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EVENTUALLY COMPETITIVE SYSTEMS GENERATED BY

PERTURBATIONS

LIN NIU

Abstract. A dynamical system is called eventually competitive if it preserves

a partial order in backward time only after some reasonable initial transient.
We show that both regular and singular perturbations of a competitive irre-

ducible vector field are at most eventually competitive rather than competitive.

1. Introduction

A system of differential equations in RN is called competitive provided that all
the off-diagonal entries of its linearized Jacobian matrix are nonpositive. The flow
of a competitive system preserves the vector partial order in backward time. In the
biological science and population ecology, there are a lot of mathematical models
of competition in which an increase of competitor’s population size or density can
only have a negative effect on a species per capita growth rate; see [15, 24, 30].

By time reversal, a competitive system becomes a cooperative system. And the
flow of a cooperative system preserves the vector partial order in forward time.
Hirsch initiated an important research branch of so called monotone dynamical
systems. One may refer to the monographs and recent reviews [13, 14, 25, 27] with
references therein for the theoretical developments and their enormous applications
to control, biological and economic systems [3, 17, 28].

It is known that there are systems whose flows preserve the vector partial order
in forward time only after some reasonable initial transient. In the terminology of
linear systems, such phenomenon is called eventual positivity (see [8, 19, 29] and
references therein) in forward time. For nonlinear systems, following Hirsch [12],
the flow φt generated by such a system is called as an eventually monotone flow.
Such property has received rapidly-increasing attention in both finite-dimensional
linear systems [19] and infinite-dimensional linear systems [7, 8]. And applications
to ordinary differential equations [21, 31], partial differential equations [6, 10, 11],
delay differential equations [7, 8] and control theory [1, 2].

A flow φt is eventually competitive, if there exists a t∗ ≥ 0 such that φ−t(x) ≥
φ−t(y) whenever x ≥ y with t ≥ t∗. In particular, φt is competitive if φt is even-
tually competitive with t∗ = 0. In contrast, if t∗ > 0, then there is no a priori
order-preserving information for t ∈ [0, t∗) at all. And φt is eventually strongly
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competitive, if φt is eventually competitive and φ−t(x) � φ−t(y) whenever x > y
with t ≥ t∗. For instance, we consider a matrix

A =

 1 −2 −1
0.8 −1 −1
−1 0.2 −1

 ,

and compute e−tA for t = 1, 2 as 0.5223 2.1030 2.6260
−0.1514 1.8755 2.0262
1.2464 0.9743 3.8249

 ,

3.2275 7.6010 15.6766
2.1625 5.1732 11.1524
5.2709 8.1752 19.8769

 ,

respectively. As a matter of fact, there exists a t∗ ∈ (1, 2) such that e−tA > 0 for
all t ≥ t∗ (An n × n matrix A = [aij ] is positive, denoted by A > 0, if aij > 0 for

all i and j). Thus, the linear system dx
dt = Ax is eventually competitive.

In our previous work [20], we established the general theory of the eventually
competitive system. However, for our best knowledge, it is still unclear that how
to obtain an eventually competitive system. In this article, we will try to show one
of the sources of eventually competitive systems. In fact, some kinds of eventually
competitive systems can be obtained from the perturbations of competitive systems.

We focus on the regular perturbations of a competitive system in Section 3. We
will show that any C1-regular perturbation of a competitive irreducible vector field
is at most eventually competitive rather than competitive (see Theorem 3.1). On
a convex compact set W ⊂ RN , let the flow φt generated by a smooth vector field
F satisfy that Dφ−t(z)[C\{0}] ⊂ IntC for any z ∈W , t > 0 and −t ∈ I(z), where
I(z) ⊂ R denotes the maximal interval of existence of the solution passing though
z. Let also G be a C1 perturbed vector field of F such that W is positively invariant
under the flow ψt generated by G. Then, we show that there exists a t∗ > 0 such
that ψt satisfies that Dψ−t(z)[C\{0}] ⊂ IntC for z ∈ W and t ∈ [t∗, 2t∗]. Since
W is positively invariant under the flow ψt, the property Dψ−t(z)[C\{0}] ⊂ IntC
may not hold for t > 2t∗.

