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FREE BOUNDARY PROBLEMS WITH NEUMAN BOUNDARY

CONDITION

ABDESLEM LYAGHFOURI, ABDERACHID SAADI

Communicated by Jesus Ildefonso Diaz

Abstract. In this work, we study the continuity of a free boundary in a class
of elliptic problems, with a Neuman boundary condition. The main idea is to

use a change of variable that reduces the problem to the one studied in [16].

1. Preliminaries and statement of the problem

Saadi [16] studied the problem

Find (u, χ) ∈ H1(Ω)× L∞(Ω) such that
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Ω,
(ii) ∫

Ω

(
A(x)∇u+ χh(x)e

)
· ∇ξ dx ≤

∫
Γ

β(x, ϕ− u)ξ dσ(x)

for all ξ ∈ H1(Ω), ξ ≥ 0 on ∂Ω \ Γ,

(1.1)

where Ω = {(x1, x2) ∈ R2 : x1 ∈ (a0, b0), d0 < x2 < γ(x1)}, with γ ∈ C0,1(a0, b0),
Γ = {(x1, γ(x1)) : x1 ∈ (a0, b0)}, A(x) = [aij(x)] is a 2 × 2 matrix, e = (0, 1), h is
a nonnegative function defined in Ω, and ϕ is a nonnegative Lipschitz continuous
function on Γ.

When h is non-decreasing with respect to the variable x2, it is well known (see
[3, 6, 16]) that the function χ is non-increasing with respect to x2, which forces the
free boundary i.e. the interface between the two sets {u = 0} and {u > 0}, to be the
graph of a function Φ(x1). Moreover, under suitable assumptions (see [3, 6, 16]), it
was proven that Φ is continuous for both Dirichlet and Neuman conditions.

In this article, we consider a more general class of free boundary problems in the
spirit of [4], namely we replace the particular vector function h(x)e in (1.1) by a
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general vector function H.

Find (u, χ) ∈ H1(Ω)× L∞(Ω) such that
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Ω,
(ii) u = 0 on Γ2,
(iii) ∫

Ω

(
A(x)∇u+ χH(x)

)
· ∇ξ dx ≤

∫
Γ3

β(x, ϕ− u)ξ dσ(x)

for all ξ ∈ H1(Ω), ξ ≥ 0 on Γ2,

(1.2)

where Ω is a bounded domain of R2 with a C1 boundary ∂Ω = Γ1 ∪Γ2 ∪Γ3, where
Γ1, Γ2 and Γ3 are disjoint nonempty sets, with Γ3 relatively open in ∂Ω.

Here A(x) = [aij(x)] is a 2× 2 matrix such that for two positive constants λ and
Λ, we have

|aij(x)| ≤ Λ, a.e. x ∈ Ω, ∀i, j = 1, 2, (1.3)

A(x)ξ · ξ ≥ λ|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ R2 (1.4)

H = (H1, H2) is a vector function that for some positive constants h > h satisfies

H1, H2 ∈ C1(Ω), (1.5)

|H1(x)| ≤ h, |H2(x)| ≤ h in Ω, (1.6)

H2(x) ≥ h in Ω, (1.7)

div(H(x)) ≥ 0, in Ω, (1.8)

H(x) · ν > 0 on Γ3. (1.9)

The functions ϕ and β satisfy

ϕ is a nonnegative Lipschitz continuous function on Γ3, (1.10)

β(x, ·) is continuous for a.e. x ∈ Γ3, (1.11)

β(x, 0) = 0 a.e. x ∈ Γ3, (1.12)

β(x, ·) is non-decreasing a.e. x ∈ Γ3. (1.13)

In this article, we replace the Dirichlet condition u = ϕ on Γ3 (see [4]) by the
following Neuman condition, in the weak sense,

A(x)∇u · ν = β(x, ϕ− u)− χH(x) · ν on Γ3

We observe that if u > 0 in a neighbourhood of Γ′3 ⊂ Γ3, the condition becomes

A(x)∇u · ν = β(x, ϕ− u)−H(x) · ν on Γ′3

Among the free boundary problems that fit in the above setting, we can men-
tion the dam problem with leaky boundary condition on each reservoir bottom (see
[7, 8, 10, 11, 12, 13]), in which case ϕ is the water pressure on the reservoirs bot-
toms. Another application arises from the thermoelectrical modeling of aluminum
electrolytic cells (see [1]), in which case u is the temperature in the electrolytic bath
and ϕ is the solidification temperature.

