this article, we are interested in the study of complete maximal spacelike
hypersurfaces immersed in generalized Robertson-Walker (GRW) spacetimes. By
GRW spacetimes, we mean Lorentzian warped products−I×fMn with Riemannian
fibre Mn and warping function f . In particular, when the Riemannian fibre Mn has
constant sectional curvature then −I×fMn is classically called a Robertson-Walker
(RW) spacetime (for the details, see Section 2).

Many authors have approached problems in this subject. We may cite the works
[3, 10, 11, 12, 31, 32, 33], where Romero et al. obtained rigidity and uniqueness
results for the spacelike slices and complete maximal surfaces immersed in a GRW
spacetime obeying either the timelike convergence condition or the null convergence
condition. Let us recall that a spacetime obeys the timelike (null) convergence con-
dition if its Ricci curvature is nonnegative on timelike (null or lightlike) directions.

Related to the compact case, Aĺıas, Romero and Sánchez [8] proved that in
a GRW spacetime satisfying the timelike convergence condition, every compact
spacelike hypersurface of constant mean curvature must be totally umbilical. In this
setting, they also showed how their result solve a certain Bernstein-type problem.
Later on, Aĺıas and Colares [5] studied the problem of uniqueness for compact
spacelike hypersurfaces immersed with constant higher order mean curvature in
GRW spacetimes. In order to establish one of their main results (cf. [5, Theorem
9.2]), they supposed that the ambient spacetime obeys a new notion of convergence
condition, the so-called strong null convergence condition which corresponds to a
suitable restriction on the sectional curvature of the Riemannian fibre of the GRW
spacetime.

Here, we deal with complete noncompact maximal spacelike hypersurfaces im-
mersed in a GRW spacetime. In this setting, by assuming that the ambient space-
time obeys the timelike convergence condition (TCC), we apply some generalized
maximum principles in order to establish uniqueness and nonexistence results con-
cerning these hypersurfaces (see Theorems 3.2, 3.7 and 3.9, and Corollaries 3.4 and
3.5). As application, we study the uniqueness and nonexistence of entire solutions
of a suitable maximal spacelike hypersurface equation in GRW spacetimes obeying
the TCC (see Theorems 4.1, 4.2 and 4.3). We point out that our uniqueness and
nonexistence results can be regarded as extensions of several others appearing in
the current literature, for instance, those ones in [4, 11, 14, 16, 32, 33, 34].

2. Preliminaries

In this section, we introduce some basic notation and facts which will appear
along the paper.

2.1. GRW spacetimes and spacelike hypersurfaces. Let Mn be a connected,
n-dimensional (n ≥ 2) oriented Riemannian manifold, I ⊆ R a 1-dimensional man-
ifold (either a circle or an open interval of R), and f : I → R a positive smooth
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function. In the product differentiable manifold M
n+1

= I ×Mn, let πI and πM
denote the projections onto the factors I and Mn, respectively.

A particular class of Lorentzian manifolds is the one obtained by furnishing
M

n+1
with the metric

〈v, w〉p = −〈(πI)∗v, (πI)∗w〉+ (f ◦ πI) (p)2〈(πM )∗v, (πM )∗w〉,

for all p ∈Mn+1
and all v, w ∈ TpM . Following the terminology introduced in [8],

such a space is called a generalized Robertson-Walker (GRW) spacetime, f is known
as the warping function and we shall write M

n+1
= −I ×f Mn to denote it. In

particular, when the Riemannian fibre Mn has constant sectional curvature, then
−I ×f Mn is classically called a Robertson-Walker (RW) spacetime, and it is a
spatially homogeneous spacetime (cf. [27]).

As it was observed in [7], we note that spatial homogeneity, which is reasonable as
a first approximation of the large scale structure of the universe, may not be realistic
when one considers a more accurate scale. For that reason, GRW spacetimes could
be suitable spacetimes to model universes with inhomogeneous spacelike geometry.
Besides, small deformations of the metric on the fiber of RW spacetimes fit into the
class of GRW spacetimes (see, for instance, [21] and [30]).