The fact that the flow Φt of a cooperative system preserves the vector partial
order on a positively invariant set usually follows from the positiveness of DΦt
and the formula Φt(x)− Φt(y) =

∫ 1

0
DΦt(sx+ (1− s)y)(x− y)ds for t > 0. And a

competitive system becomes a cooperative system by time reversal. Thus, the main
difficulty with that formula for a competitive system is that the set of the inverse
of the competitive system may not be positively invariant. Smith [26] assumed a
priori property for competitive systems that the boundaries of the set are invariant.
However, we will prove in this paper that the flow ψt is eventually competitive on
the positively invariant set W by induction.

We further give some example for regular perturbations. Let P be a symmetric
matrix with one positive eigenvalue and N − 1 negative eigenvalues. A vector field
F : U(⊂ RN )→ RN is called strictly P -competitive, if there is a function λ from RN
to R such that the matrix PDF (x)+DF (x)∗P +λ(x)P is negative definite for each
x ∈ U . A certain cone can be determined as C = {x ∈ RN : (Px, x) ≥ 0, (x, v+) ≥
0} (see Ortega and Sánchez [22]). Let G be a C1-perturbed vector field of F ,
then we obtain that the flow generated by G is eventually competitive. Therefore,
together with our work [20], the limit sets of such an eventually competitive system
are 1-codimensional.
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Applications will vary widely on differing time scales, and those mathematical
models can be formulated as a singularly perturbed system. In Section 4, we
consider a singularly perturbed system has the form:

dx

dt
= f0(x, y, ε),

ε
dy

dt
= g0(x, y, ε),

for a positive parameter ε near zero with (x, y) ∈ U×V , where U ⊂ Rn and V ⊂ Rm
are open sets. And there exists a family of convex compact sets Dε ⊂ U × V such
that Dε are positively invariant for ε ∈ (0, ε0].

If there exists a critical manifold C0 given as

{(x, h(x)) : x ∈ U, y = h(x), g0(x, h(x), 0) = 0}

with normally hyperbolic assumptions, by the geometric singular perturbation the-
ory (see [9, 16, 18]), there is an invariant manifold Cε which behaves like a center
manifold which may attract the flows in its neighborhood. And Cε is C1 close to
C0. The flow on Cε (ε > 0) can be treated as a C1 regular perturbation of the flow
(for ε = 0) on C0. Hence, if the flow on the manifold C0 is competitive, then the
flow on the set Cε ∩Dε is eventually competitive.

Moreover, the slow manifold Cε possesses a stable manifold W s(Cε) which is
characterized in term of an exponential decay rate of solutions as t → ∞, and all
trajectories in Dε will eventually fall into the stable manifold. As a consequence, we
will show that the asymptotic phase implies that the dynamics (more specifically,
the ω-limit sets) of the singularly perturbed system are equivalent to those of an
eventually competitive system on Cε (see Theorem 4.1).

For such a singularly perturbed system, the priori property in [26] does not hold.
In fact, the set Dε is at most positively invariant, since all trajectories in Dε will
eventually fall into the stable manifold W s(Cε).

Finally, we will present some example for singular perturbations. Assume that a
singularly perturbed system is competitive (for ε = 0) on the critical manifold and
positive feedback acts at a comparatively fast variable, then the perturbed system
is eventually competitive.

2. Definitions and notation

In this section, we introduce several useful definitions for eventually competitive
systems. A nonempty closed set C ⊂ RN is called a convex cone if it satisfies
C + C ⊂ C, αC ⊂ C for all α ≥ 0, and C ∩ (−C) = {0}. A convex cone is solid if
IntC 6= ∅. We write

x ≤ y if y − x ∈ C,
x < y if y − x ∈ C\{0},
x� y if y − x ∈ IntC.

