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Communicated by Ludmila Pulkina

Abstract. We consider two-dimensional hyperbolic equations with nonlocal

purely integral conditions. We analyze the spectral properties of the finite

difference scheme for the two-dimensional hyperbolic problem. To analyze the
stability of a weighted difference scheme, we investigate the spectrum of a

finite difference operator, subject to integral conditions.

1. Introduction

In this article, we consider the hyperbolic equation

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ], (1.1)

where Ω = (0, 1)× (0, 1), with initial conditions

u(x, y, 0) = φ(x, y),
∂u(x, y, 0)

∂t
= ψ(x, y), x ∈ [0, 1] (1.2)

and the nonlocal integral conditions∫ 1

0

u(x, y, t) dx = g1(y, t),
∫ 1

0

xu(x, y, t) dx = g2(y, t), (1.3)∫ 1

0

u(x, y, t) dy = g3(x, t),
∫ 1

0

yu(x, y, t) dy = g4(x, t), (1.4)

where x ∈ [0, 1], y ∈ [0, 1], and t ∈ [0, T ].
The mathematical modelling of modern physical problems requires defining ap-

propriate nonlocal boundary conditions. Such conditions are used when it is im-
possible to determine the boundary values of unknown function and its derivatives.
Nonlocal integral conditions represent averaged data and are often used in practice,
for example some recent articles in noise control and suppression problems [14], dif-
fusion processes [2] and complex dynamical systems [1]. We also notice, that a
broad list of literature on differential equations subject to nonlocal conditions can
be found in [36].
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The uniqueness and existence of a solution for one-dimensional hyperbolic equa-
tion with nonlocal integral conditions were considered by many authors [5, 6, 8, 24,
27]. Nonlocal problem for two- or n-dimensional hyperbolic equation was a topic
in [7, 19, 28].

The solution for two-dimensional hyperbolic integro-differential equation subject
to nonlocal integral conditions (1.3)–(1.4) was presented in [23]. Integral conditions
of the type (1.3)–(1.4) are commonly called purely integral conditions. Such bound-
ary conditions in various dynamic problems represent moments (of the zero and first
order), and can be found in different nonlocal problems (not necessarily hyperbolic)
[10, 9, 22].

In the mathematical sense purely integral conditions (1.3)–(1.4) are of a practi-
cal interest for the reason, that the eigenspectrum of the simplest differential and
difference operators with these conditions has special properties: all eigenvalues are
strictly positive, eigenvectors are linearly independent (see e.g. [17]). The eigen-
spectrum structure of the problems with other type nonlocal conditions can be
complex [33].

Motivated by previous works, the aim of this paper is to extend our previous
results in [16, 25, 26] by applying the eigenspectrum analysis methods to the two-
dimensional hyperbolic problem (1.1)–(1.4) with nonlocal integral conditions. The
stability results in these papers are proved using the analysis of non selfadjoint
operators of the three-layer finite difference scheme [30]. The stability of high-
accuracy finite difference scheme for one-dimensional Klein–Gordon equation with
integral conditions is studied in [21].

To the authors’ knowledge, the stability analysis of the finite difference schemes
for the two-dimensional hyperbolic equations with nonlocal integral conditions, us-
ing spectral properties of difference operators, is investigated for the first time.
Another methods of investigating finite difference schemes for hyperbolic equations
with integral conditions can be found in [3, 4].

The paper is organized as follows. In Section 2 notation and definitions used in
the paper are stated. In Sections 3 and 4 the finite difference problem is formulated
and an eigenvalue problem for a finite difference operator is stated and certain spec-
tral properties of this operator are investigated. The detailed eigenspectrum and
stability analysis of the three-layer finite difference scheme is provided in Section 5.

2. Notation

We introduce uniform grids

ωhx := {xi : xi = ih, i = 0, N}, ωhy = {yj : yj = jh, j = 0, N}, h = 1/N,

ωτ := {tn : tn = nτ, n = 0,M}, τ = T/M, ω̃τ := {t1, . . . , tM},

ωhx := {x1, . . . , xN−1}, ωhy := {y1, . . . , yN−1}, ωτ := {t1, . . . , tM−1},

ωh := ωhx × ωhy , ωh := ωhx × ωhy ,

where N+1 is the number of grid points for x and y directions, M+1 is the number
of grid points for t direction, and N,M ≥ 2.