We recall that a smooth immersion ψ : Σn → −I ×f Mn of an n-dimensional
connected manifold Σn is said to be a spacelike hypersurface if the induced metric
via ψ is a Riemannian metric on Σn, which, as usual, is also denoted for 〈·, ·〉. In
that case, since

∂t = (∂/∂t)(t,x) , , (t, x) ∈ −I ×f Mn,

is a unitary timelike vector field globally defined on the ambient spacetime, then
there exists a unique timelike unitary normal vector field N globally defined on the
spacelike hypersurface Σn which is in the same time-orientation as ∂t. By using the
Cauchy-Schwarz inequality, we obtain

〈N, ∂t〉 ≤ −1 < 0 on Σn. (2.1)

We will refer to that normal vector field N as the future-pointing Gauss map of the
spacelike hypersurface Σn.

For t0 ∈ I, we orient the (spacelike) slice Mn
t0 = {t0} ×Mn by using its unit

normal vector field ∂t. According to [8], Mt0 has constant mean curvature H =
f ′

f (t0) with respect to ∂t.
Let ∇ and ∇ denote the Levi-Civita connections in −I ×f Mn and Σn, respec-

tively. Then the Gauss and Weingarten formulas for the spacelike hypersurface
ψ : Σn → −I ×f Mn are given by

∇XY = ∇XY − 〈AX,Y 〉N, (2.2)

AX = −∇XN, (2.3)

for every tangent vector fields X,Y ∈ X(Σ), where A : X(Σ) → X(Σ) stands for
the shape operator (or Weingarten endomorphism) of Σn with respect to its future-
pointing Gauss map N .

As in [27], the curvature tensor R of the spacelike hypersurface Σn is given by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [·, ·] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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A well-known fact is that the curvature tensor R of the spacelike hypersurface
Σn can be described in terms of the shape operator A and the curvature tensor R
of the ambient spacetime M

n+1
by the so-called Gauss equation given by

R(X,Y )Z = (R(X,Y )Z)> − 〈AX,Z〉AY + 〈AY,Z〉AX, (2.4)

for every tangent vector fields X,Y, Z ∈ X(Σ), where (·)> denotes the tangential
component of a vector field in X(M) along Σn.

2.2. Height and support functions and the normal hyperbolic angle. We
consider two particular functions naturally attached to a spacelike hypersurface
Σn immersed into a GRW spacetime M

n+1
= −I ×f Mn, namely, the (vertical)

height function h = (πI)|Σ and the support function 〈N, ∂t〉, where we recall that
N denotes the future-pointing Gauss map of Σn.

A simple computation shows that

∇πI = −〈∇πI , ∂t〉∂t = −∂t,

so that
∇h = (∇πI)> = −∂>t = −∂t − 〈N, ∂t〉N. (2.5)

Therefore,
|∇h|2 = 〈N, ∂t〉2 − 1, (2.6)

where | · | stands for the norm of a vector field on Σn.
We define the hyperbolic angle θ of Σn as being the smooth function θ : Σn →

[0,+∞) given by
cosh θ = −〈N, ∂t〉 ≥ 1. (2.7)

Therefore, from (2.6) and (2.7) we obtain

sinh2 θ = |∇h|2. (2.8)

2.3. Energy curvature conditions. We recall that a GRW spacetime M
n+1

=
−I ×f Mn obeys the null convergence condition (NCC) when

Ric(Z,Z) ≥ 0, (2.9)

for all null vector field Z ∈ X(M).
From [27, Corollary 7.43] we have that

Ric(Z,W ) = RicM (Z∗,W∗) + (n((log f)′)2 + (log f)′′)〈Z,W 〉
− (n− 1)(log f)′′〈Z, ∂t〉〈W,∂t〉,

(2.10)

where RicM denotes the Ricci tensor of M and Z∗ = Z + 〈Z, ∂t〉∂t stands for the
projection of the vector field Z onto Mn. Consequently, from (2.10) we have that
the NCC holds in M

n+1
if, and only if,

RicM ≥ (n− 1)
(
f2(log f)′′

)
〈·, ·〉M . (2.11)

