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HARNACK INEQUALITY FOR QUASILINEAR ELLIPTIC
EQUATIONS WITH (p, q) GROWTH CONDITIONS AND

ABSORPTION LOWER ORDER TERM

KATERYNA BURYACHENKO

Communicated by Marco Squassina

Abstract. In this article we study the quasilinear elliptic equation with ab-
sorption lower term

− div
“
g(|∇u|)

∇u

|∇u|

”
+ f(u) = 0, u ≥ 0.

Despite of the lack of comparison principle, we prove a priori estimate of

Keller-Osserman type. Particularly, under some natural assumptions on the

functions g, f for nonnegative solutions we prove an estimate of the formZ u(x)

0
f(s) ds ≤ c

u(x)

r
g
`u(x)

r

´
, x ∈ Ω, B8r(x) ⊂ Ω,

with constant c, independent on u(x). Using this estimate we give a simple

proof of the Harnack inequality.

1. Introduction

In this article we consider nonnegative solutions of the quasilinear elliptic equa-
tion

− divA(x,∇u) + a0(u) = 0, x ∈ Ω, (1.1)
where Ω is a bounded domain in Rn, n ≥ 2. We suppose that the functions
A = (a1, a2, . . . , an) and a0 satisfy the Caratheodory conditions and the follow-
ing structural conditions

A(x, ξ)ξ ≥ ν1g(|ξ|)|ξ|, |A(x, ξ)| ≤ ν2g(|ξ|),
ν1f(u) ≤ a0(u) ≤ ν2f(u),

(1.2)

where ν1, ν2 are positive constants and g is positive function satisfying conditions

g ∈ C(R1
+),

( t
τ

)p−1 ≤ g(t)
g(τ)

≤
( t
τ

)q−1
, t ≥ τ > 0, 1 < p ≤ q < n. (1.3)

Harnack’s inequality for linear elliptic equations established by Moser [16] is
one of the most important results in the theory of partial differential equations.
Serrin[21], Trudinger [25, 26], Di Benedetto and Trudinger [2], generalized Moser’s
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result to the case of quasilinear elliptic equations with lower order terms from Ls
spaces. We also would like to comment on the Harnack type estimates for elliptic
equations with absorption term. The strong maximum principle for the equation
−∆u+f(u) = 0 was proved by Benilan, Brezis and Grandall [1] under the conditions∫ 1

0

du√
F (u)

=∞, F (u) =
∫ u

0

f(s) ds.

Further it was extended by Vazquez [29] for the equation −∆pu + f(u) = 0 and
for the equation (1.1) by Pucci and Serrin [18]-[20] and by Felmer, Montenegro
and Quaas [27]. Finn and McQwen [28], Dindos [3]. Mohammed and Porru [15]
proved the Harnack inequality for the non-divergence linear elliptic equations with
absorption term. This was extended by Julin [5, 6] to the linear divergence and
non-divergence elliptic equations with absorption term. Harnack’s inequality for
the equations of the type −∆pu + f(u) = 0 and ut −∆pu + f(u) = 0 was proved
in [24]. It is natural to conjecture that the Harnack inequality holds for the elliptic
equations with non-standard growth conditions perturbed by absorption term. Our
strategy of the proof of the Harnack inequality is similar to that in [24].

In the paper we prove estimates of Keller-Osserman type for solutions to elliptic
equation with nonstandard growth conditions and absorption lower term; after that
we give a simple proof of the Harnack inequality.

Before formulating the main result let us remind the reader the definition of the
weak solution to the equation (1.1).

Definition 1.1. Let G(t) = tg(t). Then note by W 1,G(Ω) the class of functions u
that are weakly differentiable in Ω and satisfy the condition∫

Ω

G(|∇u|) dx <∞.

Definition 1.2. We say that u is a weak solution to (1.1), if u ∈ W 1,G(Ω) and
satisfies the integral equation∫

Ω

{A(x,∇u)∇ϕ+ a0(u)ϕ} dx = 0, (1.4)

for any ϕ ∈ W̊ 1,G(Ω).

Let x0 ∈ Ω. For any ρ > 0 we set

F (u) =
∫ u

0

f(s) ds, δ(u) =
F (u)
f(u)

,M(ρ) = sup
Bρ(x0)

u,

δ(ρ) = sup
Bρ(x0)

δ(u), F (ρ) = sup
Bρ(x0)

F (u),

where Bρ(x0) is ball {x : |x− x0| < ρ}.
The next theorem is an a priori estimate of Keller-Osserman type, which is

interesting in itself and which can be used in the theory of “large” solutions (see
for example [11, 30], [8]–[10]).

