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MEROMORPHIC SOLUTIONS TO NON-LINEAR
DIFFERENTIAL-DIFFERENCE EQUATIONS

CHANGJIANG SONG, KAI LIU, LEI MA

Abstract. We consider the non-linear differential-difference equation

c(z)w(z + 1) + a(z)
w′(z)

w(z)
= R(z, w(z)),

where R(z, w(z)) is rational in w(z) with rational coefficients, a(z) and c(z)

are non-zero rational functions. We give necessary conditions on the degree of
R(z, w) for the above equation to admit a transcendental meromorphic solution

of hyper-order ρ2(w) < 1. We also consider the admissible rational solutions

of the above equation.

1. Introduction

Ablowitz, Halburd and Herbst [1] considered the existence of sufficiently many
finite order meromorphic solutions of a difference equation, which could be viewed
as a good difference analogue of the Painlevé property for complex difference equa-
tions. It is a landmark on the applications of Nevanlinna theory in the studies
of complex difference equations. Recently, it has become an important topic to
consider complex difference equations and the properties of meromorphic solutions
using Nevanlinna theory. We assume that the reader is familiar with standard sym-
bols and fundamental results of Nevanlinna theory [9]. A function a(z)( 6≡ 0,∞) is
called a small function with respect to w(z), if T (r, a) = S(r, w), where S(r, w) de-
notes any quantity satisfying S(r, w) = o(T (r, w)) with r →∞ outside of a possible
exceptional set of finite logarithmic measure. For a meromorphic function w(z),
the order of w is defined by

ρ(w) = lim sup
r→∞

log T (r, w)
log r

and the hyper-order is defined by

ρ2(w) = lim sup
r→∞

log log T (r, w)
log r

.

Halburd and Korhonen [5] singled out a list of possible equations of the form

w(z + 1) + w(z − 1) = R(z, w(z)), (1.1)

where R(z, w) is rational in w(z) with meromorphic coefficients in z, provided that
w(z) is assumed to have finite order but grow faster than the coefficients. It was
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later proved in [6] that the same result is also valid by replacing the assumption
finite order with the hyper-order less than one.

In [7], if the difference equation

w(z + 1)w(z − 1) = R(z, w(z)) (1.2)

has an admissible meromorphic solution of finite order, then (1.2) can be trans-
formed by Möbius transformation in w to a list of equations, in which the differ-
ence Painlevé III equation is included, unless w(z) is a solution of difference Riccati
equations.

Recently, Halburd and Korhonen [8, Theorem 1.1] considered the properties
of meromorphic solutions on non-linear differential-difference (delay-differential)
equation

w(z + 1)− w(z − 1) + a(z)
w′(z)
w(z)

= R(z, w(z)) =
P (z, w(z))
Q(z, w(z))

, (1.3)

where a(z) is a rational function, P (z, w) is a polynomial in w having rational
coefficients in z, Q(z, w) is a monic polynomial in w with the roots that are non-zero
rational functions of z and not the roots of P (z, w). They obtained the following
theorem.

Theorem 1.1. Let w(z) be a non-rational solution of (1.3). If ρ2(w) < 1, then

degw(P ) = degw(Q) + 1 ≤ 3

or the degree of R(z, w) as a rational function in w is either 0 or 1.

A natural question to ask is what happens if (1.3) is more general, for example

c(z)w(z + 1)− b(z)w(z − 1) + a(z)
w′(z)
w(z)

= R(z, w(z)) =
P (z, w(z))
Q(z, w(z))

, (1.4)

where a(z), b(z), c(z) are rational functions. It seems that there is no difficulty to
obtain the same result as Theorem 1.1 if b(z), c(z) are non-zero rational functions
using the same method as in [8]. However, if one of b(z), c(z) vanishes, the situation
is different. In the paper, we will consider this case as the supplement of Theorem
1.1 and give the details of the proof, the idea is similar as in [8]. Without loss of
generality, we assume b(z) ≡ 0, then (1.4) reduces to

c(z)w(z + 1) + a(z)
w′(z)
w(z)

= R(z, w(z)) =
P (z, w(z))
Q(z, w(z))

, (1.5)

here P (z, w) and Q(z, w) also satisfy the conditions above Theorem 1.1. We state
our result as follows.