A more restrictive energy condition is the timelike converge condition, that is

Ric(Z,Z) ≥ 0, (2.12)

for all timelike vector field Z ∈ X(M). Note that, by a continuity argument, It
turns out that the TCC implies NCC. Moreover, it is not difficult check that M

n+1

satisfies the TCC if, and only if, (2.11) holds and f ′′ ≤ 0.
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3. Uniqueness and nonexistence results in GRW spacetimes

This section is devoted to present our main results which are concerning the
uniqueness and nonexistence of spacelike hypersurfaces immersed in a GRW space-
time obeying the TCC. For this, we start quoting an extension of Hopf’s theorem
on a complete noncompact Riemannian manifold due to Yau [39]. In what follows,
L1(Σ) denotes the space of Lebesgue integrable functions on Σn.

Lemma 3.1. Let Σn be an n-dimensional, complete Riemannian manifold and
let g : Σn → R be a smooth function. If g is a subharmonic (or superharmonic)
function with |∇g| ∈ L1(Σ), then g must actually be harmonic.

In what follows, a slab

[t1, t2]×Mn = {(t, q) ∈ −I ×f Mn : t1 ≤ t ≤ t2}

is called a timelike bounded region.
Our first result is a sort of improvement to [16, Theorem 4.6].

Theorem 3.2. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the TCC.

(i) The only complete maximal spacelike hypersurfaces Σn contained in a time-
like bounded region of M

n+1
, whose hyperbolic angle and second fundamen-

tal form are bounded, f ′′(h) < 0 and with |∇h| ∈ L1(Σ), are the totally
geodesic slices of M

n+1
.

(ii) there are not exist complete maximal spacelike hypersurfaces Σn contained
in a timelike bounded region of M

n+1
having bounded hyperbolic angle and

second fundamental form, f ′(h) 6= 0 and with |∇h| ∈ L1(Σ).

Proof. From [23, Proposition 3.1] we have

1
2

∆ sinh2 θ

≥ nf
′(h)2

f(h)2
+ 〈A2∇h,∇h〉 − 2

f ′(h)
f(h)

Hess(h)(∇h,∇h)

+ cosh2 θRicM (N∗, N∗) + 2
f ′(h)
f(h)

cosh θ〈A∇h,∇h〉

+ (2n+ 1)
f ′(h)2

f(h)2
sinh2 θ − nf

′′(h)
f(h)

sinh2 θ + (n+ 1)
f ′(h)2

f(h)2
sinh4 θ

− nf
′′(h)
f(h)

sinh4 θ.

(3.1)

On the other hand, it is not difficult to verify that

∇ cosh θ = A(∇h)− f ′(h)
f(h)

〈N, ∂t〉∇h, (3.2)

sinh2 θ = f(h)2〈N∗, N∗〉M . (3.3)



6 H. F. DE LIMA, F. R. DOS SANTOS, J. G. ARAÚJO EJDE-2018/80

Using inequality (2.11) and equation (3.3), from (3.1) we have

1
2

∆ sinh2 θ ≥ 2
f ′(h)
f(h)

(cosh θ〈A∇h,∇h〉 −Hess(h)(∇h,∇h))

+ (n− 1) cosh2 θ sinh2 θ(log f)′′(h) + (2n+ 1)
f ′(h)2

f(h)2
sinh2 θ

− nf
′′(h)
f(h)

sinh2 θ + (n+ 1)
f ′(h)2

f(h)2
sinh4 θ − nf

′′(h)
f(h)

sinh4 θ.

(3.4)

Also from equation (3.2) we obtain

cosh θ〈A(∇h),∇h〉 −Hess(h)(∇h,∇h) = cosh θ
f ′(h)
f(h)

〈N, ∂t〉|∇h|2

= − cosh2 θ sinh2 θ
f ′(h)
f(h)

.

(3.5)

Hence, inserting (3.5) into (3.4), with a straightforward computation we obtain

1
2

∆ sinh2 θ ≥ n
(f ′(h)
f(h)

)2

sinh2 θ − nf
′′(h)
f(h)

sinh4 θ. (3.6)

So, let us assume the situation of item (i). From inequality (3.6) we obtain

1
2

∆ sinh2 θ ≥ −nf
′′(h)
f(h)

sinh4 θ. (3.7)

In particular, since we are supposing that f ′′(h) < 0, from (3.7) we conclude that
sinh2 θ is a subharmonic function on Σn.