In problem (1.2), the free boundary is defined as the set ∂{u > 0} ∩ Ω that
separates the two regions {u = 0} and {u > 0}. In particular, in the case of the
dam problem, it represents the interface between wet and dry parts of the porous
medium, and in the aluminium electrolysis problem, it is the interface between
liquid and solid aluminium inside an aluminium electrolytic cell section.
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In this article, we prove that the free boundary is represented locally by a family
of continuous functions. Our strategy consists in using a change of variable to
transform problem (1.2) locally to a problem similar to (1.1) studied in [16]. We
observe that as we are concerned with the regularity of the free boundary, which is
a local problem, we may assume, shrinking if necessary, that Γ1 = Γ2 = ∅ and that
Γ3 is connected.

We would like to point out that one of the important consequences of the reg-
ularity of the free boundary is its key role in the uniqueness proof of the solution
(see [7, 11, 12, 13]).

Remark 1.1. Under assumptions (1.3)–(1.5) and (1.10)–(1.13), one can prove
existence of a solution for problem (1.2) as in [7]. For a more general situation, we
refer the reader to [10].

We begin with the following proposition that can be obtained as in [4].

Proposition 1.2. For any solution (u, χ) of (1.2), we have

(i) div(A(x)∇u) = −div(χH(x)) in D′(Ω).
(ii) div(χH(x))− χ{u>0} div(H(x)) ≤ 0 in D′(Ω).

Remark 1.3. As a consequence of Proposition 1.2(i), we have

(i) u ∈ C0,δ
loc (Ω∪ Γ2) for some δ ∈ (0, 1) (see [9]). In particular the set {u > 0}

is open.
(ii) If A ∈ C0,α

loc (Ω) (0 < α < 1), then u ∈ C1,α
loc ({u > 0}) (see [9]).

(iii) If A ∈ C0,α
loc (Ω ∪ Γ2) (0 < α < 1) and for some constant c0, div(A(x)(x −

y)) ≤ c0 in D′(Ω), for all y in Ω, then u ∈ C0,1
loc (Ω ∪ Γ2) (see [3, 15]).

Following [2, 4], for h ∈ Πx2
(Ω) and w ∈ Πx1

(Ω ∩ {x2 = h}), where Πx1
is the

orthogonal projection on the x1−axis, we introduce the differential equation

X′(t, w, h) = H(X(t, w, h))

X(0, w, h) = (w, h) ,
(1.14)

where X = (X1, X2).
This equation has a unique solution X(·, w, h) which is defined in a maximal

interval (α−(w, h), α+(w, h)) and is continuous in the open set (see [17, Chp. 3]),{
(t, w, h) : α−(w, h) < t < α+(w, h), h ∈ Πx2

(Ω), w ∈ Πx1
(Ω ∩ {x2 = h})

}
.

Moreover by (1.7), we have ∂X2

∂t = H2(X(t, w, h)) > 0, which leads to

X(α−(w, h), w, h) ∈ ∂Ω ∩ {x2 < h} and X(α+(w, h), w, h) ∈ ∂Ω ∩ {x2 > h}
We will drop the dependence on h on the functions X(t, w, h), α−(w, h), and

α+(w, h), and will simply write X(t, w), α−(w) and α+(w).
The function α− (resp. α+) is upper (resp. lower) semi-continuous [17, Theorem

3.5 page 29]. The next result gives more regularity for α+.

Theorem 1.4. For every h ∈ Πx2(Ω), the function α+ is continuously differentiable
at each w0 ∈ Πx1(Ω ∩ {x2 = h}) such that x0 = (x0,1, x0,2) = X(α+(w0), w0) ∈ Γ3.