Theorem 1.2. Let w(z) be a non-rational meromorphic solution of (1.5). If
ρ2(w) < 1 , then

degw(P ) = degw(Q) + 1 = 2 (1.6)
or the degree of R(z, w) as a rational function in w is either 0 or 1.

Corollary 1.3. If w(z) is a transcendental entire solution of (1.5) with ρ2(w) < 1,
then degw(P ) = 1 and degw(Q) = 0 holds.

From Theorem 1.2, we see that if degw(Q) = 1, that is Q(z, w) = w(z) − b(z)
where b(z) 6≡ 0, thus (1.5) implies that w(z) and w(z) − b(z) have finitely many
zeros, which is impossible for w(z) is an entire function, thus we get Corollary 1.3.
The following example shows that the assertion (1.6) holds.
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Example 1.4. The meromorphic function w(z) = 1
ez+1 solves

w(z + 1) +
w′(z)
w(z)

=
(1− e)w(z)2 + 2ew(z)− e

(1− e)w(z) + e
.

Here, degw(P ) = degw(Q) + 1 = 2.

The following two examples show that the case of degw(R) = 1 happens. Exam-
ple 1.5 also shows that Corollary 1.3 occurs.

Example 1.5. The entire function w(z) = ez solves

c(z)w(z + 1) + a(z)
w′(z)
w(z)

= ec(z)w(z) + a(z),

which implies that degw(R) = 1.

Example 1.6. The meromorphic function w(z) = tan π
2 z solves

w(z + 1) +
2
π

w′(z)
w(z)

= w(z),

which implies that degw(R) = 1.

If degw(R) = 0, that is R(z, w(z)) does not depend on w(z) in (1.5), then (1.5)
becomes

c(z)w(z + 1) + a(z)
w′(z)
w(z)

= b(z), (1.7)

where a(z), b(z) and c(z) are rational functions. We obtain the following result.

Theorem 1.7. The equation (1.7) has no transcendental entire solutions. If w(z) is
a transcendental meromorphic solution with finite order of (1.7), then λ(w) = ρ(w).

The following example shows that the case of degw(R) = 0 happens in Theorem
1.2 and λ(w) = ρ(w) occurs in Theorem 1.7.

Example 1.8. The meromorphic function w(z) = 1
e2iπz+1 solves

w(z + 1)− 1
2iπ

w′(z)
w(z)

= 1.

We continue considering the case that (1.5) admits a rational solution where all
the coefficients of (1.5) are constants. There are several cases for different degrees
on P (z, w) and Q(z, w), we mainly consider two of them and obtain the following
result. It is not difficult to discuss other cases to obtain the relationship between
m,n using the similar method in the proof of Theorem 1.9.

Theorem 1.9. Let w(z) = M(z)/N(z) be a non-constant rational solution of (1.5),
M(z) and N(z) be polynomials as follows

M(z) = amz
m + · · ·+ a1z + a0, N(z) = bnz

n + · · ·+ b1z + b0,

and let h := P (z, 0), g := P ′(z, 0) and e := Q(z, 0) in (1.5). We have
(1) if degw(P ) = 0, then m = n;
(2) if degw(P ) = 3 and degw(Q) = 2, then m ≥ n except that n = m + 1

provided that h = 0 e 6= 0 and g 6= 0.



4 C. J. SONG, K. LIU, L. MA EJDE-2018/93

Example 1.10. The rational function w(z) = 1/z solves the equation

cw(z + 1) + a
w′(z)
w(z)

=
w2(z) + 2w(z)
w(z) + 1

with c = 1, a = −1. In this case, we know that degw(P ) = 2,degw(Q) = 1, h = 0,
and m = 0, n = 1, which implies degw(P ) = degw(Q)+1, n = m+1. The exception
case in Case (2) happens.

2. Preliminaries

Lemma 2.1 ([6, Lemma 8.3]). Let T : [0,∞)→ [0,∞) be a non-decreasing contin-
uous function and let s ∈ (0,∞). If the hyper-order of T is strictly less than one,
i.e.,

lim sup
r→∞

log log T (r)
log r

= ρ2 < 1,

and δ ∈ (0, 1− ρ2), then

T (r + s) = T (r) + o
(T (r)
rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

The Valiron-Mohon’ko identity [11, 12] is a useful tool to estimate the character-
istic function of rational functions, the proof can be found easily in [10, Theorem
2.2.5].