On the other hand, since we are supposing that A and θ are bounded and that
Σn is contained in a timelike bounded region of M

n+1
, from (3.2) we have

|∇ sinh2 θ| = 2 cosh θ
∣∣∣(A+

f ′(h)
f(h)

cosh θI
)
∇h
∣∣∣ ≤ C|∇h|, (3.8)

for some positive constant C. Thus, since we are also assuming that |∇h| ∈ L1(Σ),
from (3.8) we obtain that |∇ sinh2 θ| ∈ L1(Σ).

Consequently, we can apply Lemma 3.1 to obtain that sinh2 θ is, in fact, harmonic
on Σn. Therefore, returning to (3.7) and using once more the hypothesis f ′′(h) < 0,
we conclude that θ vanishes identically on Σn, that is, Σn must be a totally geodesic
slice of M

n+1
.

Now, let us prove item (ii). For this, suppose by contradiction that there exists
such a spacelike hypersurface Σn. From inequality (3.6), we also have

1
2

∆ sinh2 θ ≥ n
(f ′(h)
f(h)

)2

sinh2 θ ≥ 0. (3.9)

Thus, we can apply again Lemma 3.1 to conclude that sinh2 θ is a harmonic func-
tion. So, returning to (3.6) we must be sinh2 θ ≡ 0. Hence, using the identity (2.8),
we have that cosh2 θ = 1 on Σn. Therefore, there exists t0 ∈ I such that Σn ⊂Mn

t0
and, for completeness, Σn is a totally geodesic slice with f ′(t0) = 0 and we arrive
to a contradiction. �

Remark 3.3. We recall that a spacetime M
n+1

obeys the ubiquitous energy con-
dition if its Ricci curvature satisfies Ric(Z,Z) > 0, for all timelike vector field
Z ∈ X(M). This last energy condition is stronger than the TCC and roughly
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means a real presence of matter at any point of the spacetime. It is not difficult
to verify that if M

n+1
= −I ×f Mn is a GRW spacetime obeying the ubiquitous

energy condition then f
′′
< 0. We observe that the open subset of the anti-de Sitter

space Hn+1
1 which is modeled by the GRW spacetime − (−π/2, π/2) ×cos t Hn (cf.

Example 3 in Section 4 of [25]), the so-called Einstein-de Sitter cosmological model
−(0,∞) ×t2/3 R3 and certain big bang cosmological models (see, for instance, [27,
Chapter 12], Chapter 5 of [9] or [21, Chapter 5]) are examples of GRW spacetimes
obeying the ubiquitous energy condition. So, in this case, the hypothesis f ′′(h) < 0
in Theorem 3.2 is automatically satisfied.

It is worth to make a discussion on the meaning of our assumption in Theo-
rem 3.2 concerning the integrability of |∇h| on the spacelike hypersurface Σn both
from geometric and physical viewpoints. From the first viewpoint, it is a natural
extension to the case in which the spacelike hypersurface is compact. On the other
hand, some physical interpretation is now in order.

According to [25],
V = V (t, p) = f(t)∂t (3.10)

is a closed conformal vector field globally defined on a GRW spacetime M
n+1

=
−I ×f Mn. So, following the concepts of [35] (see also [17, 23]), given a spacelike
hypersurface Σn immersed in M

n+1
with future-pointing Gauss map N , we can

write Vq = e(q)Nq + V >q , for each q ∈ Σn, where e(q) = −〈Vq, Nq〉 > 0 and V >q
are, respectively, the energy and the n-momentum that the instantaneous observer
Nq measures for Vq. Moreover, the quantity 1

e(q)V
>
q is the relative velocity (and,

hence, 1
e(q) |V

>
q | is the relative speed) of Vq with respect to Nq. Note that

|V >q | =
√
−〈Vq, Vq〉 sinh θ(q), (3.11)

where θ(q) is the hyperbolic angle between Vq and Nq. Thus, from (3.11) we obtain

|V >q | = e(q) tanh θ(q) ≤ e(q). (3.12)

Furthermore, from (2.5) and (3.10) we also have that

|V >q | = f(h(q))|∇h(p)|. (3.13)

Consequently, assuming that Σn is contained in a timelike bounded region of M
n+1

,
from (3.12) and (3.13) we see that the integrability of |∇h| can be regarded as been
the n-momentum of N having integrable norm on Σn and, in particular, such
condition is satisfied when Σn has finite total energy, that is,∫

Σ

e(q)dΣ < +∞.