Proof. Since ∂Ω is a C1 curve, there exists an open set U ⊂ R2 that contains x0

and a C1-diffeomorphism Υ = (Υ1,Υ2) : U → B1 such that

Υ(U ∩ Ω) = B1 ∩ {y2 > 0} and Υ(U ∩ ∂Ω) = B1 ∩ {y2 = 0}, (1.15)
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where B1 is the unit ball.
Let x−0 ∈ (U ∩ ∂Ω) \ {x0} such that (x−0 − x0) · τ (x0) < 0, where τ (x0) is the

unit tangent vector to ∂Ω at x0.
Since H ∈ C1(Ω), there exists an open set Ω∗ and an extension H∗ of H such

that Ω̄ ⊂ Ω∗ and H∗ ∈ C1(Ω∗). Then we consider the unique maximal solution
Z(t) of the differential equation

Z′(t) = H∗(Z(t))

Z(0) = x−0

defined in a maximal open interval (γ, δ).
Taking into account (1.9), we can see that Z(t) ∈ Ω for all t ∈ (γ, 0). Now if we

assume that h is close enough to x0,2, and denote by th the real number for which
the curve Z(t) intersects the line x2 = h, then there exists w−0 ∈ Πx1(Ω∩{x2 = h})
such that Z(th) = (w−0 , h). Moreover, it is easy to see that

X(t) = Z(th − t) ∀t ∈ (α−(w0), α+(w0))

X(0) = (w−0 , h)

Since (x−0 − x0) · τ (x0) < 0, we must have w−0 < w0. Furthermore, for each
w−0 < w < w0, the curve X(t, w) lies between the curves X(t, w0) and X(t, w−0 ).
Therefore

X(α+(w), w) ∈ U ∩ ∂Ω ∀w ∈ (w−0 , w0). (1.16)

Now let x+
0 ∈ (U ∩∂Ω)\{x0} be such that (x+

0 −x0) ·τ (x0) > 0. Arguing as above,
we can prove that there exists w+

0 ∈ Πx1
(Ω ∩ {x2 = h}) such that

X(α+(w), w) ∈ U ∩ ∂Ω ∀w ∈ (w0, w
+
0 ) (1.17)

Taking into account (1.15)–(1.17), we see that there exists η > 0 small enough such
that

Υ2(X(α+(w), w)) = 0 ∀w ∈ (w0 − η, w0 + η) (1.18)

For each ω ∈ Πx1
(Ω∗ ∩ {x2 = h}), let X∗(t, w) be the unique maximal solution of

the differential equation

(X∗)′(t, w) = H∗(X∗(t, w))

X∗(0, w) = (w, h),

where X∗(t, w) is defined on the interval (α∗−(w), α∗+(w)), and we obviously have
X∗|(α−(w),α+(w))

= X. Moreover, we have α∗−(w) < α−(w) and α+(w) < α∗+(w).

LetD∗ = {(t, w) : w ∈ (w0−η, w0+η), t ∈ (α∗−(w), α∗+(w))}. Since X∗ ∈ C1(D∗)
and Υ2 ∈ C1(U), the function F ∗ = Υ2 ◦X∗ is in C1(D∗). In addition, F ∗ is an
extension of F = Υ2 ◦X to D∗ and we have

∂F ∗

∂t
(t, w) = ∇Υ2(X∗(t, w)) · (X∗)′(t, w)

= ∇Υ2(X∗(t, w)) ·H∗(X∗(t, w)) .

In particular, from (1.9) and (1.15)(ii) we obtain

∂F ∗

∂t
(α+(w0), w0) = ∇Υ2(X(α+(w0), w0)) ·H(X(α+(w0), w0)) 6= 0
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Therefore by the implicit function theorem, there exists δ ∈ (0, η) and a unique
function f : (w0 − δ, w0 + δ)→ R such that

F ∗(t, ω) = 0 if and only if t = f(ω)

f(w0) = α+(w0) and f ∈ C1(w0 − δ, w0 + δ).

Taking into account (1.18), we obtain α+(w) = f(w) for all w ∈ (w0 − δ, w0 + δ).
We conclude that α+ ∈ C1(Πx1

(Ω ∩ {x2 = h})). �

Following [2, 4], for h ∈ Πx2(Ω), we define the set

Dh = {(t, w) : w ∈ Πx1
(Ω ∩ {x2 = h}), t ∈ (α−(w), α+(w))}

and the mapping Th : Dh → Th(Dh) by

Th(t, w) = X(t, w)

The next proposition was established in [4] when H ∈ C0,1(Ω). For completeness,
we provide a simpler and shorter proof when H ∈ C1(Ω).