Lemma 2.2. Let w be a meromorphic function and R(z, w) be a rational function
in w and meromorphic in z. If all the coefficients of R(z, w) are small compared to
w, then

T (r,R(z, w)) = degw(R)T (r, w) + S(r, w).

Difference analogue lemma on the logarithmic derivative for meromorphic func-
tions of finite order was established by Halburd and Korhonen [3, 4], and Chiang
and Feng [2], independently. Let us recall the version as follows.

Lemma 2.3 ([6, Theorem 5.1]). Let w be a non-constant meromorphic function
and c ∈ C. If w is of finite order, then

m
(
r,
w(z + c)
w(z)

)
= O

( log r
r

T (r, w)
)

for all r outside of a set E satisfying

lim sup
r→∞

∫
E∩[1,r)

dt/t

log r
= 0,

i.e., outside of a set E of zero logarithmic density. If ρ2(w) = ρ2 < 1 and ε > 0,
then

m
(
r,
w(z + c)
w(z)

)
= o
( T (r, w)
r1−ρ2−ε

)
for all r outside of a set of finite logarithmic measure.
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The following lemma, related to the value distribution of meromorphic solutions
of a large class of differential-difference equations, is important in this article. A
differential-difference polynomial in w(z) is defined by

P (z, w) =
∑
l∈L

bl(z)w(z)l0,0w(z + c1)l1,0 . . . w(z + cν)lν,0w′(z)l0,1 . . . w(µ)(z + cν)lν,µ

where c1, . . . , cν are distinct complex constants, L is a finite index set consisting
of elements of the form l = (l0,0, . . . , lν,µ) and the coefficients bl(z) are rational
functions of z for all l ∈ L.

Lemma 2.4 ([8, Lemma 2.1]). Let w(z) be a non-rational meromorphic solution
of

P (z, w) = 0 (2.1)

where P (z, w) is differential-difference polynomial in w(z) with rational coefficients,
and let a1, . . . , ak be rational functions. If the following two conditions

(1) P (z, aj) 6≡ 0 for all j ∈ {1, . . . , k};
(2) there exist s > 0 and τ ∈ (0, 1) such that

k∑
j=1

n
(
r,

1
w − aj

)
≤ kτn(r + s, w) +O(1), (2.2)

are satisfied, then ρ2(w) ≥ 1.

3. Proof of Theorem 1.2

Before giving the details of the proof, we show the main idea. In the first step
we prove that degw(P ) ≤ 3 and degw(Q) ≤ 3 using Nevanlinna theory. In the
second step we discuss four cases according to the numbers of the roots of Q(z, w),
where Lemma 2.4 plays an important part. Suppose that (1.5) has a non-rational
meromorphic solution w(z) with ρ2(w) < 1.
First step: Taking Nevanlinna characteristic function of both sides of (1.5) and
applying Lemma 2.2, we have

T

(
r, c(z)w(z + 1) + a(z)

w′(z)
w(z)

)
= T (r,R(z, w)) = degw(R)T (r, w(z)) +O(log r).

Using Lemmas 2.1 and 2.3, and using the logarithmic derivative lemma, it follows
that

degw(R)T (r, w(z)) ≤ T (r, w(z + 1)) + T
(
r,
w′(z)
w(z)

)
+O(log r)

≤ T (r, w) +N
(
r,
w′(z)
w(z)

)
+ S(r, w)

≤ T (r, w) +N(r, w(z)) +N
(
r,

1
w(z)

)
+ S(r, w)

≤ 3T (r, w) + S(r, w).

(3.1)

Therefore,
(degw(R)− 3)T (r, w(z)) ≤ S(r, w), (3.2)

which implies that degw R(z) ≤ 3, i.e., degw(P ) ≤ 3 and degw(Q) ≤ 3.
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Second step: Case (1): If Q(z, w(z)) in (1.5) has at least two distinct non-zero
rational roots for w, say b1(z) 6≡ 0 and b2(z) 6≡ 0, then (1.5) can be written as

c(z)w(z + 1) + a(z)
w′(z)
w(z)

=
P (z, w(z))

(w(z)− b1(z))(w(z)− b2(z))Q̃(z, w(z))
, (3.3)

where degw(P ) ≤ 3 and degw(Q̃) ≤ 1. Here, there exists the possibility that
Q̃(z, b1(z)) ≡ 0 or Q̃(z, b2(z)) ≡ 0. We also assume that P (z, w(z)) and Q̃(z, w(z))
do not have common roots. Obviously, neither b1(z) nor b2(z) is a solution of (3.3).
Thus, the first condition of Lemma 2.4 is satisfied.