Notation such as x ≥ (>,�) y has the natural meanings. A subset W ⊂ RN is
p-convex if x ≤ y and x, y ∈W imply that W contains the line segment between x
and y.

The dual cone of C is defined as

C∗ = {λ ∈ (RN )∗ : λ(C) ≥ 0},



4 L. NIU EJDE-2019/121

where (RN )∗ denotes the dual space of RN .
Then we have the following two properties:

x ∈ C ⇐⇒ λ(x) ≥ 0, ∀λ ∈ C∗, (2.1)

x ∈ IntC ⇐⇒ λ(x) > 0, ∀λ ∈ C∗\{0}. (2.2)

See [4, Theorem 1.2.8] for (2.1), and [14, Proposition 3.1] for (2.2).
Let φ : R×X → X be a flow on an open subset X ⊂ RN . And φt is eventually

competitive if there exists a t∗ ≥ 0 such that φ−t(x) ≥ φ−t(y) whenever x ≥ y
with t ≥ t∗. In particular, φt is competitive if φt is eventually competitive with
t∗ = 0. And φt is eventually strongly competitive, if φt is eventually competitive
and φ−t(x)� φ−t(y) whenever x > y with t ≥ t∗.

3. Eventually competitive systems from regular perturbations

We consider the ODE system

dz

dt
= F (z), (3.1)

for which F : U → RN is a C1 vector field, U ⊂ RN is a open set. Let I(z) ⊂ R
denote the maximal interval of existence of the solution of (3.1) passing though z.
Assume W ⊂ U is a convex compact subset and the flow φt of (3.1) satisfies that
Dφ−t(z)[C\{0}] ⊂ IntC for z ∈W , t > 0 and −t ∈ I(z).

Theorem 3.1. There exists a δ > 0 with the following property. Let G denote a
C1 vector field such that ‖F (z)−G(z)‖+ ‖DF (z)−DG(z)‖ < δ for all z ∈ U and
W is positively invariant under the flow ψt generated by G. Then there exists a
t∗ > 0 such that the flow ψt is eventually competitive in W .

Proof. Since W is a compact set, there exists such a fixed t∗ > 0 that [−2t∗, 0] ⊂
I(z) for z ∈ W . When t ∈ [t∗, 2t∗], the property of Dφ−t(z)[C\{0}] ⊂ IntC
implies that there exists a δ1 > 0, which is independent to t and z, such that
B(Dφ−t(z)v, δ1) ⊂ IntC for all v ∈ C\{0}, |v| = 1. Next, a positive δ can be found
such that if ‖F (z)−G(z)‖+‖DF (z)−DG(z)‖ < δ then ‖Dφ−t(z)v−Dψ−t(z)v‖ <
δ1
2 hold for t ∈ [t∗, 2t∗] and z ∈W .

In fact, by the definition of flow, we have

d

dt
φ−t(z) = F (φ−t(z)),

d

dt
ψ−t(z) = G(ψ−t(z));

and the variational equations

d

dt
Dφ−t(z) = DF (φ−t(z))Dφ−t(z),

d

dt
Dψ−t(z) = DG(ψ−t(z))Dψ−t(z).

Then we obtain the estimate

‖Dφ−t(z)−Dψ−t(z)‖ ≤
∫ t

0

‖DF (φ−s(z))‖‖Dφ−s(z)−Dψ−s(z)‖ds

+

∫ t

0

‖DF (φ−s(z))−DG(ψ−s(z))‖‖Dψ−s(z)‖ds.
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By Gronwall’s inequality (see [5]),

‖Dφ−t(z)−Dψ−t(z)‖ ≤ e
∫ t
0
‖DF (φ−s(z))‖ds

∫ t

0

‖DF (φ−s(z))

−DG(ψ−s(z))‖‖Dψ−s(z)‖ds.