Proposition 1.5. (i) Dh is an open set.
(ii) Th is a C1-diffeomorphism from Dh to Th(Dh) with Jacobian determinant

JTh(t, w) = Yh(t, w) = −H2(w, h) exp
[ ∫ t

0

div(H)(X(s, w))ds
]

Proof. (i) Let (t0, w0) ∈ Dh. We will show that there exists η > 0 such that
Bη(t0, w0) ⊂ Dh, where Bη(t0, w0) is the open ball of center (t0, w0) and radius
η. Since α−(w0) < t0 < α+(w0), we can find a positive number ε such that
ε < min(t0 − α−(w0), α+(w0) − t0). Given that α−(w) is upper semi-continuous
and α+(w) is lower semi-continuous [17, Theorem 3.5 page 29], there exists η > 0
such that

|w − w0| < η ⇒ α−(w) < α−(w0) + ε and α+(w0)− ε < α+(w) (1.19)

Since w0 ∈ Πx1(Ω ∩ {x2 = h}), we can assume without loss of generality that η
is small enough so that w ∈ Πx1(Ω ∩ {x2 = h}) for |w − w0| < η. We can also
choose η such that η < min(t0 − α−(w0) − ε, α+(w0) − t0 − ε). Then we claim
that Bη(t0, w0) ⊂ Dh. Indeed, we observe that if (t, w) ∈ Bη(t0, w0), then we have
|t− t0| < η and |w − w0| < η, and therefore from (1.19) we obtain

α−(w) < α−(w0) + ε < α−(w0) + t0 − α−(w0)− η = t0 − η < t

t < t0 + η < t0 + α+(w0)− t0 − ε = α+(w0)− ε < α+(w)

Hence (i) holds.
(ii) Since H ∈ C1(Ω), we know that the solution X(t, w) of (1.14) is C1 in the

open set [17, Theorem 6.1 page 89]

{(t, w, h) : α−(w, h) < t < α+(w, h), h ∈ Πx2
(Ω), w ∈ Πx1

(Ω ∩ {x2 = h})}
In particular, Th(t, w) = X(t, w) is C1 in the open set Dh with

DTh(t, w) =

[
∂Th,1
∂t

∂Th,1
∂w

∂Th,2
∂t

∂Th,2
∂w

]
=

[
H1(X(t, w)) ∂X1

∂w

H2(X(t, w)) ∂X2

∂w

]
and therefore the determinant of the Jacobian of Th is

Yh(t, w) = H1(X(t, w))
∂X2

∂w
−H2(X(t, w))

∂X1

∂w
(1.20)



6 A. LYAGHFOURI, A. SAADI EJDE-2019/114

Differentiating, we obtain

∂Yh
∂t

(t, w) = DH1(X(t, w)) ·X′(t, w)
∂X2

∂w
+H1(X(t, w))

∂2X2

∂t∂w

−DH2(X(t, w)) ·X′(t, w)
∂X1

∂w
−H2(X(t, w))

∂2X1

∂t∂w

(1.21)

Using that X(t, w) = (w, h) +
∫ t

0
H(X(s, w))ds, we obtain

∂X

∂w
(t, w) = (1, 0) +

∫ t

0

DH(X(s, w)) · ∂X

∂w
(s, w)ds (1.22)

∂2X

∂t∂w
= DH(X(t, w)) · ∂X

∂w
(t, w) (1.23)

Combining (1.21) and (1.23), we obtain

∂Yh
∂t

(t, w)

= DH1(X(t, w)) ·H(X(t, w)) · ∂X2

∂w
+H1(X(t, w))DH2(X(t, w)) · ∂X

∂w
(t, w)

−DH2(X(t, w)) ·H(X(t, w)) · ∂X1

∂w
−H2(X(t, w))DH1(X(t, w)) · ∂X

∂w
(t, w)

which leads to

∂Yh
∂t

(t, w)