Assume that ẑ ∈ C is any point satisfying

w(ẑ) = b1(ẑ) (3.4)

and such that none of the rational coefficients of (3.3) and their shifts have a zero
or a pole at ẑ and P (ẑ, w(ẑ)) 6= 0. Let p denote the order of the zero of w − b1 at
z = ẑ. Here, ẑ is called a generic root of w − b1 of order p. We will only consider
generic roots, since the coefficients are rational, the contributions from the non-
generic roots can be included in a bounded error term of the type O(log r). Next
we discuss whether z = ẑ is a zero or a pole of w(z + n) or not.

It is easy to obtain that (3.3) implies that w(z + 1) has a pole at z = ẑ of order
at least p. Shifting forward (3.3), we have

c(z + 1)w(z + 2) + a(z + 1)
w′(z + 1)
w(z + 1)

=
P (z + 1, w(z + 1))

(w(z + 1)− b1(z + 1))(w(z + 1)− b2(z + 1))Q̃(z + 1, w(z + 1))
.

(3.5)

Subcase 1.1. Let
degw(P ) ≤ degw(Q̃) + 2. (3.6)

Thus, w(z + 2) has a pole of order one at z = ẑ. Shifting forward (3.5) one more
step, we have

c(z + 2)w(z + 3) + a(z + 2)
w′(z + 2)
w(z + 2)

=
P (z + 2, w(z + 2))

(w(z + 2)− b1(z + 2))(w(z + 2)− b2(z + 2))Q̃(z + 2, w(z + 2))
.

(3.7)

Then w(z+3) also has a pole of order one at z = ẑ, w(z+4) has a pole of order one
at z = ẑ, and so on. Thus, in the iteration, we always can find a pole of multiplicity
at least p which can be paired up with the root of w − b1 at z = ẑ.

Using the same discussions for the roots of w − b2 without any possible overlap
in the pairing of poles with the zeros of w− b1 and w− b2. By adding up all points
ẑ such that (3.4) is valid, and similarly for w(ẑ) = b2(ẑ), it follows that

n
(
r,

1
w − b1

)
+ n

(
r,

1
w − b2

)
≤ n(r + 4, w) +O(1). (3.8)

Therefore the second condition (2.2) of Lemma 2.4 is satisfied, and so ρ2(w) ≥ 1,
which is a contradiction with ρ2(w) < 1.

Subcase 1.2: Let
degw(P ) > degw(Q̃) + 2.
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Since degw(P ) ≤ 3 and degw(Q̃) ≤ 1, the only possibility when the inequality above
holds is

degw(P ) = 3, degw(Q̃) = 0.

In this case, we suppose again that ẑ is a generic root of w − b1 of order p. As
before, it follows by (3.3) that w(z + 1) has a pole of order at least p at z = ẑ. If
p > 1, by (3.5), then w(z+ 2) has a pole of order at least p at z = ẑ, which implies
w(z+ 3) also has a pole of order at least p at z = ẑ, and so on. Identical reasoning
holds also for the roots of w − b2. Hence, in this case, we have

n
(
r,

1
w − b1

)
+ n

(
r,

1
w − b2

)
≤ 1

3
n(r + 3, w) +O(1).

Lemma 2.4 therefore reads that ρ2(w) ≥ 1, which is a contradiction with ρ2(w) < 1.
However, if p = 1, it may in principle be possible that the pole of the right hand

of (3.5) at z = ẑ cancels with the pole of the term

a(z + 1)
w′(z + 1)
w(z + 1)

at z = ẑ in such a way that c(ẑ + 1)w(ẑ + 2) remains finite. By the assumption
that none of the rational coefficients of (3.3) and their shifts have a zero or a pole
at ẑ, it yields three possible cases as follows:

(a) w(ẑ + 2) = 0;
(b) w(ẑ + 2) 6= 0 and w(ẑ + 2) 6= bj(ẑ + 2), j ∈ {1, 2};
(c) w(ẑ + 2) = bj(ẑ + 2), j ∈ {1, 2}.