Remark 2.1. We use a unit square domain ω (Ω for the differential case) for
simplicity. The results are valid on any extended rectangular domain. The grid
steps h for x and y directions are also used for simplicity.
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We use the notation Unij := U(xi, yj , tn) for the function defined on the grid (or
parts of the grid) ωh × ωτ . We denote Ǔ := Un−1 and Û := Un+1 on grids ω̃τ and
ωτ ∪ {t0} respectively. We define space grid operators:

δ2
x : ωh → ωh,

(
δ2
xU
)
ij

:=
Ui−1,j − 2Uij + Ui+1,j

h2
,

δ2
y : ωh → ωh,

(
δ2
yU
)
ij

:=
Ui,j−1 − 2Uij + Ui,j+1

h2
,

and time grid operators

∂t : ωτ → ω̃τ , ∂tU :=
U − Ǔ
τ

,

∂2
t : ωτ → ωτ , ∂2

tU :=
Û − 2U + Ǔ

τ2
,

We consider weight σ ∈ R in the finite difference scheme

U (σ) = σÛ + (1− 2σ)U + σǓ.

Let H and H be spaces of real grid functions on ωh and ωh, respectively.
Functions U ∈ H can be represented as vectors U := (U·1, . . . , U·,N−1)>, U·j :=
(U1j , . . . , UN−1,j), j = 1, N − 1. Let U and V be the grid functions. We use the
following notation

[U, V ]x,j := U0jV0jh/2 + (U, V )x,j + UNjVNjh/2, U, V ∈ H, ∀j = 0, N,

[U, V ]y,i := Ui0Vi0h/2 + (U, V )y,j + UiNViNh/2, U, V ∈ H, ∀i = 0, N,

(U, V )x,j :=
N−1∑
i=1

UijVijh, U, V ∈ H, ∀j = 1, N − 1,

(U, V )y,i :=
N−1∑
j=1

UijVijh, U, V ∈ H, ∀i = 1, N − 1.

Let P be a nonsingular matrix (det P 6= 0); we define the norm of any m ×m
matrix M as follows:

‖M‖∗ = ‖P−1MP‖2,
where ‖M‖2 = (max1≤i≤m λi(M∗M))1/2 is the classical matrix norm and M∗ is
the adjoint matrix. We define the associated vector norm by the formula

‖V‖∗ = ‖P−1V‖2 =
( m∑
i=1

|Ṽi|2
)1/2

, (2.1)

where Ṽi, i = 1,m are the coordinates of the vector P−1V.
If a nonsymmetric (m×m) matrix S has linearly independent eigenvector system

V1,V2, . . . ,Vm, then the matrix T = (V1,V2, . . . ,Vm) is nonsingular and we have
a relation

‖S‖∗ = ‖T−1ST‖2 = ‖J‖2 = max
1≤i≤m

‖µi(S)‖ = ρ(S), (2.2)

where J = diag(µ1, . . . , µm), µi, i = 1,m are the eigenvalues of matrix S and ρ(S)
is the spectral radius of matrix S.

The vector norm associated with the matrix norm (2.2) is defined by iden-
tity (2.1) with P = T.
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3. Finite difference scheme

We state a finite difference scheme for the two-dimensional differential problem
(1.1)–(1.4)

∂2
tU −

(
δ2
x + δ2

y

)
U (σ) = F, (xi, yj , tn) ∈ ωh × ωτ , (3.1)

where σ is a scheme weight parameter. The initial conditions are approximated as
follows

U0 = Φ, (xi, yj) ∈ ωh, (3.2)

∂tU
1 = Ψ, (xi, yj) ∈ ωh, (3.3)

and the boundary conditions

[1, U ]x = G1, (yj , tn) ∈ ωhy × ωτ , (3.4)

[x, U ]x = G2, (yj , tn) ∈ ωhy × ωτ , (3.5)

[1, U ]y = G3, (xi, tn) ∈ ωhx × ωτ , (3.6)

[y, U ]y = G4, (xi, tn) ∈ ωhx × ωτ . (3.7)

Functions f , φ, ψ, g1, g2, g3, and g4 in the above stated problem (3.1)–(3.7) are
approximated by grid functions F , Φ, Ψ, and G1, G2, G3, and G4, accordingly.