Theorem 1.3. Let conditions (1.2), (1.3) be fulfilled and u be a nonnegative weak
solution to the equation (1.1) in Ω. Let x0 ∈ Ω. Fix σ ∈ (0, 1). Then there exist a
positive numbers c1, c2, depending only on n, p, q, ν1, ν2 such that

F (σρ) ≤ c1(1− σ)−c2
δ(ρ)
ρ

(
g
(M(ρ)

ρ

)
+ g
(δ(ρ)
ρ

))
, (1.5)
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for all B8ρ(x0) ⊂ Ω.

Remark 1.4. Conditions (1.1), (1.3) imply the local boundedness and Hölder
continuity of solutions (see, for example [14]).

Remark 1.5. For the case p = q inequality (1.5) was proved in [24]. In the case
p = q, using the comparison theorem an radial type solutions, inequality of the
type (1.5) was proved in [8].

To prove the Harnack inequality for equations with absorption lower terms we
need the following condition.

Definition 1.6. We say that a continuous function ψ satisfies condition (A) if
there exists µ > 0 such that

ψ(t)
ψ(τ)

≤
( t
τ

)µ
, (1.6)

for all t ≥ τ > 0.

Condition (A) arises due to presence of absorption lower order terms in the
equation (1.1): this condition was not presented in [14], but it is closely connected
with analogous conditions in the works [18]–[20].

Theorem 1.7. Let G−1 be the inverse function to the function G(t) = tg(t), and let
conditions (1.2), (1.3) be fulfilled. Let also u be a nonnegative weak solution to the
equation (1.1), function f(u) be nondecreasing and ψ(u) = u−1G−1(F (u)) satisfies
condition (A).Then there exists positive number c3, depending only on n, p, q, ν1, ν2,
c such that

F (u(x)) ≤ c3
u(x)
ρ

g

(
u(x)
ρ

)
, (1.7)

for almost all x ∈ Bρ(x0) and for any x0 ∈ Ω, such that B8ρ(x0) ⊂ Ω.

The following theorem is Harnack inequality for the nonnegative weak solutions
to the equation (1.1), which is simple consequence of the Theorem 1.7.

Theorem 1.8. Let u be a nonnegative weak solution to the equation (1.1), let
conditions (1.2), (1.3) be fulfilled. Assume that function f(u) is nondecreasing and
ψ(u) = u−1G−1(F (u)) satisfies condition (A).Then there exists positive number c4,
depending only on n, p, q, ν1, ν2, such that

sup
Bρ(x0)

u(x) ≤ c4 inf
Bρ(x0)

u(x), (1.8)

for almost all x ∈ Bρ(x0), and for any x0 ∈ Ω, such that B8ρ(x0) ⊂ Ω.

Remark 1.9. The formulation of the Theorem 1.7 is the same as in [14], however
due to presence of absorption lower order term, the results of [14] cannot be used.
The main novelty of our result that the constant c4 is independent on u.

Remark 1.10. If f(u) = g(u)f1(u), where function f1(u) satisfies condition (A)
with µ1 > q − p, then the function u−1G−1(F (u)) satisfies condition (A) with
µ = µ1−q+p

q > 0. A simple example of the function f1(u), which satisfies condition
(A) for µ1 = 1 is a function f1 ∈ C1(R1

+, f1 is nondecreasing and f1(0) = 0.

Remark 1.11. If f(u) = gs(u)f1(u), where f1 is nondecreasing and s > q−1
p−1 , then

the function u−1G−1(F (u)) satisfies condition (A) with µ = (p−1)s−q+1
q .
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2. Keller-Osserman a priori sub-estimate. Proof of Theorem 1.3

2.1. Auxiliary statements and local energy estimates. First of all we prove
the following auxiliary statements, which will be used for further investigations.

Lemma 2.1. Let {yj}j∈N be a sequence of nonnegative numbers such that the
following inequalities

yj+1 ≤ Cbjy1+ε
j

hold for j = 0, 1, 2, . . . with positive constants ε, C > 0, b > 1. Then

yj ≤ C
(1+ε)j−1

ε b
(1+ε)j−1

ε2
− jε y

(1+ε)j

0 .

In particular, if y0 ≤ C−
1
ε b−

1
ε2 , then limj→∞ yj = 0.