Since F , G are C1 and t∗ ≤ t ≤ 2t∗, there exist some M > 0 and N > 0 such
that ‖DF (φ−s(z))‖ ≤M , ‖Dψ−s(z)‖ ≤ N for all s ∈ [0, t].

We also obtain that, for all s ∈ [0, t],

‖DF (φ−s(z))−DG(ψ−s(z))‖ ≤ ‖DF (φ−s(z))−DG(φ−s(z))‖
+ ‖DG(φ−s(z))−DG(ψ−s(z))‖
≤ δ + ‖DG(φ−s(z))−DG(ψ−s(z))‖,

and

‖φ−s(z)− ψ−s(z)‖ ≤
∫ s

0

‖F (φ−k(z))−G(ψ−k(z))‖dk

≤
∫ s

0

‖F (φ−k(z))−G(φ−k(z))‖dk

+

∫ s

0

‖G(φ−k(z))−G(ψ−k(z))‖dk

≤ δs+

∫ s

0

K‖φ−k(z)− ψ−k(z)‖dk;

then

‖φ−s(z)− ψ−s(z)‖ ≤ δ2t∗eK2t∗ .

The last estimate is obtained by Gronwall’s inequality and ||DG|| ≤ K. If we choose
a δ < δ1

8Nt∗e2t∗M
small enough such that ‖DG(φ−s(z))−DG(ψ−s(z))‖ < δ1

8Nt∗e2t∗M
.

Then

‖Dφ−t(z)−Dψ−t(z)‖ <
δ1
2
.

Thus, we obtain that Dψ−t(z)v ∈ IntC for t ∈ [t∗, 2t∗] and z ∈W .
Next, we assert that x � y whenever ψt(x) > ψt(y) with x, y ∈ W and t ∈

[t∗, 2t∗]. In fact, for any λ ∈ C∗\{0}, one has λ(x−y) = λ(ψ−t(ψtx)−ψ−t(ψty)) =∫ 1

0
λ(Dψ−t(kψtx + (1 − k)ψty)(ψtx − ψty))dk. Since W is a positively invariant

convex set, we have kψtx + (1 − k)ψty ∈ W for all k ∈ [0, 1]. If ψtx > ψty, then∫ 1

0
λ(Dψ−t(kψtx+ (1− k)ψty)(ψtx− ψty))dk > 0. Thus, λ(x− y) > 0 and x� y

by the property (2.2).
For x, y ∈W , we will show that

x� y, whenever ψt(x) > ψt(y) with t ∈ [nt∗, (n+ 1)t∗), for all n ≥ 1. (3.2)

We will prove (3.2) by induction. It is clear that (3.2) hold for n = 1. Let (3.2) hold
for k = n − 1. For t ∈ [nt∗, (n + 1)t∗), let t = t∗ + s with s ∈ [(n − 1)t∗, nt∗). So,
ψt(x) = ψs(ψt∗x) and ψt(y) = ψs(ψt∗y). If ψt(x) > ψt(y), then ψt∗(x) � ψt∗(y)
for ψt∗(x), ψt∗(y) ∈ W with k = n − 1. Consequently, x � y by n = 1. Thus, we
have proved (3.2) and the flow ψt is eventually competitive. �

Remark 3.2. Let F be a C1 vector field, if the off-diagonal entries of DF (z) are
nonpositive for all z ∈ U and Df(z) is also irreducible for all z ∈ U . Then, by the
Kamke Condition, the flow φt generated by F satisfies Dφ−t(z)[C\{0}] ⊂ IntC for
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z ∈ U , t > 0 and −t ∈ I(z). See e.g. [12, Theorem 1.1], and [25, Theorem 4.1.1].
The results of Theorem 3.1 mean that C1 regular perturbation of a competitive
irreducible vector field is at most eventually competitive rather than competitive.