= H1
∂H1

∂x1

∂X2

∂w
+H2

∂H1

∂x2
· ∂X2

∂w
+H1

∂H2

∂x1

∂X1

∂w
+H1

∂H2

∂x2

∂X2

∂w

−H1
∂H2

∂x1

∂X1

∂w
−H2

∂H2

∂x2

∂X1

∂w
−H2

∂H1

∂x1

∂X1

∂w
−H2

∂H1

∂x2

∂X2

∂w

= H1
∂H1

∂x1

∂X2

∂w
+H1

∂H2

∂x2

∂X2

∂w
−H2

∂H2

∂x2

∂X1

∂w
−H2

∂H1

∂x1

∂X1

∂w

=
∂H1

∂x1

[
H1

∂X2

∂w
−H2

∂X1

∂w

]
+
∂H2

∂x2

[
H1

∂X2

∂w
−H2

∂X1

∂w

]
=
[∂H1

∂x1
+
∂H2

∂x2

][
H1

∂X2

∂w
−H2

∂X1

∂w

]
Taking into account this equality and (1.20), we arrive at

∂Yh
∂t

(t, w) = div(H)(X(t, w))Yh(t, w) (1.24)

Using (1.20) and (1.22), we see that Yh(0, w) = −H2(w, h). Hence from (1.24) we
infer that

Yh(t, w) = −H2(w, h) exp
[ ∫ t

0

div(H)(X(s, w))ds
]

(1.25)

Since by (1.7) and (1.25), Yh(t, w) < 0 for all (t, w) ∈ Dh, we conclude that Th is
a C1-diffeomorphism from Dh to Th(Dh). This completes the proof of the propo-
sition. �

Remark 1.6. It is not difficult to see that Ω = th∈Πx2 (Ω)Th(Dh) (see [2, 4]). In

Section 2, we will use the C1-diffeomorphism Th as a change of variable to transform
the problem (1.2) locally to a problem of type (1.1). As a consequence, we obtain
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from [16] that the free boundary is represented locally by graphs of a family of
continuous functions.

2. Parametrization of the free boundary

For each h ∈ Πx2
(Ω) and each function f defined in Ω, we shall denote the

function f ◦Th by f̃ . The first result of this section is the monotonicity of χ̃ with
respect to t, which translates into the fact that χ is non-increasing along the orbits
of the differential equation (1.14).

Proposition 2.1. Let (u, χ) be a solution of (1.2). Then we have for each h ∈
Πx2(Ω),

∂χ̃

∂t
≤ 0 in D′(Dh)

A proof of the above proposition can be found in [4, Theorem 2.1]. The next
proposition is a consequence of the monotonicity of χ̃ and the continuity of ũ.

Proposition 2.2. Let (u, χ) be a solution of (1.2) and (t0, w0) ∈ Dh.

(i) If ũ(t0, w0) > 0, then there exists ε > 0 such that

ũ(t, w) > 0 ∀(t, w) ∈ Cε = {(t, w) ∈ Dh : |w − w0| < ε, t < t0 + ε}
(ii) If ũ(t0, w0) = 0, then

ũ(t, w0) = 0, ∀t ≥ t0
A proof of the above proposition can be found in [4, Proposition 3.1]. Thanks to

Proposition 2.2, for each h ∈ Πx2
(Ω), we define the following function in Πx1

(Ω ∩
{x2 = h}),

Φh(w) =

{
sup{t : (t, w) ∈ Dh : ũ(t, w) > 0} if this set is not empty

α−(w) otherwise

Arguing as in [2], we can see that Φh satisfies the following.

Proposition 2.3. Φh is lower semi-continuous in Πx1(Ω ∩ {x2 = h}) and

{ũ > 0} ∩Dh = {t < Φh(w)}

Remark 2.4. If the functions Φh are smooth enough, then the family of functions
{Φh} provides a local parametrization of the free boundary ∂{u > 0} ∩ Ω.

The next result describes the function χ in the interior of the set {u = 0}.

Theorem 2.5. Let (u, χ) be a solution of (1.2), (x01, x02) = Th(t0, w0) ∈ Th(Dh),
Z0 =

(
(t0,∞) × (w0 − r, w0 + r)

)
∩ Dh and Cr = Z0 ∪ Br(t0, w0). If ũ = 0 in

Br(t0, w0) ⊂ Dh, then ũ = 0 in Cr. Moreover

(i) If Th(Z0) ∩ Γ3 = ∅, then χ̃ = 0 in Cr.

(ii) If Th(Z0) ∩ Γ2 = ∅, then

χ̃(t, w) =
Yh(α+(w), w)

Yh(t, w)

β(·, ϕ(·))
H · ν

(X(α+(w), w)) in Cr

To prove the above theorem, we need two lemmas.