If the case (a) is valid, then by (3.7), it yields that w(z) has a pole of order one
at ẑ + 3, which implies that w(z) has a pole of order one at ẑ + 4 or w(ẑ + 4) also
is finite. Thus the following iteration is the same as before. In fact, it is a cyclic
iteration. If the case (b) is valid, we obtain that w(ẑ + 3) is finite, which implies
that the following iteration may be similar to the iteration from point ẑ to ẑ + 3.
For the case (c), by (3.7), it follows that w(z) has a pole at z = ẑ + 3. Therefore,
we can find a pole at least of order p = 1 which can be associated with the zero
of w − b1 at z = ẑ. By adding up all roots of w − b1 and w − b2, we still have the
inequality

n
(
r,

1
w − b1

)
+ n

(
r,

1
w − b2

)
≤ n(r + 3, w) +O(1).

Hence, the second condition of Lemma 2.4 is satisfied again, which yields that
ρ2(w) ≥ 1.

Case (2): Suppose that Q(z, w(z)) in (1.5) has at least one non-zero rational
root, say b1(z) 6≡ 0, then (1.5) can be written as

c(z)w(z + 1) + a(z)
w′(z)
w(z)

=
P (z, w(z))

(w(z)− b1(z))nQ̂(z, w(z))
, (3.9)

where degw(P ) ≤ 3 and n + l ≤ 3, degw(Q̂) = l. Note that l may in principle be
zero. Then b1(z) is not a solution of (3.9), and thus the first condition of Lemma
2.4 is satisfied for b1(z). Assume that n ∈ {2, 3}, and ẑ is a generic root of w − b1
of order p.

Subcase 2.1. Let
degw(P ) ≤ n+ l. (3.10)
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Then ẑ+ 1 is a pole of w(z) of order at least np and ẑ+ 2 is a pole of w(z) of order
one. By continuing the iteration, it follows that ẑ+ 3 is a pole of w(z) of order one,
and so on. In this case, we therefore have

n
(
r,

1
w − b1

)
≤ 1
n
n(r + 3, w) +O(1).

The second condition of Lemma 2.4 is satisfied, thus ρ2(w) ≥ 1 holds.
Subcase 2.2. Let

degw(P ) ≥ n+ l + 1.
The case n = 1, l = 1 means that Q(z, w) has at least two zeros which has been
considered in Case (1). We consider now that degw(P ) = 3 and n = 2, l = 0.
Suppose once more that ẑ is a generic root of w − b1 of order p. Similar as before,
ẑ + 1 is a pole of w(z) of order 2p. Shifting forward (3.9), it follows that ẑ + 2 is a
pole of order 2p of w(z) and ẑ + 3 is also a pole of order 2p of w(z). In this case,
we have found at least 6p poles, taking into account multiplicities, which can be
paired up with p roots of w− b1. We can go through all roots of w− b1 in this way.
Thus

n
(
r,

1
w − b1

)
≤ 1

6
n(r + 3, w) +O(1).

Lemma 2.4 implies that ρ2(w) ≥ 1.
Case (3): Suppose now that Q(z, w(z)) in (1.5) has only one simple root, say

b1(z) 6≡ 0. Then (1.5) can be written as

c(z)w(z + 1) + a(z)
w′(z)
w(z)

=
P (z, w(z))
w(z)− b1(z)

. (3.11)

Subcase 3.1. Assume that
degw(P ) = 3.

Let ẑ be a generic root of w(z) − b1(z) of order p. Then by (3.11), it follows that
ẑ + 1 is a pole of w(z) of order p. By continuing the iteration, it follows that ẑ + 2
is a pole of w(z) of order 2p, and ẑ + 3 is a pole of w(z) of order 4p, then ẑ + 4 is
a pole of w(z) of order 8p, and so on. Therefore, we have found 15p poles, taking
into account multiplicities, that correspond uniquely to p roots of w − b1. In this
case, we have

n
(
r,

1
w − b1

)
≤ 1

15
n(r + 4, w) +O(1),

Lemma 2.4 thus implies that ρ2(w) ≥ 1.
Subcase 3.2. Assume that

degw(P ) ≤ 2.
If degw(P ) = 2, then degw(P ) = degw(Q) + 1. Thus, the assertion (1.6) holds. If
degw(P ) = 1, then degw(R) = 1, which implies that the assertion except that (1.6)
of Theorem 1.2 also holds.