If the solution u of problem (1.1)-(1.3) is smooth enough u ∈ C4(Ω × [0, T ]),
then scheme (3.1) approximates equation (1.1) at the point (xi, yj , tn) with an ac-
curacy O(h2+τ2) (see e.g. [12]). The initial condition (3.2) is approximated exactly,
and initial condition (3.3) with accuracy O(h2) if Ψ = ψ(xi, yj) + τ

2 ((δ2
x + δ2

y)U0 +
f(xi, yj , t0)). The approximation order of trapezoid formulas (3.4)–(3.7) is O(h2).
So, finite difference scheme (3.1)–(3.7) approximates differential problem (1.1)-(1.3)
with accuracy O(h2 + τ2).

Equations (3.4)–(3.7) can be considered as a system of linear equations for un-
knowns U0j , UNj , Ui0, and UiN . We express these unknowns via inner points Uij ,
i, j = 1, N − 1, and obtain

U0j = 2 (x− 1, U)x,j + (G̃1)j , (3.8)

UNj = −2 (x, U)x,j + (G̃2)j , (3.9)

Ui0 = 2 (y − 1, U)y,i + (G̃3)i, (3.10)

UiN = −2 (y, U)y,i + (G̃4)i, (3.11)

where G̃1 = 2h−1 (G1 −G2), G̃2 = 2h−1G2, G̃3 = 2h−1 (G3 −G4), G̃4 = 2h−1G4.
We substitute expressions (3.8)–(3.11) into (3.1) for i = 1, i = N − 1 and j = 1,

j = N − 1 and rewrite it in the matrix form

AÛ + BU + AǓ = τ2F, F = (F·1, . . . , F·,N−1)> , (3.12)

A = I + τ2σΛ, B = −2I + τ2(1− 2σ)Λ, Λ := Λ1 + Λ2, (3.13)
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where F·j =
(
F̃1j , . . . , F̃N−1,j

)
, F̃1j = F̃1j(F1j , G1, G2, G3, G4), F̃ij = Fij , i, j =

2, N − 2, F̃N−1,j = F̃N−1,j(FN−1,j , G1, G2, G3, G4),

Λ1 =
1
h2


Λx

Λx

. . .
Λx

Λx

 ,

Λ2 =
1
h2


(2− α1)I −(1 + α2)I −α3I . . . −αN−2I −αN−1I
−I 2I −I

. . . . . . . . .
−I 2I −I

−β1I −β2I −β3I . . . −(1 + βN−2)I (2− βN−1)I

 ,

are (N−1)2× (N−1)2 block matrices. In (3.13) the identity matrix I is (N−1)2×
(N − 1)2 matrix, too. The indentity matrix I in matrix Λ2 is (N − 1) × (N − 1)
matrix. Λx is (N − 1)× (N − 1) matrix of the form

Λx =



2− α1 −1− α2 −α3 · · · −αN−2 −αN−1

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . . . . . . . . . . .

...
0 0 0 −1 2 −1
−β1 −β2 −β3 · · · −1− βN−2 2− βN−1


,

where αi = 2− 2ih, βi = −2ih, i = 1, N − 1.

Remark 3.1. Suppose all eigenvalues of matrix Λ are positive. In this case, if

σ > − 1
τ2λmax

, (3.14)

then det A > 0. Matrix A−1 exists for such σ.

4. Discrete eigenvalue problem

Now we investigate the eigenspectrum of the matrix Λ. We consider the finite
difference eigenvalue problem(

δ2
x + δ2

y

)
U + λU = 0, (xi, yj) ∈ ωh, (4.1)

[1, U ]x = 0, [x, U ]x = 0, yj ∈ ωhy (4.2)

[1, U ]y = 0, [y, U ]y = 0, xi ∈ ωhi . (4.3)

Remark 4.1. Eigenvalue problem (4.1)–(4.3) is equivalent to the algebraic eigen-
value problem

ΛU = λU.