Lemma 2.6. For each x0 ∈ Γ3, there exists η > 0 small enough and a C1 function
σ such that one of the following conditions holds
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(i) Γ3 ∩Bη(x0) ⊂ {(x1, σ(x1))},
(ii) Γ3 ∩Bη(x0) ⊂ {(σ(x2), x2)}.

Proof. Since Γ3 is a C1-curve, there exists an open set U ⊂ R2 that contains the
point x0 = (x01, x02) and a C1-diffeomorphism Υ : U → B1 such that Υ(U ∩Ω) =
B1 ∩ {y2 > 0} and Υ(U ∩ Γ3) = B1 ∩ {y2 = 0}.

If Υ = (Υ1,Υ2), then

Υ2(x) = 0 ∀x ∈ U ∩ Γ3

Because of (1.9), we have∇Υ2(x0) 6= 0. Therefore either ∂Υ2

∂x1
(x0) 6= 0, or ∂Υ2

∂x2
(x0) 6=

0.
Assume for example that we have ∂Υ2

∂x2
(x0) 6= 0. Then by the implicit function

theorem, there exists δ > 0 small enough and a unique C1-function σ : (x01 −
δ, x01 + δ)→ R such that

Υ2(x1, x2) = 0 if and only if x2 = σ(x1)

for all x1 ∈ (x01 − δ, x01 + δ). So (i) holds.
If ∂Υ2

∂x1
(x0) 6= 0, we can show in a same fashion that (ii) holds. �

Lemma 2.7. Let w1, w2 such that w1 < w2, and for all w ∈ [w1, w2],

(w, h) ∈ Ω and Th(α+(w), w) ∈ Γ3 .

Then ∫
Z

(
B(t, w)∇ũ+ χ̃k(t, w)et

)
· ∇ξ dt dw =

∫
Γ̃3

λ(·, ϕ̃− ũ)ξdσ̃

for all ξ ∈ H1(Z) with ξ = 0 on ∂Z ∩Dh, where

Z = {(t, w) : w1 < w < w2 and h < t < α+(w)},

Γ̃3 = {(α+(w), w) : w1 < w < w2}
λ((t, w), z) = µ(w)β(Th(t, w), z),

µ(w) =
|Yh|(α+(w), w)√

1 + α′+
2(w) (H · ν)(Th(α+(w), w))

,

k(t, w) = |Yh(t, w)|, et = (1, 0),

B(t, w) = |Yh(t, w)|P (t, w) ·A(X(t, w)) · PT (t, w)

with

P = (DTh)−1 =
1

Yh(t, w)

(
∂X2

∂ω (t, w) −∂X1

∂ω (t, w)

−H2(X(t, w)) H1(X(t, w))

)
.

Proof. Let ξ ∈ H1(Z) such that ξ = 0 on ∂Z ∩Dh. Then ±ξ ◦ T−1
h χ(Th(Z)) are

test functions for (1.2) and we have∫
Th(Z)

(A(x)∇u+ χH(x)) · ∇(ξ ◦T−1
h ) dx =

∫
Γ3∩Th(∂Z)

β(x, ϕ− u)ξ ◦T−1
h dσ(x)

(2.1)
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To handle the left-hand side we use the change of variable Th as in [4],∫
Th(Z)

(A(x)∇u+ χH(x)) · ∇(ξ ◦T−1
h ) dx

=

∫
Z

|JTh| (A ◦Th.(∇u)oTh + (χoTh).(HoTh)) · ∇(ξ ◦T−1
h )oTh dt dw

=

∫
Z

|Yh|
(
A ◦Th∇(uoTh) · (DTh)−1

+ (χoTh) · (HoTh)
)
· (∇ξ · (DTh)−1) dt dw

=

∫
Z

|Yh|
(
A ◦Th · ((DTh)−1)T · ∇(uoTh)

+ (χoTh)(HoTh)
)
· (((DTh)−1)T · ∇ξ) dt dw

=

∫
Z

(
|Yh|(DTh)−1 ·A ◦Th · ((DTh)−1)T · ∇ũ

+ χ̃|Yh|(DTh)−1 · (HoTh)
)
· ∇ξ dt dw

(2.2)