Case (4): The final remaining case is the one that R(z, w(z)) is a polynomial in
w(z). Then we write (1.5) as follows

c(z)w(z + 1) + a(z)
w′(z)
w(z)

= P (z, w(z)), (3.12)

where degw(P ) ≤ 3. If degw(P ) = 0 or degw(P ) = 1, the assertion except that
(1.6) of Theorem 1.2 holds. Therefore we assume that

degw(P ) = p ≥ 2,
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and w(z) has either infinitely many zeros or poles (or both).
Suppose that there is a pole or a zero of w(z) at z = ẑ. Then either there is a

cancelation with one of the coefficients or w(z) has a pole of order at least one at
z = ẑ+ 1. Since the coefficients of (3.12) are rational, we can always choose a pole
or a zero of w(z) such that there is no cancelation with the coefficients. By shifting
forward (3.12), it follows that w(z) has a pole of order p at z = ẑ + 2, and has a
pole of order p2 at z = ẑ + 3, and so on. The only way that this string of poles
with exponential growth in the multiplicity can terminate, or there exist a drop in
the orders of poles, is that there is a cancelation with a suitable zero of a coefficient
of (3.12). But since the coefficients are rational and thus have finitely many zeros
or poles, w(z) has infinitely many zeros or poles, we always can choose the staring
point ẑ of the iteration from outside a sufficiently large disc in such way that no
cancelation occurs. Thus

n(d+ |ẑ|, w) ≥ pd (3.13)
for all d ∈ N, and so

λ2

( 1
w

)
= lim sup

r→∞

log log n(r, w)
log r

≥ lim sup
d→∞

log log n(d+ |ẑ|, w)
log(d+ |ẑ|)

≥ lim sup
d→∞

log log pd

log(d+ |ẑ|)
= 1.

Thus, ρ2(w) ≥ λ2( 1
w ) ≥ 1.

Suppose now that w(z) has finitely many poles and zeros and ρ2(w) < 1. Since
degw(P ) ≥ 2 in (3.12), using the difference analogue of Clunie Lemma [3], then
m(r, w) = S(r, w), so T (r, w) = S(r, w) follows, which is impossible. Thus ρ2(w) ≥
1, which is a contradiction with our assumptions. The proof of Theorem 1.2 is thus
complete.

4. Proof of Theorem 1.7

Suppose that w(z) is a transcendental entire solution of (1.7). We rewrite (1.7)
as

c(z)w(z)w(z + 1) = b(z)w(z)− a(z)w′(z). (4.1)
We affirm that w(z) has at most finitely many zeros. Otherwise, we assume that
w(z) have infinitely many zeros. Obviously, w(z) can not have infinitely many
multiple zeros, thus w(z) has infinitely many simple zeros. In this case, we can
choose a zero z0 such that

b(z0)w(z0)− a(z0)w′(z0) 6= 0,

but the left-hand side of (4.1) is equal to zero at z0, a contradiction. Therefore, by
the Hadamard factorization theorem we assume that

w(z) = p(z)eg(z),

where p(z) is non-zero polynomial and g(z) is an entire function. Substituting the
above into (4.1), we have

c(z)p(z + 1)eg(z+1) = b(z)− a(z)
[p′(z)
p(z)

+ g′(z)
]
. (4.2)
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From (4.2), then we see that the order of growth of the left-hand side is always
greater than the right-hand side. It is a contradiction. So (1.7) has no transcen-
dental entire solutions.

Let w(z) be a transcendental meromorphic solution of (1.7). Rewrite (1.7) as

c(z)w(z) =
(
b(z)− a(z)

w′(z)
w(z)

)w(z + 1)
w(z)

. (4.3)

Taking proximity functions from both sides of (4.3) and using the logarithmic
derivative lemma, Lemma 2.3, yields m(r, w) = S(r, w). Thus, we have

N(r, w) + S(r, w) = T (r, w),

which implies that λ(w) = ρ(w).

5. Proof of Theorem 1.9

By proof of Theorem 1.2, we see that

degw(P ) ≤ 3, degw(Q) ≤ 3.