Next, we give an example of P -competitive systems with perturbation. Assume
that there exists a symmetric matrix P of order N having 1 positive eigenvalue
and N − 1 negative eigenvalues, where every eigenvalue is counted according to its
multiplicity. System (3.1) is called strictly P -competitive if there is a function λ
from RN to R such that the matrix

PDF (x) +DF (x)∗P + λ(x)P

is negative definite for each x ∈ U(see [22]). Here DF (x)∗ stands for the transpose
of DF (x).

With the symmetric matrix P , we can obtain a cone C with nonempty interior:

C = {x ∈ RN : (Px, x) ≥ 0, (x, v+) ≥ 0},

where (·, ·) is the inner product in RN and v+ is an eigenvector with respect to the
positive eigenvalue λ+ of P . The following Property can be found in [22, Theorem
2].

Proposition 3.3. If system (3.1) is strictly P -competitive, then the flow φt of
(3.1) satisfies Dφ−t(z)[C\{0}] ⊂ IntC for z ∈ U , t > 0 and −t ∈ I(z).

Now we consider the C1-perturbed system of (3.1),

dz

dt
= G(z), (3.3)

where G : U → RN is a C1 vector field. And G satisfies that there exists a δ > 0
such that ‖F (z)−G(z)‖+ ‖DF (z)−DG(z)‖ < δ for all z ∈ U . Let ψt denote the
flow of (3.3). Assume that W ⊂ U is a convex compact subset and W is positively
invariant under ψt.

Theorem 3.4. Assume that (3.1) is strictly P -competitive. For system (3.3), if
p ∈ W has complete orbit in W , then the flow on the omega limit set ω(p) is
topologically equivalent to a flow on a compact invariant set of a Lipschitz system
of differential equations in RN−1.

Proof. Since W is positively invariant and G is a perturbation of F in the space
of C1 vector fields, one has that the flow ψt is eventually competitive in W by
Theorem 3.1. If p ∈ W has complete orbit in W , one can use the Non-oscillation
Principle in [20] to obtain the non-ordering of the ω-limit set ω(p), which follows
from [20, Theorem 3.1]. Then, one can repeat the argument in the proof of [20,
Theorem 3.3] to obtain that the flow on ω(p) is topologically equivalent to a flow on
a compact invariant set of a Lipschitz system of differential equations in Rn−1. �

4. Eventually competitive systems rom singular perturbations

In this section, we study singular perturbed differential equations of the form

dx

dt
= f0(x, y, ε),

ε
dy

dt
= g0(x, y, ε).

(4.1)
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This system can be reformulated with a change of time scale as

dx

dτ
= εf0(x, y, ε),

dy

dτ
= g0(x, y, ε),

(4.2)

where τ = t/ε. The time scale given by τ is said to be fast whereas that for t
is slow. When ε is small enough, we call (4.1) the slow system and (4.2) the fast
system. And the two systems are equivalent as long as ε 6= 0.

Motivated by Wang and Sontag [32], we list a series of basic assumptions, and the
following definitions may make it easier to state. Let Crb denote a class of functions
such that a function f is in Crb if it is in Cr and its derivatives up to order r as
well as f are bounded. Throughout this paper, let Df(x0) denote the derivatives
of f evaluated at x0 with respect to variables x other than t or τ . Moreover,
Dxf(x0, y0) and Dyf(x0, y0) denote the partial derivatives of f with respect to x
and y evaluated at (x0, y0), respectively. Then, we have the following assumptions,
where the integer r > 1 and the positive number ε0 are fixed from now on.

(A1) Let U ⊂ Rn and V ⊂ Rm be open and bounded sets. The functions
f0 : U × V × [0, ε0] → Rn and g0 : U × V × [0, ε0] → Rm are both of class
Crb .

(A2) There is a function h0 : U → V in Crb such that g0(x, h0(x), 0) = 0 for all
x in U .

(A3) All eigenvalues of the matrix Dyg0(x, h0(x), 0) have negative real parts for
every x ∈ U .