Since

DTh =

(
∂X1

∂t
∂X1

∂w
∂X2

∂t
∂X2

∂w

)
=

(
H1

∂X1

∂w

H2
∂X2

∂w

)
,

we obtain

(DTh)−1.(HoTh) =
1

Yh

(
∂X2

∂w −∂X1

∂w

−H2oTh H1oTh

)(
H1oTh

H2oTh

)

=
1

Yh

(
H1oTh

∂X2

∂w −H2oTh
∂X1

∂w

−H2oTh ·H1oTh + h1oTh ·H2oTh

)

=
1

Yh

(
Yh
0

)
=

(
1
0

)
(2.3)

From (2.2) and (2.3) we obtain∫
Th(Z)

(A(x)∇u+ χH(x)) · ∇(ξ ◦T−1
h ) dx

=

∫
Dh

(B(t, ω)∇ũ+ χ̃k(t, ω)et) · ∇ξ dt dw
(2.4)

where the matrix B and the function k are as defined in this Lemma.
To handle the right-hand side of (2.1), we first observe that

{Th(α+(w), w), w1 < w < w2} = Γ3 ∩Th(∂Z) (2.5)

Shrinking it if necessary, we assume by Lemma 2.6, that there exists a C1-function
σ such that one of the following conditions hold

(i) σ(X1(α+(w), w)) = X2(α+(w), w) for all w ∈ (w1, w2),
(ii) σ(X2(α+(w), w)) = X1(α+(w), w) for all ω ∈ (w1, w2).

Assume that (i) holds. Case (ii) can be treated in the same way. Since x1 →
(x1, σ(x1)) is a C1-parametrization of Γ3∩∂(Th(Z)), the integral in the right hand
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side of (2.1) can be written as∫
Γ3∩Th(∂Z)

β(x, ϕ− u)ξ ◦T−1
h dσ(x)

=

∫
Πx1 (Γ3∩∂(Th(Z))

β((x1, σ(x1)), (ϕ− u)(x, σ(x)))ξ ◦T−1
h (x1, σ(x1))

×
√

1 + (σ′)2(x1)dx1

(2.6)

Now observe that (x1, σ(x1)) = Th(α+(w), w) for w ∈ (w1, w2), and let θ(w) =
x1 = T1

h(α+(w), w). Then θ is a C1-function and θ′(w) = α′+(w)H1(X(α+(w), w))+
∂X1

∂w . Using Theorem 1.4, we can show via implicit differentiation in the equation
σ(X1(α+(w), w)) = X2(α+(w), w) that

α′+(ω) =
σ′(X1(α+(w), w))∂X1/∂w(α+(w), w)− ∂X2/∂w(α+(w), w)

H2(X(α+(ω), w))− σ′(X1(α+(w), w))H1(X(α+(w), w))

which leads to

θ′(w) =
−Yh(α+(w), w)

H2(X(w+(w), w))− σ′(X1(α+(w), w))h1(X(α+(w), w))

=
|Yh|(α+(w), w)(1 + σ′

2
(x1))−1/2

H(X(α+(w), w), e) · ν(X(α+(w), w))

where ν(x) = (−σ′(x1),1)√
1+σ′2(x1)

is the outward unit normal to Γ3.

Lastly we apply the change of variable θ to (2.6), taking into account (2.5),∫
Γ3∩Th(∂Z)

β(x, ϕ− u)ξ ◦T−1
h dσ(x)

=

∫ w2

w1

β((Th(α+(w), w))), (ϕ− u)(Th(α+(w), w)))|Yh|(α+(w), w)

H(Th(α+(w), w)) · ν(Th(α+(w), w))

× ξ(α+(w), w))dw

=

∫ w2

w1

β((Th(α+(w), w))), (ϕ− u)(Th(α+(w), w))|Yh|(α+(w), w)√
1 + α′2+(w)h(Th(α+(w), w)) · ν(Th(α+(w), w))

× ξ(α+(w), w)) dσ(w)

=

∫
Γ̃3

λ((α+(w), w), ϕ̃− ũ)ξ dσ(w)

(2.7)

Combining (2.1), (2.4) and (2.7), the result follows. �

Proof of Theorem 2.5. First, we observe that we have from Proposition 2.2 (ii),
ũ = 0 in Cr, and that statement (i) can be established as in [4].