Theorem 4.2. All the eigenvalues λ of the matrix Λ are positive and all the eigen-
vectors U are linearly independent for all h > 0.
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Proof. Using the Fourier method, we separate variables

Uij = XiYj , xi ∈ ωhx, yj ∈ ωhy . (4.4)

By substituting (4.4) into eigenvalue problem (4.1)–(4.3) we obtain two one-dimensional
problems

δ2
xX + ξX = 0, xi ∈ ωhx , (4.5)

[1, X]x = 0, (4.6)

[x,X]x = 0, (4.7)

and

δ2
yY + ηY = 0, (4.8)

[1, Y ]y = 0, (4.9)

[y, Y ]y = 0, (4.10)

where [U, V ]x := U0V0h/2 + (U, V )x + UNVNh/2 for U , V defined on the grid
ωhx, and [U, V ]y := U0V0h/2 + (U, V )y + UNVNh/2 for U , V defined on the grid
ωhy , (U, V )x :=

∑N−1
i=1 UiVih and (U, V )y :=

∑N−1
j=1 UjVjh. The eigenvalues of the

problem (4.1)–(4.3) are of the form

λkl = ξk + ηl.

The eigenfunctions of the first problem (4.5)–(4.7) can be found from the cor-
responding algebraic problem ΛxX = ξX, X = (X1, . . . , XN−1)>. After we
found the eigenvectors Xk =

(
Xk

1 , . . . , X
k
N−1

)
, we can reconstruct eigenfunctions(

Xk
0 , X

k
1 , . . . , X

k
N

)
using relations Xk

0 = 2(x − 1, Xk)x and Xk
N = −2(x,Xk)x.

Analogously, the corresponding algebraic problem for (4.8)–(4.10) is ΛxY = ηY,
Y = (Y1, . . . , YN−1)>, and the eigenfunctions

(
Y l0 , Y

l
1 , . . . , Y

l
N

)
can be reconstructed

using relations Y l0 = 2(y − 1, Y l)y and Y lN = −2(y, Y l)y.
Now, using the results of [17] we can analyze two one-dimensional problems

(4.5)–(4.7) and (4.8)–(4.10). The general solution of the difference equation (4.5)
is

Xi = c1 cos (αih) + c2 sin (αih), i = 0, N. (4.11)

By substituting this expression into nonlocal conditions (4.6)–(4.7) one gets eigen-
values (see e.g. [17])

ξk =
4
h2

sin2 α
kh

2
, k = 1, N − 1, (4.12)

where αk are either roots of the equation

sin
α

2
= 0, (4.13)

or of the equation

tan
α

2
=
N

2
sin(αh). (4.14)

Equation (4.13) implies, that

α2k−1 = 2kπ, k = 1, k1, k1 =

{
N/2, N is even,
(N − 1)/2, N is odd.

(4.15)
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Analogously, (4.14) implies

α2k ∈ (2kπ, (2k + 1)π), k = 1, k2, k2 =

{
N/2− 1, N is even,
(N − 1)/2, N is odd.

(4.16)

Eigenvalues ξk are simple. The number of roots is N −1. Therefore, formula (4.12)
defines N−1 real, positive and distinct eigenvalues of the eigenvalue problem (4.5)–
(4.7). So, corresponding eigenfunctions are linearly independent.