(A4) There exists a family of convex compact sets Dε ⊂ U × V , which depend
continuously on ε ∈ [0, ε0], such that (4.1) is positively invariant on Dε for
ε ∈ (0, ε0].

(A5) For each x ∈ U , the system

dz

dτ
= g1(x, z, 0) , g0(x, z + h0(x), 0) (4.3)

is given on {z ∈ Rm : z+ h0(x0) ∈ V }. And the steady state z = 0 of (4.3)
is globally asymptotically stable on {z : z + h0(x0) ∈ V }.

(A6) ψ0
t is the flow of the system

dx

dt
= f0(x, h0(x), 0), (4.4)

on U ; and K0 is the projection of D0 ∩ {(x, y) : y = h0(x), x ∈ U} onto the
x-axis. For any x ∈ K0, Dψ0

−t(x)[C\{0}] ⊂ IntC for t > 0 and −t ∈ I(x).

Then we have the following theorem.

Theorem 4.1. Assume that (A1)–(A6) hold. Then there exists a positive constant
ε∗ < ε0 such that for each ε ∈ (0, ε∗), the ω-limit set of (4.1) is equivalent to a
ω-limit set of an eventually competitive system.

Before proving Theorem 4.1, we state a result about the singular perturbation
theory which is a restatement of the [23, Theorems 2.1 and 3.1] for the vector fields
on Rn × Rm × [0, ε0].
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Lemma 4.2. The system
dx

dτ
= εf(x, y, ε),

dy

dτ
= g(x, y, ε),

(4.5)

satisfies f : Rn × Rm × [0, ε0]→ Rn is Crb , g : Rn × Rm × [0, ε0]→ Rm is Crb . For

x ∈ Rn, there is a Crb function h : Rn → Rm such that g(x, h(x), 0) = 0. And all

eigenvalues of the matrix Dyg(x, h(x), 0) have negative real parts less than −µ for
every x ∈ Rn.

Then, there exists a ε1 < ε0 such that for every ε ∈ (0, ε1]:

(1) There exists a Cr−1b function h : Rn × [0, ε1] → Rm, such that the set Cε
defined by

Cε = {(x, h(x, ε)) : x ∈ Rn}, ε ∈ (0, ε1]

is invariant under the flow generated by (4.5), and

sup
x∈Rn
{|h(x, ε)− h(x)| : x ∈ Rn} = O(ε), ε→ 0.

In particular, we have h(x, 0) = h(x) for all x ∈ Rn.
(2) There is a Cr−1-immersed submanifold W s(Cε) in Rn × Rm of dimension

n+m. It is characterized by

W s(Cε) = {(x0, y0) : sup
τ≥0

: y(τ ;x0, y0)− hε(x(τ ;x0, y0))|e
µτ
4 <∞},

where (x(τ ;x0, y0), y(τ ;x0, y0)) is the solution of (4.5) passing through the
point (x0, y0), and hε(x) = h(x, ε) is the function defining Cε.

(3) The manifold W s(Cε) is a disjoint union of Cr−1-immersed manifold
W s((ξ, hε(ξ))) of dimension m:

W s(Cε) = ∪
ξ∈Rn

W s((ξ, hε(ξ))).

Moreover, this manifold is characterized as

W s((ξ, hε(ξ))) = {(x0, y0) : sup
τ≥0
|x̃(τ)|e

µτ
4 <∞, sup

τ≥0
|ỹ(τ)|e

µτ
4 <∞},

where x̃(τ) = x(τ ;x0, y0) − Hε(ξ)(τ), ỹ(τ) = y(τ ;x0, y0) − hε(Hε(ξ)(τ)),
and Hε(ξ)(τ) stands for a unique solution of dx

dτ = εf(x, hε(x), ε), x(0) =
ξ ∈ Rn.