Next, we assume that Th(Z0) ∩ Γ2 = ∅. From [16, Lemma 2.2 and Prop. 2.4],
we obtain for all (t, w) in Cr,

χ̃(t, w) =
λ((α+(w), w), ϕ̃(α+(w), w))

k(t, w)ν2(α+(w), w)

=
|Yh|(α+(w), w)√

1 + α′2+(w)H(Th(α+(w), w)) · ν(Th(α+(w), w))
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× β(X(α+(w), w), ϕ(X(α+(w), w)))

|Yh(t, w)| · ν2(α+(w), w)

=
|Yh|(α+(w), w)

|Yh(t, w)|
β(.·, ϕ)

H · ν
(X(α+(w), w))

Hence statement (ii) follows. �

3. Continuity of the free boundary

Besides the assumptions of Section 1, we assume that:

H ∈ C1,1
loc (Ω ∪ Γ3) (3.1)

∃α ∈ (0, 1) such that A ∈ C0,α
loc (Ω ∪ Γ3) (3.2)

∃c0 ∈ R such that for all y ∈ Ω, div(A(x)(x− y)) ≤ c0 in D′(Ω) (3.3)

Γ3 in C1,α
loc (3.4)

β(x, u) is continuous in Γ3 × R (3.5)

Here is the main result of this article.

Theorem 3.1. Let w0 ∈ Πx1
(Ω ∩ {x2 = h}) such that (w0,Φh(w0)) is in Dh,

Th(α+(w0), w0)) is in Γ3 and[ |Yh|β(x, ϕ)

H · ν

]
(X(α+(w0), w0) < Yh(X(w0,Φ(w0))) (3.6)

Then Φh is continuous at w0.

Proof. Since Th(α+(w), w)) is continuous at w0 and Γ3 is relatively open in ∂Ω,
there exists w1 < w0 and w2 > w0 such that

Th(α+(w), w)) ∈ Γ3 for all w ∈ (w1, w2)

From Lemma 2.7, we know that (ũ, χ̃) is a solution on the domain

Z = {(t, w) : w1 < w < w2 and h < t < α+(w)}
of a similar problem to (1.1). Therefore it is sufficient to check that the assumptions
of [16, Theorem 4.1] are satisfied.

First, we deduce from Proposition 1.5 and (1.5)–(1.7) that the function k satisfies
for some positive constant C:

0 < h ≤ k(t, ω) ≤ Ch̄ ∀(t, ω) ∈ Dh

0 ≤ kt(t, ω) ≤ Ch̄ ∀(t, ω) ∈ Dh.

Next, it is easy to see from (3.1)-(3.2) that B ∈ C0,α(Z ∪ Γ̃3). Then by arguing
as in [4], we can show that for some positive constants c0, C0 we have

|B(t, ω)| ≤ C0

B(t, ω)ξ · ξ ≥ c0|Yh|ξ|2 ≥ c0|ξ|2 ∀(t, w) ∈ Dh, ∀ξ ∈ R2

Moreover we have

λ(·, ϕ̃)− kν2 =
|Yh|√

1 + α′+
2(w)

β(·, ϕ)(Th(α+(w), w))

H · ν(Th(α+(w), w))
− |Yh|(α+(w), w)ν2

= |Yh|
[β(·, ϕ)

H · ν
− 1
]
(Th(α+(w), w))ν2

(3.7)
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Taking into account (3.1), (3.4), (3.5), and (3.7), we see that the function λ(·, ϕ̃)−
kν2 is continuous on Γ̃3.

Finally, arguing as in the proof of Theorem 2.5 and taking into account (3.6),
one can show that

λ((α+(w0), w0), ϕ̃(α+(w0), w0))

k(Φh(w0), w0)ν2(α+(w0), w0)
=
|Yh|β(·, ϕ)(Th(α+(w0), w0))(α+(w0), w0)

|Yh|(Φh(w0), w0)H · ν(Th(α+(w0), w0))
< 1

We conclude that the function Φh is continuous at w0. �

Remark 3.2. Assumption (3.3) is needed only to guarantee the Lipschitz conti-
nuity of u (see [3, 15]). A proof that does not require (3.3) is provided in [14].
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