So, from Theorem 3.2 we obtain the following result.

Corollary 3.4. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the TCC.

(i) The only complete maximal spacelike hypersurfaces Σn contained in a time-
like bounded region of M

n+1
, whose hyperbolic angle and second fundamen-

tal form are bounded, f ′′(h) < 0 and with finite total energy, are the totally
geodesic slices of M

n+1
.
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(ii) there are not exist complete maximal spacelike hypersurfaces Σn contained
in a timelike bounded region of M

n+1
having bounded hyperbolic angle and

second fundamental form, f ′(h) 6= 0 and with finite total energy.

In [22], Ishihara proved that a n-dimensional complete maximal spacelike hy-
persurface immersed in the anti-de Sitter space Hn+1

1 must have the squared norm
of the second fundamental form bounded from above by n. Taking into account
Ishihara’s result, Theorem 3.2 allows us to obtain the following refinement of [14,
Theorem 1.2].

Corollary 3.5. The only complete maximal spacelike hypersurface Σn contained
in a timelike bounded region of −(−π/2, π/2) ×cos t Hn ⊂ Hn+1

1 , whose hyperbolic
angle is bounded and with |∇h| ∈ L1(Σ), is the totally geodesic slice {0} ×Hn.

A Riemannian manifold Σn is said to be stochastically complete if, for some
(and, hence, for any) (x, t) ∈ Σ× (0,+∞), the heat kernel p(x, y, t) of the Laplace-
Beltrami operator ∆ satisfies the conservation property∫

Σ

p(x, y, t)dµ(y) = 1. (3.14)

From the probabilistic viewpoint, stochastically completeness is the property of a
stochastic process to have infinite life time. For the Brownian motion on a manifold,
the conservation property (3.14) means that the total probability of the particle to
be found in the state space is constantly equal to one (cf. [18, 19, 20, 36]).

On the other hand, Pigola, Rigoli and Setti showed that stochastic completeness
turns out to be equivalent to the validity of a weak form of the Omori-Yau maximum
principle (see [28, Theorem 1.1] or [29, Theorem 3.1]), as is expressed below.

Lemma 3.6. A Riemannian manifold Σn is stochastically complete if, and only
if, for every g ∈ C2(Σ) satisfying supΣ g < +∞, there exists a sequence of points
{pk} ⊂ Σn such that

lim
k→∞

g(pk) = sup
Σ
g and lim sup

k→∞
∆g(pk) ≤ 0.

Our next result is an extension of those in [11, 14, 16, 32, 33, 34] for the case that
the maximal spacelike hypersurface is supposed to be stochastically complete. For
this, we observe that the slices of a GRW spacetime which satisfies (2.11) have Ricci
curvature bounded from below and, consequently, they are stochastically complete.

Theorem 3.7. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the TCC.

(i) The only stochastically complete maximal spacelike hypersurfaces contained
in timelike bounded region U ⊂ M

n+1
, whose hyperbolic angle is bounded

and such that f ′′ < 0 in U , are the totally geodesic slices of M
n+1

.
(ii) There are not exist stochastically complete maximal spacelike hypersurfaces

contained in a timelike bounded region U ⊂Mn+1
, with bounded hyperbolic

angle and such that f ′ 6= 0 in U .