We denote by the γ some constant depending only on n, p, q, ν1, ν2 which may
vary from line to line. Let Br(x̄) ⊂ Ω be a ball in Ω, then we denote by the ζ some
nonnegative piecewise smooth truncated function vanishing on the boundary of the
ball Br(x̄).

Lemma 2.2. Let u be a nonnegative weak solution to the equation (1.1) and let
conditions (1.2) and (1.3) hold. Then for every Br(x̄) ⊂ Ω and for every k > 0∫

Ak,r

f(u)G(|∇u|)ζq dx+
∫
Ak,r

(F (u)− k)+f(u)ζq dx

≤ γ
∫
Ak,r

(F (u)− k)+g(δ(u)|∇ζ|)|∇ζ|dx,
(2.1)

where Ak,r = {x ∈ Br(x̄) : F (u) > k}.

Proof. Testing integral equality (1.4) by the ϕ = (F (u)− k)+ζ
q. Using conditions

(1.2) and (1.3) we obtain∫
Ak,r

f(u)G(|∇u|)ζq dx+
∫
Ak,r

(F (u)− k)+f(u)ζq dx

≤ γ
∫
Ak,r

(F (u)− k)+g(|∇u|)|∇ζ|ζq−1dx.

Let us note that the next inequality is evident

g(a)b ≤ εg(a)a+ g
( b
ε

)
b, a, b, ε > 0. (2.2)

We use this inequality with a = |∇u|, b = γ(F (u) − k)+
|∇ζ|
ζ , ε = 1

2f(u) and arrive
to the required inequality (2.1) �

2.2. Proof of Theorem 1.3. Consider a ball Bρ(x0) and for fixed σ ∈ (0, 1) let x̄
be an arbitrary point in ball Bσρ(x0). Further we set

ρj =
1− σ

4
ρ(1 + 2−j), Bj = Bρj (x̄), Akj ,j = {x ∈ Bj : F (u) > kj}, j = 0, 1, . . .

ζj ∈ C∞0 (Bj), 0 ≤ ζj ≤ 1, |∇ζj | ≤ γ(1− σ)−12−jρ−1
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and ζj ≡ 1 in Bj+1. By the embedding theorem and Hölder inequality we obtain∫
Akj+1,j+1

(F (u)− kj+1)+dx

≤
(∫

Akj+1,j

((F (u)− kj+1)+ζ
q
j )

n
n−1 dx

)n−1
n |Akj+1,j+1|1/n

≤ γ
∫
Akj+1,j

|∇((F (u)− kj+1)+ζ
q
j )||Akj+1,j |1/n

≤ γ
(∫

Akj+1,j

f(u)|∇u|ζqj dx

+
∫
Akj+1,j

(F (u)− kj+1)+|∇ζj |ζq−1
j dx

)
|Akj+1,j |1/n.

(2.3)

Let ` = δ(ρ)/ρ. Using inequality (2.2) with a = `, b = |∇u|, ε = 1 and the evident
inequality (F (u) − kj+1)+ ≥ k

2j+1 on Akj+1,j , we estimate the first term in the
right-hand side of (2.3) as follows∫

Akj+1,j

f(u)|∇u|ζqj dx

=
1
g(`)

∫
Akj+1,j

f(u)g(`)|∇u|ζqj dx

≤ `
∫
Akj+1,j

f(u)ζqj dx+
1
g(`)

∫
Akj+1,j

f(u)G(|∇u|)ζqj dx

≤ 2j
`

k

∫
Akj+1,j

(F (u)− kj+1)+f(u)ζqj dx+
1
g(`)

∫
Akj+1,j

f(u)G(|∇u|)ζqj dx.

(2.4)

From the previous inequality and Lemma 2.2 it follows that∫
Akj+1,j

f(u)|∇u|ζqj dx

≤ γ(1− σ)−γ2jγ
( `
k

+
1
g(`)

)
ρ−1g

(δ(ρ)
ρ

) ∫
Akj,j

(F (u)− kj)+dx.

(2.5)

Choosing k such that

k ≥ G(`) = G

(
δ(ρ)
ρ

)
, (2.6)

from inequalities (2.3) and (2.4) we obtain

yj+1 =
∫
Akj+1,j+1

(F (u)− kj+1)dx ≤ γ(1− σ)−γ2jγρ−1k−
1
n y

1+ 1
n

j . (2.7)

from Lemma 2.1 it follows that yj → 0 as j →∞, provided k is chosen to satisfy

k ≥ γ(1− σ)−γρ−n
∫
B 1−σ

2 ρ
(x̄)

F (u)dx. (2.8)
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Inequalities (2.5) and (2.6) imply that

F (u(x̄)) ≤ γ(1− σ)−γG
(
δ(ρ)
ρ

)
+ γ(1− σ)−γρ−n

∫
B 1−σ

2 ρ
(x̄)

F (u)dx. (2.9)

Let ξ ∈ C∞0 (B(1−σ)ρ(x̄)), 0 ≤ ξ ≤ 1, ξ ≡ 1 in B 1−σ
2 ρ(x̄) and |∇ξ| ≤ 2(1−σ)−1ρ−1.