(4) There is a constant δ0 > 0 such that if a solution (x(τ), y(τ)) of (4.5)
satisfies

sup
τ≥0
|y(τ)− hε(x(τ))| < δ0,

then (x(0), y(0)) ∈W s(Cε).
(5) The fibers are positively invariant in the sense that

W s((Hε(ξ)(τ), hε(Hε(ξ)(τ))))

= {(x(τ ; , x0, y0), y(τ ;x0, y0)) : (x0, y0) ∈W s((ξ, hε(ξ)))},

for each τ ≥ 0.

Remark 4.3. (1) The δ0 in property (4) of Lemma 4.2 can be chosen uni-
formly for ε ∈ (0, ε0].
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(2) Property (3) of Lemma 4.2 is often referred to as the asymptotic phase
property in the way

|x(τ ;x0, y0)−Hε(ξ)(τ)| → 0,

|y(τ ;x0, y0)− hε(Hε(ξ)(τ)| → 0,

as τ →∞.

To use Sakamoto’s results in Lemma 4.2, we firstly extend the vector fields from
U ×V to Rn×Rm for ε ∈ [0, ε0]. The technique is standard by [18], which can also
be found in [32], such that the extended system:

dx

dτ
= εf(x, y, ε),

dy

dτ
= g(x, y, ε),

(4.6)

satisfies the assumptions (A1)–(A6) and the assumptions for the geometric singular
perturbation in Lemma 4.2. Moreover, h(x) coincides with h0(x) on K, f and g
coincide with f0, g0 on Ωd1 , respectively. Where K is a compact set with K0 ⊂
K ⊂ U , Ωd1 , {(x, y) : x ∈ K, y ∈ V, |y − h0(x)| ≤ d1} and d1 > 0 is fixed such
that δ0 in Lemma 4.2 is less than d1.

Proof of Theorem 4.1. First, we focus on the solutions on the invariant manifold
Cε satisfying

dx

dt
= f(x, hε(x), ε),

y(t) = hε(x(t)).
(4.7)

For brevity, we just mention the x directions on the invariant manifold Cε since
y = hε(x). It is clear that the limiting of (4.7) is (4.4) when ε approaches zero. And
a flow ψ0

t of the limiting system satisfies Dψ0
−t(x)[C\{0}] ⊂ IntC for x ∈ K0, t > 0

and −t ∈ I(x). By the continuity of Dε and hε(x) at ε = 0, we can pick an ε2 < ε1
small enough such that Dψ0

−t(x)[C\{0}] ⊂ IntC for x ∈ Kε and ε ∈ (0, ε2), where
Kε is the projection of Cε ∩ Dε to the x-axis. We also have that Dε is positively
invariant under (4.7) and Cε is an invariant manifold, thus Kε is positively invariant
under the flow ψεt of (4.7). Applying Theorem 3.1, we obtain that there exist an
ε3 ≤ ε2 and a t∗ > 0 such that for each ε ∈ (0, ε3), ψεt is eventually strongly
competitive.

Next, we consider the flows on W s(Cε). By the positive invariance and the
asymptotic phase property mentioned in property (5) of Lemma 4.2 and Remark
4.3(2), the dynamics of the flows on W s(Cε) totally depends on those for Cε, or
rather, ω(q0) is equivalent to ω(p0), whenever p0 = (ξ0, hε(ξ0)) ∈ Cε and q0 ∈
W s(p0). In fact, let q0 be a point on the fiber W s(p0), where (ξ0, hε(ξ0)) = p0 ∈
Cε, and the solution of (4.6) starting from p0 ∈ Cε tends to p1 = (ξ1, hε(ξ1)) ∈
Cε at time τ1, then the solution of (4.6) starting from q0 ∈ W s(p0) will tend
to q1 ∈ W s(p1) at time τ1, which means that two solutions are always on the
same fiber. Moreover, |x(τ ; q0) − Hε(ξ0)(τ)| → 0, |y(τ ; q0) − hε(Hε(ξ0)(τ))| →
0, as τ → ∞, that is, the solution (x(τ ; q0), y(τ ; q0)) converges to the solution
(Hε(ξ0)(τ), hε(Hε(ξ0)(τ))), as τ →∞.