Proof. Let us assume the situation of item (i). From (3.7) we have that

1
2

∆ sinh2 θ ≥ −nf
′′(h)
f(h)

sinh4 θ.
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Consequently, since Σn is contained in a timelike bounded region U ⊂ M
n+1

with
f ′′ < 0 in U , there exists a positive constant C such that

1
2

∆ sinh2 θ ≥ C sinh4 θ. (3.15)

On the other hand, since we are supposing that θ is bounded, we can apply
Lemma 3.6 in order to obtain a sequence of points {pk}k∈N ⊂ Σn such that

0 ≤ sup
Σ

sinh2 θ = lim
k→∞

sinh2 θ(pk) and lim sup
k→∞

∆ sinh2 θ(pk) ≤ 0 (3.16)

Considering (3.16) into inequality (3.15), we obtain

0 ≥ lim sup
k→∞

∆ sinh2 θ(pk) ≥ C sup
M

sinh4 θ ≥ 0. (3.17)

Therefore, from (3.17) we conclude that θ = 0 on Σn and, hence, Σn must be a
totally geodesic slice of M

n+1
.

Now, we consider the case of item (ii). Suppose, for contradiction, that there
exists such a stochastically complete maximal hypersurface Σn. From (3.7) we also
have that

1
2

∆ sinh2 θ ≥ nf
′(h)2

f(h)2
sinh2 θ.

Thus, as in the previous item, there exists a positive constant C such that
1
2

∆ sinh2 θ ≥ C sinh2 θ. (3.18)

On the other hand, as we are supposing that θ is bounded, from (2.8), we can
apply Lemma 3.6 to obtain the sequence of points {pk}k∈N ⊂ Σn such that

0 ≤ sup
Σ

sinh2 θ = lim
k→∞

sinh2 θ(pk) and lim sup
k→∞

∆ sinh2 θ(pk) ≤ 0. (3.19)

Now, applying (3.19) into inequality (3.18) we obtain

0 ≥ lim sup
k→∞

∆ sinh2 θ(pk) ≥ 2C sup
M

sinh2 θ ≥ 0.

So, we conclude that sinh2 θ ≡ 0. Using equation (2.8), we have that cosh2 θ = 1
on Σn. Therefore, there exists t0 ∈ I such that with f ′(t0) = 0 and Σn ⊂Mn

t0 and,
hence, we arrive to a contradiction. �

According to the terminology due to Aĺıas and Colares [5], a GRW spacetime
is said to obey the strong null convergence condition (SNCC) when the sectional
curvature KM of its fiber Mn satisfies the inequality

KM ≥ sup
I

(f2(log f)′′), (3.20)

It is not difficult to see that the SNCC implies in the NCC.
Paraphrasing the definition of the SNCC, we say that a GRW spacetime obeys

the strong timelike convergence condition (STCC) when (3.20) is satisfied and
f ′′ ≤ 0. Clearly all GRW spacetime which satisfies the STCC also satisfies the
TCC. Consequently, taking into account the discussion made in Section 4.3 of [21]
concerning the physical interpretation of the TCC, we conclude that the assumption
of the ambient GRW spacetime to obey the STCC can be regarded as a mathemat-
ical way to express that gravity, on average, attracts.
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To establish our next result, we quote the following consequence of the gener-
alized maximum principle of Omori-Yau [26, 39] which was obtained by Akuta-
gawa [1].

Lemma 3.8. Let Σn denote an n-dimensional complete Riemannian manifold hav-
ing Ricci curvature bounded from below. If g ∈ C2(Σ) is nonnegative and satisfies
∆g ≥ Cgβ, for some real numbers C > 0 and β > 1, then g ≡ 0.

We will apply the previous lemma to obtain an extension of several results in
[11, 14, 16, 32, 33, 34] for the context of complete maximal spacelike hypersurfaces
immersed in a GRW spacetime obeying the STCC.

Theorem 3.9. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the STCC.
The only complete maximal spacelike hypersurfaces contained in a timelike bounded
region U ⊂Mn+1

with f ′′ < 0 in U are the spacelike totally geodesic slices of M
n+1

.

Proof. Firstly, to apply Lemma 3.8, we claim that the Ricci curvature of Σn is
bounded from below. Indeed, set X ∈ X(Σ) and a local orthonormal frame
{E1, · · · , En} of X(Σ). Then, since Σn is maximal, it follows from (2.4) that the
Ricci curvature Ric of Σn is given by

Ric(X,X) =
∑
i

〈R(X,Ei)X,Ei〉+ |AX|2 ≥
∑
i

〈R(X,Ei)X,Ei〉. (3.21)

Consequently, from (3.21) we obtain that Ric(X,X) is bounded from below if, and
only if,

∑
i〈R(X,Ei)X,Ei〉 is bounded from below.