To estimate the integral in the right-hand side of the (2.9) we test (1.4) by ϕ = ξq.
Using conditions (1.2), (1.3) we obtain∫

B 1−σ
2 ρ

(x̄)

F (u)dx ≤ δ(ρ)
∫
B(1−σ)ρ(x̄)

f(u)ξqdx

≤ γ(1− σ)−1 δ(ρ)
ρ

∫
B(1−σ)ρ(x̄)

g(|∇u|)ξq−1dx.

We use inequality (2.2) with a = |∇u|, b = ξ−1 to obtain∫
B 1−σ

2 ρ
(x̄)

F (u)dx ≤ γ(1− σ)−1 δ(ρ)
M(ρ)

∫
B(1−σ)ρ(x̄)

G(|∇u|)ξqdx

+ γ(1− σ)−1 δ(ρ)
ρ
g

(
M(ρ)
ρ

)
ρn.

(2.10)

Test (1.4) by the function ϕ = uξq. Using (1.2) and (1.3) we obtain∫
B(1−σ)ρ(x̄)

G(|∇u|)ξqdx ≤ γ(1− σ)−γG
(
M(ρ)
ρ

)
ρn. (2.11)

Combining (2.10) and (2.11) we arrive at∫
B(1−σ)ρ(x̄)

F (u)dx ≤ γ(1− σ)−γ
δ(ρ)
ρ
g

(
M(ρ)
ρ

)
ρn. (2.12)

Since x̄ is an arbitrary point in Bσρ(x0), from (2.8) and (2.12) we obtain the required
inequality (1.5). So, Theorem 1.3 is proved.

2.3. Proof of Theorem 1.7. For j = 1, 2, . . . , let us define the sequences {σj},
{ρj}, {Mj} such that

σj =
1− 2−j−1

1− 2−j−2
, ρj = ρ

(
1 +

1
2

+ · · ·+ 1
2j
)
, Mj = sup

Bρj(x0)

u.

Rewrite inequality (1.5) for the pair of balls Bρj+1(x0), Bρj (x0):

G−1(F (Mj)) ≤ γ2γjρ−1Mj+1.

If ε > 0, we obtain

ψ(Mj) ≤ ψ(εMj+1) +
1
ε

ψ(Mj)Mj

Mj+1

≤ ψa(εMj+1) + ε−1γ2γjρ−1.

Using condition (A) we arrive at following recursive inequalities

ψ(Mj) ≤ εµψ(Mj+1) + ε−1γ2γjρ−1,
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j = 0, 1, 2, . . . , or

ψ(M0) ≤ εjµψ(Mj) + ε−1γρ−1

j−1∑
k=0

εkµ2kj .

We chose εµ = 2−γ−1 so that the sum on the previous inequality can be majorized
by convergent series. Let j →∞. Then

ψ(u(x0)) ≤ ψ(M0) ≤ γρ−1.

This proves the Theorem 1.7.

3. Harnack inequality. Proof of Theorem 1.8

Let x0 be some inner point in Ω and B8ρ(x0) ⊂ Ω. Fix x̄ ∈ Bρ(x0), σ ∈ (0, 1), 0 <
r ≤ ρ. Let also ξ ∈ C∞0 (Br(x̄)), 0 ≤ ξ ≤ 1, ξ ≡ 1 in Bσρ(x̄) and |∇ξ| ≤ (1−σ)−1r−1.
The following lemma is an auxiliary result for proving Harnack inequality (Theorem
1.8).

Lemma 3.1. Let the conditions of Theorem 1.8 be fulfilled. Then for every 0 <
k < supB2ρ(x0) u, the next inequalities hold∫

Br(x̄)

G(|∇(u− k)+|)ξqdx ≤ γG
( ||(u− k)+||L∞(Br(x̄))

(1− σ)r

)
|A+
k,r|, (3.1)∫

Br(x̄)

G(|∇(k − u)+|)ξqdx ≤ γG
( k

(1− σ)r

)
|A−k,r|, (3.2)

where A±k,r = Br(x̄) ∩ {(u− k)± > 0}.