Analogously, the eigenvalues of the problem (4.8)–(4.10) are defined by the for-
mula

ηl =
4
h2

sin2 α
lh

2
, l = 1, N − 1, (4.17)

where αl are defined by the same formulas (4.15) and (4.16). Further, the eigen-
values of the problem (4.1)–(4.3) are real, positive, and of the form

λkl =
4
h2

(
sin2 α

kh

2
+ sin2 α

lh

2

)
, k, l = 1, N − 1. (4.18)

The eigenfunctions of the problem (4.1)–(4.3) are of the form

Uklij = Xk
i · Y lj , i, j = 0, N, k, l = 1, N − 1. (4.19)

Analogously as in [18], eigenfunctions Ukl can be defined as Kronecker (tensor)
product of two one-dimensional eigenfunctions Xk =

(
Xk

0 , . . . , X
k
N

)
and Y l =(

Y l0 , . . . , Y
l
N

)
Ukl = Y l ⊗Xk, k, l = 1, N − 1. (4.20)

�

Remark 4.3. The eigenfunctions Xk
i (and Y lj ) in (4.19) can be found by applying

to the general solution (4.11) (analogously for Y lj ) the condition (see [17])

c1
sinα
α

+ c2
1− cosα

α
= 0,

c1

( sinα
α
− h(1− cosα)

α sin (αh)

)
+ c2

( h sinα
α sin (αh)

− cosα
α

)
= 0.

(4.21)

For the case sin(α/2) 6= 0 from (4.21)1 we have

c2 = −c1
cos α2
sin α

2

. (4.22)

Substituting (4.22) into (4.11) we obtain the eigenfunctions

Xk
i = sin (αk/2) cos (αkih)−cos (αk/2) sin (αkih) = sin

(
αk (1/2− ih)

)
, for even k,

(4.23)
where i = 0, N . For the case sin(α/2) = 0 we use (4.21)2 (as (4.21)1 gives 0 = 0),
and obtain c2 = 0 and 0 · c1 = 0. For this case the form of eigenfunction is

Xk
i = cos (αkih), for odd k. (4.24)

Since eigenfunctionsXk and Y l are linearly independent, the eigenfunctions (4.20)
are linearly independent [18, 34].
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5. Eigenspectrum structure

We represent the three-layer scheme (3.12) as an equivalent two-layer scheme (see
e.g. [16, 30])

Ŵ = SW + G, (5.1)

where

Ŵ =
(

Û
U

)
, W =

(
U
Ǔ

)
, S =

(
−A−1B −I

I 0

)
, G =

(
τ2A−1F

0

)
.

According to [29, 13], one can study the stability conditions for the two-layer dif-
ference scheme (3.12) by analyzing the spectrum of the matrix S. Note that the
matrices S and Λ are nonsymmetric.

First, we note one important property of the three-layer scheme (3.12) with
(N − 1)2 × (N − 1)2 matrices A and B defined by (3.13). We use notation λk(A)
and λk(B) for the k-th eigenvalue of matrix A and B accordingly. We investigate
the case of the complete (N − 1)2 order eigenvector system {V1, . . . ,V(N−1)2}.

Lemma 5.1. If matrix Λ has complete eigenvector system, then the matrices A
and B have a common system of eigenvectors. More precisely, the eigenvectors of
the matrix Λ are the eigenvectors of the matrices A and B.

Proof. The eigenvectors of the matrix Λ are also the eigenvectors of the unit matrix
I. So, since A and B are the linear combination of matrices I and Λ, the formulated
lemma is valid. �

Let µ be the eigenvalue of the 2(N −1)2 order matrix S (see (5.1)). We consider
the eigenvalue problem

det(S− µI) = det
(
−A−1B− µI −I

I −µI

)
= det

(
−A−1B− µI −µ2I−A−1Bµ− I

I 0

)
= det(Aµ2 + Bµ+ A) det(A−1) = 0.

(5.2)

We rearrange determinant in(5.2) and get a characteristic equation for the eigen-
values of the generalized nonlinear eigenvalue problem

(µ2A + µB + A)U = 0, U 6= 0. (5.3)

Problem (5.3) is rather well studied for the case of symmetric matrices A and B
(e.g., see [20]). We note that the eigenvalues µ of the matrix S coincide with the
eigenvalues of the generalized nonlinear eigenvalue problem (5.3). The number of
eigenvalues of problem (5.3) is 2(N − 1)2. Let us clarify the relationship between
the eigenvalues µ of the matrix S and the eigenvalues λ of the matrix Λ.