On the other hand, by using [5, equation (33)] (see also [27, Proposition 7.42])
and taking into account equation (2.5), we obtain∑

i

〈R(X,Ei)X,Ei〉 =
∑
i

〈RM (X∗, E∗i )X∗, E∗i 〉+ (n− 1)((log f)′(h))2|X|2

− (n− 2)(log f)′′(h)〈X,∇h〉2 − (log f)′′(h)|∇h|2|X|2.
(3.22)

where RM is the curvature tensor of Mn, E∗i = (πM )∗(Ei) and X∗ = (πM )∗(X).
By computing the first parcel of the right side of (3.22), we have∑

i

〈RM (X∗, E∗i )X∗, E∗i 〉 ≥
1

f2(h)
((n− 1)|X|2 + |∇h|2|X|2

+ (n− 2)〈X,∇h〉2) min
i
KM (X∗, E∗i ).

(3.23)

Thus, considering (3.20) into (3.23), we obtain∑
i

〈RM (X∗, E∗i )X∗, E∗i 〉 ≥ ((n− 1)|X|2 + |∇h|2|X|2

+ (n− 2)〈X,∇h〉2)(log f)′′(h).
(3.24)

Substituting (3.24) in (3.22), we have∑
i

〈R(X,Ei)X,Ei〉 ≥ (n− 1)
f ′′(h)
f(h)

|X|2. (3.25)

Hence, since Σn is supposed to be contained into a timelike bounded region of
M

n+1
, from (3.25) we obtain that the Ricci curvature of Σn is bounded from below.
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Moreover, in a similar way of that in the proof of Theorem 3.7, we see that
inequality (3.15) still holds. Therefore, we can apply Lemma 3.8 to conclude that
θ vanishes identically on Σn and, hence, Σn must be a totally geodesic slice of
M

n+1
. �

4. Maximal spacelike hypersurface equation in GRW spacetimes

The goal of this section is to apply our previous uniqueness and nonexistence
results on maximal hypersurfaces in order to study entire solutions of a suitable
maximal hypersurface equation in GRW spacetimes obeying the TCC. For this, we
will first recall some basic facts concerning entire graphs in GRW spacetimes.

Let Ω ⊆ Mn be a connected domain of Mn. For every u ∈ C∞(Ω) such that
|Du|M < f(u) where |Du|M stands for the length of the gradient Du of u, we will
consider the vertical graph over Ω is determined by a smooth function u ∈ C∞(Ω)
and it is given by

Σ(u) = {(u(x), x) : x ∈ Ω} ⊂ −I ×f Mn. (4.1)

The metric induced on Ω from the Lorentzian metric on the ambient space via Σ(u)
is

〈·, ·〉 = −du2 + f2(u)〈·, ·〉Mn . (4.2)

The graph is said to be entire if Ω = Mn. It can be easily seen that a graph Σ(u)
is a spacelike hypersurface if, and only if, |Du|M < f(u).

Observe that by [8, Lemma 3.1], in the case where Mn is a simply connected
manifold, every complete spacelike hypersurface Σn in −I ×f Mn such that the
warping function f is bounded on Σn is an entire spacelike graph in such space. In
particular, this happens for complete spacelike hypersurfaces bounded away from
the infinity of −I ×f Mn. However, in contrast to the case of graphs into a Rie-
mannian space, an entire spacelike graph in a Lorentzian spacetime is not necessarily
complete, in the sense that the induced Riemannian metric (4.2) is not necessar-
ily complete on Mn. For instance, Albujer [2] have obtained explicit examples of
non-complete entire maximal graphs in −R×H2.