At last, we will show that all trajectories in Dε eventually stay in W s(Cε). We
firstly claim that there exist an ε4 > 0 and δ0 > d > 0 such that (x0, y0) ∈
W s(Cε) if (x0, y0) ∈ Dε satisfies |y0 − hε(x0)| < d for each ε ∈ (0, ε4). This claim
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follows from [32, Lemma 7]. Moreover, for any (x0, y0) ∈ Dε, there exist some
uniformly positive τ0 and an ε5 < ε4 such that |y(τ0) − hε(x(τ0))| < d for all
ε ∈ (0, ε5), then (x(τ0), y(τ0)) ∈W s(Cε), where (x(τ), y(τ)) is the solution to (4.2)
with (x(0), y(0)) = (x0, y0). The corresponding proof is similar to [32, Lemma 8]
with the positive invariance of Dε. Hence, the limit set ω((x0, y0)) is equivalent to
an ω-limit set ω(ξ) on Cε, where (x0, y0) ∈ Dε and ξ ∈ Kε.

We complete the proof of Theorem 4.1 by taking ε∗ = min{ε3, ε5}. �

Remark 4.4. For any point x ∈ Kε, if the orbits of (4.7) is complete in Kε, then
the non-ordering of the ω-limit set ω(x) directly follows from the [20, Theorem 3.1].
Similarly as Theorem 3.4, the flow on ω(x) is topologically equivalent to a flow on
a compact invariant set of a Lipschitz ODE system in Rn−1.

Next we give an example a singularly perturbed system. We fix k 6= l ∈
{1, . . . , n} and consider the system

dx

dt
= f(x) + Γ(y), x ∈ U ⊂ Rn,

ε
dy

dt
= −py + g(xl), p > 0, y ∈ V ⊂ R1, 0 < ε� 1,

(4.8)

with a positive feedback xl −→ y (hence g′(xl) > 0), and a negative feedback

y −→ xk (hence Γ(y) = (0, . . . , 0,
k

γ(y), 0, . . . , 0) with γ′(y) < 0). Moreover, the
system

dx

dt
= f(x), x ∈ U ⊂ Rn (4.9)

satisfies ∂fi
∂xj

< 0, i 6= j, i, j ∈ {1, . . . , n}.
We also assume that the functions f,Γ, g are of class Crb for sufficiently large

bounded sets, |g(xl)| ≤M for any xl ∈ R, and

fi(x1, . . . ,−xi, . . . , xn) = −fi(x1, . . . , xi, . . . , xn),

for i ∈ {1, . . . , n}. Then we take

Dε = {(x, y) : |xi| ≤ ai, |y| ≤ b, i = 1, 2, . . . , n},

where b > M
p , N = max

|y|≤b
|γ(y)| and ai > 0 such that −fi(. . . ,

i
ai, . . . ) > N, i =

1, 2, . . . , n. So, the vector fields point transversely inside on the boundary of Dε,
which enables us to assume that Dε is positively invariant under (4.8).

Let U and V be bounded open sets such that Dε ⊂ U × V . Then (A1)–(A5)
follow naturally. Then the limiting system can be obtained as

dx

dt
= f(x) + Γ(

1

p
g(xl)) = h(x). (4.10)

Since system (4.9) is a competitive system with ∂fi
∂xj

< 0, i 6= j, and g′(xl) > 0,

γ′(y) < 0, we obtain that ∂hi
∂xj

< 0, i 6= j. Hence, (A6) holds, by Kamke’s theorem,

which means theorem 4.1 holds for system (4.8), i.e., the ω-limit set of (4.8) is
equivalent to a ω-limit set of an eventually competitive system.
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