By substituting an eigenvector Vk of matrix Λ, into (5.3) we obtain(
µ2A + µB + A

)
Vk =

(
µ2λk(A) + µλk(B) + λk(A)

)
Vk = 0. (5.4)

So, eigenvalues of the matrix S satisfy the quadratic equation

µ2λk(A) + µλk(B) + λk(A) = 0, k = 1, (N − 1)2. (5.5)

Remark 5.2. Note, that µ = 0 is not the root of Eq. (5.5) for all λk > 0.
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The root condition. A polynomial satisfies the root condition if all the roots of
polynomial

Aµ2 +Bµ+ C, A 6= 0, B, C ∈ C, (5.6)
are in the closed unit disc of the complex plane and roots of magnitude 1 are
simple [15, 12]. For polynomial of the second order (5.6) the following statement is
valid. The roots of the second order polynomial are in the closed unit disc of the
complex plane and those roots of magnitude 1 are simple if

|C|2 + |AB −BC| ≤ |A|2, (5.7a)

|B| < 2|A|. (5.7b)

Remark 5.3. In the case A = C condition (5.7b) guarantee, that we have two
complex roots µ1 6= µ2 and |µ1,2| ≤ 1. Using Vieta’s theorem µ1 · µ2 = 1. So,
|µ1| = |µ2| = 1.

Now we prove the main result of this paper.

Theorem 5.4. If

σ >
1
4
− 1
τ2λmax

, (5.8)

then ρ(S) = 1 and finite difference scheme (3.1)–(3.7) is stable.

Proof. To prove the theorem, we show, that conditions (5.7a) and (5.7b) are satis-
fied for polynomial (5.5). First, we rewrite polynomial in a form

p(µ) := aµ2 − 2(a− η)µ+ a = 0, (5.9)

where a = 1 + τ2σλ ∈ R, η = τ2λ/2 ∈ R. For this real polynomial p(µ), in-
equality (5.7a) is trivial. The strong inequality (5.7b) ensures that these roots are
simple [35]. So, condition (5.7b) can be written as

|a− η| < |a|. (5.10)

For λ > 0 we have η > 0. If a ≤ 0, then a − η < 0 and we can rewrite (5.10) as
η − a < −a or η < 0, which contradicts with η > 0. If a > 0, then from condition
−a < a− η < a follows, that η < 2a. So, we have

σ >
1
4
− 1
τ2λ

. (5.11)

If σ > 1/4− 1/(τ2λmax), then (5.11) is valid for all λk, k = 1, N − 1. �

Remark 5.5. If σ ≥ 1/4, then the finite difference scheme (3.1)–(3.7) is uncon-
ditionally stable. If σ = 0, then difference scheme is stable under the condition
τ2/h2 ≤ 1/2.

Lemma 5.6. Each eigenvalue λk
(
Λ
)
, k = 1, (N − 1)2 corresponds to two distinct

complex eigenvalues µk1 and µk2 of the matrix S:

µk1,2 = −bk ±
√

(bk)2 − 1, bk =
−1 + τ2(1/2− σ)λk

1 + τ2σλk
, k = 1, (N − 1)2. (5.12)

Proof. Using relations (3.13) and Remark 5.3, we calculate λk(A) = 1 + τ2σλk,
λk(B) = −2 + τ2(1 − 2σ)λk. By substituting these values into (5.3), and solving
the resulting equation, we obtain relations (5.12) for eigenvalues of matrix S. �

Remark 5.7. Equation (5.12) determines the relation between eigenvalues µkm and
λk. Other properties of µ1,2 follow from the Remarks 5.2 and 5.3.
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Lemma 5.8. Let λk and Vk be an eigenvalue and an eigenvector of the matrix
Λ, respectively. Let µk1 and µk2 be the eigenvalues of matrix S corresponding to λk.
Then

Wk
m =

(
Vk

(µkm)−1Vk

)
, k = 1, (N − 1)2, m = 1, 2, (5.13)

are linearly independent eigenvectors of the matrix S.