It is not difficult to see that the future-pointing Gauss map of Σ(u) is given by

N =
f(u)√

f2(u)− |Du|2M

(
∂t +

1
f2(u)

Du
)
. (4.3)

Moreover, the shape operator A of Σ(u) with respect to its orientation (4.3) is
given by

AX = − 1
f(u)

√
f2(u)− |Du|2M

DXDu−
f ′(u)√

f2(u)− |Du|2M
X

+
( −〈DXDu,Du〉M
f(u)

(
f2(u)− |Du|2M

)3/2 +
f ′(u)〈Du,X〉(

f2(u)− |Du|2M
)3/2)Du, (4.4)

for any tangent vector field X. Consequently, denoting by div the divergence op-
erator on Σ(u), the mean curvature function H(u) associated to A is given by

H(u) = −div
( Du

nf(u)
√
f(u)2 − |Du|2M

)
− f ′(u)
n
√
f(u)2 − |Du|2M

(
n+
|Du|2M
f(u)2

)
.
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The differential equation H(u) = 0 with the constraints |Du|M < f(u) is called the
maximal spacelike hypersurface equation in M , and its solutions provide maximal
spacelike graphs in M .

Motivated by this previous digression, we will consider the following maximal
spacelike hypersurface equation

div
( Du

f(u)
√
f(u)2 − |Du|2M

)
= − f ′(u)√

f(u)2 − |Du|2M

(
n+
|Du|2M
f(u)2

)
|Du|M ≤ αf(u),

(4.5)

where 0 < α < 1 is constant. We observe that (4.5) is uniformly elliptic and that
the constraint on |Du|M assures the boundedness of the hyperbolic angle θ of Σ(u).
Indeed, from (4.3) we obtain that

|∇h|2 =
|Du|2M

f2(u)− |Du|2M
. (4.6)

Hence, using (2.8) and (4.6) we see that |Du|M ≤ αf(u) implies cosh θ ≤ 1√
1−α2 .

To study equation (4.5), we also recall that

|u|C2(M) = max
|γ|≤2

|Dγu|L∞(M).

Our next result corresponds to a nonparametric version of Theorem 3.2.

Theorem 4.1. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the TCC.
(i) The only entire solutions of (4.5) such that |u|C2(M) < +∞, f ′′(u) < 0 and
|Du|M ∈ L1(M) are the constant functions u = c, with f ′(c) = 0.

(ii) There are not exist entire solutions u of (4.5) such that |u|C2(M) < +∞,
f ′(u) 6= 0 and |Du|M ∈ L1(M).

Proof. Since we are assuming that |u|C2(M) < +∞ and |Du|M ≤ αf(u) for some
constant 0 < α < 1, from (4.4) we obtain that |A| is bounded on Σ(u). Therefore,
reasoning as in the proof of [6, Corollary 5.1], we can apply Theorem 3.2 to get the
result. �

From Theorem 3.7 we obtain the following result.

Theorem 4.2. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the TCC.
(i) The only entire solutions of (4.5) which are stochastically complete and

such that f ′′(u) < 0 are the constant functions u = c, with f ′(c) = 0.
(ii) There are not exist entire solutions u of (4.5) which are stochastically com-

plete and such that f ′(u) 6= 0.

To close our paper, we quote the nonparametric version of Theorem 3.9.

Theorem 4.3. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the STCC
and let U be a timelike bounded region of M

n+1
such that f ′′ < 0 in U . The only

entire solutions of (4.5) contained into U are the constant functions u = c, with
f ′(c) = 0.
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grant 303977/2015-9. J. G. Araújo was partially supported by INCTMat/CAPES,
Brazil.



EJDE-2018/80 SOLUTIONS TO THE MAXIMAL EQUATION 13

References

[1] K. Akutagawa; On spacelike hypersurfaces with constant mean curvature in the de Sitter
space, Math. Z., 196 (1987), 13–19.

[2] A. L. Albujer; New examples of entire maximal graphs in H2 × R1, Diff. Geom. Appl., 26

(2008), 456–462.
[3] J. A. Aledo, A. Romero, R. M. Rubio; Constant mean curvature spacelike hypersurfaces in

Lorentzian warped products and Calabi-Bernstein type problems, Nonl. Anal., 106 (2014),

57–69.
[4] J. A. Aledo, R. M. Rubio, J. J. Salamanca; Complete spacelike hypersurfaces in generalized

Robertson-Walker and the null convergence condition: Calabi-Bernstein problems, RACSAM
111 (2017), 115–128.
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