We will discuss three following cases.
Case (1): degw(P ) = 0 and degw(Q) = 2. We rewrite (1.5) as

cw(z + 1) + a
w′(z)
w(z)

=
h

w2(z) + bw(z) + e
, (5.1)

where a, b, c, e, h are constants. Substituting w(z) = M(z)
N(z) into (5.1), we obtain

cMMN + aM ′NN − aMN ′N

MNN
=

hN2

M2 + bMN + eN2
.

According to the above equation, it follows that

cM3MN + aM2M ′NN − aM3N ′N

+ cbM2MN2 + abMM ′N2N − abM2NN ′N

+ ceMMN3 + aeM ′N3N − aeMN2N ′N

= hMN3N.

(5.2)

There are nine terms related to M(z) and N(z) on the left-hand side of (5.2) with
the degree is 4m+n, 3m+ 2n−1, 3m+ 2n−1, 3m+ 2n, 2m+ 3n−1, 2m+ 3n−1,
2m+3n, m+4n−1, m+4n−1, respectively. Moreover, the coefficients of maximum
degree terms are different and there is no cancelation occurring in these terms. And
it is easy to see that the degree of the right-hand side of (5.2) is m + 4n. In the
following, we will deduce that m = n.

If m > n, then

4m+ n > 3m+ 2n > 3m+ 2n− 1 ≥ 2m+ 3n > 2m+ 3n− 1 > m+ 4n− 1.

Therefore, the maximum degree of left-hand side of (5.2) is 4m+ n and the degree
of right-hand side of (5.2) is m+ 4n, then m = n, a contradiction.

If m < n, we have

4m+ n ≤ 3m+ 2n− 1 < 3m+ 2n ≤ 2m+ 3n− 1 < 2m+ 3n ≤ m+ 4n− 1.

If e 6= 0, then the degree of left-hand side of (5.2) is m+ 4n− 1 and the degree of
right-hand side of (5.2) is m+ 4n, thus m+ 4n− 1 = m+ 4n, which is impossible.
If e = 0 and b 6= 0, the degree of left-hand side of (5.2) is 2m + 3n − 1, then
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m = n+ 1, which is a contradiction with the assumption m < n. If e = b = 0, then
2m = 2n+ 1, a contradiction. Anyway, m < n is impossible.

Thus, we have proved that if degw(P ) = 0 and degw(Q) = 2, then m = n.
Furthermore, we can prove that when degw(P ) = 0 and Q satisfies other cases,
m = n also holds by the same method.

Case (2) If degw(P ) = 3 and degw(Q) = 2, then (1.7) can be written as

cw(z + 1) + a
w′(z)
w(z)

=
fw3(z) + tw2(z) + gw(z) + h

w2(z) + bw(z) + e
, (5.3)

where b, e, h, g, t are constants and a, c, f are non-zero constants. Substituting
w(z) = M(z)

N(z) into (5.3), we have

cM3MN2 + aM2M ′N2N − aM3NN ′N

+ cbM2MN3 + abMM ′N3N − abM2N2N ′N

+ ceMMN4 + aeM ′N4N − aeMN3N ′N

= fM4NN + tM3N2N + gM2N3N + hMN4N.

(5.4)

Thus we see that the possible degrees of left-hand side of (5.4) are 4m+ 2n, 3m+
3n − 1, 3m + 3n, 2m + 4n − 1, 2m + 4n or m + 5n − 1 and the possible degrees
of right-hand side of (5.4) are 4m + 2n, 3m + 3n, 2m + 4n or m + 5n. We know
that h and e can not vanish at the same time, otherwise, P (z, w) and Q(z, w) have
common roots. If m ≥ n, since c, f are nonzero constants, the degrees of two hand
sides are equal. This case may happen. We assume that m < n in the following. If
h 6= 0, the degree of left-hand side of (5.4) is at most m + 5n − 1 and the degree
of right-hand side of (5.4) is m + 5n, a contradiction. We consider the case when
h = 0 and e 6= 0 in the following. If g 6= 0, comparing with the degrees of two hand
sides of (5.4), we have

m+ 5n− 1 = 2m+ 4n.
Thus n = m + 1. If g = 0 and t 6= 0, by comparing the degrees of the two hand
sides of (5.4), it yields 2n = 2m + 1, which is also a contradiction. If g = t = 0,
similarly, we have 3n = 3m + 1, a contradiction again. In a word, if h = 0, e 6= 0
and g 6= 0, we have n = m + 1, which is the exceptional case. Now the proof is
complete.
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