Proof. Testing (1.4) by ϕ = (u − k)+ξ
q and using (1.2), (1.3), (2.2) we arrive at

(3.1). To prove (3.2) we test (1.4) by the function ϕ = (k − u)+ξ
q, using (2.2) we

obtain∫
Br(x̄)

G(|∇(k − u)+|)ξqdx ≤ γG
( k

(1− σ)r

)
|A−k,r|+ γ

∫
Br(x̄)

f(u)(k − u)+ξ
qdx.

The last term of the previous inequality can be estimated in the following way∫
Br(x̄)

f(u)(k − u)+ξ
qdx =

∫
Br(x̄)

f(u)χ(u < k)
∫ k

u

dsξqdx

≤
∫
Br(x̄)

χ(u < k)
∫ k

u

f(s)dsξqdx

≤
∫ k

0

f(s)ds|A−k,r| = F (k)|A−k,r|.

By Theorem 1.7 we obtain

F (k)
G(kρ )

≤
F
(

supB2ρ(x0) u
)

G
(

1
ρ supB2ρ(x0) u

) ≤ γ.
The above inequality proves (3.2), and completes the proof. �

The following lemma is an expansion of positivity result, analogue in formulation
as well as in the proof to [14, Lemmas 6.3, 6.4].
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Lemma 3.2. Let the conditions of Theorem 1.8 be fulfilled. Assume that for some
x̄ ∈ Ω, some r > 0, N > 0 and some α ∈ (0, 1),

|{x ∈ Br(x̄) : u(x) ≤ N}| ≤ (1− α)|Br(x̄)|.
Then for any ε ∈ (0, 1) there exists constant δ ∈ (0, 1/2) depending only on
n, p, q, ν1, ν2, α and ε such that

|{x ∈ B4r(x̄) : u(x) ≤ 2δN}| ≤ ε|B4r(x̄)|,
and furthermore u(x) ≥ δN for almost all x ∈ B2r(x̄).

The next lemma is a De Giorgi type lemma, the proof of which is similar to that
of [14, Lemma 6.4].

Lemma 3.3. Let the conditions of Theorem 1.8 be fulfilled, x̄ ∈ Ω, fix r > 0, ξ, a ∈
(0, 1). There exists number ε0 ∈ (0, 1) depending only on n, p, q, ν1, ν2, ξ and a such
that if

|{x ∈ Br(x̄) : u(x) ≤M(1− ξ)}| ≤ ε0|Br(x̄)|,
with some M ≥ sup

Br(x̄)

u, then

u(x) ≤M(1− aξ) for a.a. x ∈ B2r(x̄).

Because of Lemmas 3.2 and 3.3, the rest of the arguments do not differ from the
corresponding result in [4] and [14]. This completes the proof Theorem 1.8.

Conclusion. In the paper there was studied quasilinear double-phase elliptic equa-
tions with absorption term

−div
(
g(|∇u|) ∇u

|∇u|

)
+ f(u) = 0, u ≥ 0.

Despite the lack of comparison principle, we proved a priori estimate of Keller-
Osserman type. Particularly, under some natural assumptions on the functions g, f
for nonnegative solutions we proved an estimate of the form∫ u(x)

0

f(s) ds ≤ cu(x)
r

g
(u(x)

r

)
, x ∈ Ω, B8r(x) ⊂ Ω,

with constant c, independent on u(x). Using this estimate we presented a simple
proof of the Harnack inequality.
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References

[1] P. Benilan, H. Brezis, M. Grandall; A semilinear equation in L1(RN ), Ann.Sc. Norm. Sup.

Pisa, Serie IV, 2, (1975), 523–555.

[2] E. Di Benedetto, N. Trudinger; Harnack inequalities for quasi-minima of variational inte-
grals, Annales de l’I.H.P. Analyse non lineaire, 1, (1984), N 4, 295–308.

[3] M. Dindos; Large solutions for Yamabe and similar problems on domains in Riemannian
manifolds, Trans. Amer. Math. Society, 363, N 10, (2011), 5131–5178.

[4] E. Giusti; Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna,

1994.
[5] V. Julin; Generalized Harnack inequality for nonhomogeneous elliptic equations Archive for

Rational Mechanics and Analysis, 216, (2015), N 2, 673-702.



EJDE-2018/91 HARNACK INEQUALITY 9

[6] V. Julin; Generalized Harnack inequality for semilinear elliptic equations, J. Math. Pure and

Appl., 106, (2016), N 5, 877-904.