Proof. Consider the eigenvalue problem SW = µmW, m = 1 or m = 2. Using
definition of matrix S (see (3.13)) we have(

−A−1B −I
I 0

)(
W1

W2

)
= µm

(
W1

W2

)
, m = 1, 2, (5.14)

where W =
(
W1,W2

)ᵀ is an eigenvector. So, two equalities are valid

−A−1BW1 −W2 = µmW1, (5.15)

W1 = µmW2. (5.16)

Substituting (5.16) into (5.15) and multiplying it by µmA we get an analogue of
formula (5.4):

((
µm
)2

A + µmB + A
)
W1 = 0. Every Vk, k = 1, (N − 1)2, satisfies

(5.4) with µ = µkm. So, we can take W1 = Vk, k = 1, (N − 1)2. Then, from (5.16)
it follows that W2 =

(
µkm
)−1

Vk. �

Remark 5.9. We have 2(N − 1)2 linear independent eigenvectors Wk
m, k =

1, (N − 1)2, m = 1, 2 which form a complete eigenvector system. Since eigenvalues
µkm, m = 1, 2 are complex, then eigenvectors Wk

m are also complex.

6. Conclusions

In this article, we considered the stability in an energy norm of the weighted
finite difference schemes’ class for the second order hyperbolic equation with nonlo-
cal integral conditions (1.3), (1.4). The proof of stability is essentially based on two
problem’s properties. In more detail, all eigenvalues of the stationary difference op-
erator, corresponding to the differential problem, are positive and all eigenfunctions
are linearly independent.

Hence, the following important corollary may be formulated: the described
methodology of investigating stability can also be used for the hyperbolic equa-
tion (1.1) with another type nonlocal conditions. In many cases, the stability
of finite difference schemes for the nonlocal boundary problems is proved only in
special energetic norms [13, 16, 17, 29, 31]. Numerical experiments prove the effi-
ciency of such schemes. For the parabolic equations with nonlocal boundary con-
ditions the equivalence of such energetic norms to the L2 norms is proved. The
aim of this article is to investigate stability of the class of weighted finite difference
schemes according to the weight of scheme and spectrum. It is important, that
the corresponding difference operator with those nonlocal conditions would have
only positive eigenvalues. Such results on the properties of spectrum of the differ-
ence with nonlocal conditions are obtained in a considerable amount of literature,
e.g. Bitsadze-Samarskii conditions in [31], multipoint conditions in [11], Samarskii-
Ionkin conditions in [13], boundary integral conditions in [16, 26]. The existence of
only positive eigenvalues for the difference operator with boundary integral condi-
tions in the case of variable coefficients in differential equation is considered in [32].
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Using methodology of this article, it is possible to investigate the stability of finite
difference scheme with above mentioned nonlocal conditions.

Note that, stability statements proved in the article remain true if on the right
side of equation (1.1) there is a term −c(t)U , c(t) ≥ 0.

Assertions about the stability of finite difference scheme remain valid if instead
of the difference equation (1.1) one has more general equation

∂2u

∂t2
= a(t)

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ],

where 0 < ao ≤ a(t) ≤ a1 <∞. In this case finite difference scheme (3.1) is of the
form

∂2
tU − a(tn)

(
δ2
x + δ2

y

)
U (σ) = F, (xi, yj , tn) ∈ ωh × ωτ ,

and matrices A and B in the scheme (3.13) contain multiplier a(tn) next to the
matrix Λ. In this case Theorem 5.4 remains valid with (5.8) of the form

σ >
1
4
− 1
τ2a1λmax

.
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[22] A. Merad, A. Bouziani, C. Ozel, A. Kiliçman; On solvability of the integrodifferential hyper-
bolic equation with purely nonlocal conditions, Acta Math. Sci. 35 (2015), 601–609.

[23] A. Merad, J. Mart́ın-Vaquero; A Galerkin method for two-dimensional hyperbolic integro-

differential equation with purely integral conditions, Appl. Math. Comput. 291 (2016), 386–
394.

[24] E. I. Moiseev, V. I. Korzyuk, I.S. Kozlovskaya; Classical solution of a problem with an integral

condition for the one-dimensional wave equation, Differ. Equ. 50 (2014), no. 10, 1364–1377.
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