[7] J. Keller; On solutions of ∆u = f(u) , Comm. Pure Applied Math, 10, (1957), 503-510.
[8] A. A. Kon’kov; Comparision theorems for elliptic inequalities with a non-linearity in the

principle part, J. Math.An. Appl., 325, (2007), 1013-1041.

[9] A. A. Kon’kov; On comparision theorems for elliptic inequalities, J.Math. An. Appl., 388,
(2012), 102-124.

[10] A. A. Kon’kov; On solutions of quasilinear elliptic inequalities containing terms with lower

order derivatives, Nonlinear Analysis, 90, (2013), 121-134.
[11] A. A. Kovalevsky, I. I. Skrypnik, A. E. Shishkov; Singular solutions of nonlinera eliptic and

parabolic equations, De Gruyter, Berlin, 2016.

[12] O. A. Ladyzhenskaya, N. N. Uraltseva; Linear and Quasilinear Elliptic Equations, Academic
Press, New York, 1968.

[13] G. M. Lieberman; Local estimates for subsolutions and supersolutions of oblique derivative
problems for general second order elliptic equations, Transactions of the American Math.

Society, 304, (1987), N 1, 577–591.

[14] G. M. Lieberman; The natural generalization of the natural conditions of Ladyzhenskaya and
Ural’ tseva for elliptic equations, Comm. Partial Diff. Eqs, 16, (1991), 311–361.

[15] A. Mohammed, G. Porru; Harnack inequality for non-divergence structure semi-linear elliptic

equations, Advances in Nonlinear Analysis, 6, (2016).
[16] J. Moser; On Harnack’s theorem for elliptic differential equations, Communications on Pure

and Applied Mathematics, 14, (1961), N 3, 577–591.

[17] R. Osserman; On the inequality ∆u ≥ f(u) , Pac. J. Math, 7, (1957), 1641-1647.
[18] P. Pucci, J. Serrin; A note on the strong maximum for elliptic differential equations, J.Math.

Pure and Appl.,79, (2000), 57-71.

[19] P. Pucci, J. Serrin; The Harnack inequality in R2 for quasilinear elliptic equations, J. Anal.
Math., 85, (2001), 307-321.

[20] P. Pucci, J. Serrin; The strong maximum principle revisted, J. Differential Equations 196,
(2004), 1-66.

[21] J. Serrin; A Harnack inequality for nonlinear equations, Bull. Amer. Math. Soc., 69, (1963),

N 4, 481–486.
[22] J. Serrin; On the Harnack inequality for linear elliptic equations, Journal d’Analyse Math,

4, (1954-56), 292-308.

[23] J. Serrin; Local behavior of solutions of quasilinear equations, Acta Math., 111, (1964),
247-302.

[24] M. Shan, I. Skrypnik; Keller-Osserman a priori estimates and the Harnack inequality for

quasilinear elliptic and parabolic equations with absorption term, Nonlinear Analysis, 155,
(2017), 97–114.

[25] N. Trudinger; On Harnack type inequalities and their applications to quasilinear elliptic

equations, Communications on Pure and Applied Mathematics, 20, (1967), 721–747.
[26] N. S. Trudinger; Harnack inequalities for nonuniformly elliptic divergence structure equa-

tions, Inventiones Math, 64, (1981), 517–531.

[27] P. Felmer, M. Montenegro, A. Quaas; A note of the strong maximum principle and the
compact support principle, J. Differential Equations, 246, (2009), 39–49.

[28] D. L. Finn, R. C. McQwen; Singularities and asymptotics for the equations ∆pu−uq = f(u),
Indiana Univ. Math. Journal, 42, (1993), N. 4, 1487–1523.

[29] J.-L. Vazquez; A strong maximum principle for some quasilinear elliptic equations,
Appl.Math. Optim., 12, (1984), 191–202

[30] L. Veron; Singularities of solution of second order quasilinear equations, Longman, Harlow,

1996.

Kateryna Buryachenko

Vasyl’ Stus Donetsk National University, 600-richa Str., 21, Vinnytsia, 21021, Ukraine
E-mail address: katarzyna @ukr.net


	1. Introduction
	2. Keller-Osserman a priori sub-estimate. Proof of Theorem 1.3
	2.1. Auxiliary statements and local energy estimates
	2.2. Proof of Theorem 1.3
	2.3. Proof of Theorem 1.7

	3. Harnack inequality. Proof of Theorem 1.8
	Conclusion
	Acknowledgments

	References

