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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR

NON-DEGENERATE KIRCHHOFF TYPE PROBLEM WITH

NONLINEAR BOUNDARY CONDITION

MATEUS BALBINO GUIMARÃES, ELARD JUAREZ HURTADO,

RODRIGO DA SILVA RODRIGUES

Abstract. We show the existence of solutions for nonlinear elliptic partial

differential equations with Steklov nonlinear boundary conditions involving a
Kirchhoff type operator. By using variational and topological methods, we

prove the existence and multiplicity of solutions. The results obtained are new

even for the standard stationary Kirchhoff equation with nonlinear boundary
condition involving the p-Laplacian operator.

1. Introduction

In this paper, we study the existence of nontrivial weak solutions to a Kirchhoff
type problem with Steklov nonlinear boundary conditions:

M(u) = f(x, u) in Ω,

|∇u|p−2 ∂u

∂η
= g(x, u) on ∂Ω,

(1.1)

where

M(u) = −
[
M
(∫

Ω

|∇u|pdx+

∫
Ω

c(x)|u|pdx
)]

[div(|∇u|p−2∇u) + c(x)|u|p−2u],

and Ω ⊂ RN , N ≥ 2, is a bounded domain with class C0,1-boundary, ∂Ω. In the
boundary conditions, the symbol ∂u∂η denotes the directional derivative

∂u

∂η
= (∇u, η)RN ,

where η is the outward (unit) normal derivative on ∂Ω and p > 1.
The Kirchhoff function M : R+

0 → R+ is assumed to be continuous and to satisfy
the structural assumption

(A1) There exists m0 > 0, such that M(t) ≥ m0 for all t > 0.

Problem (1.1) is said to be degenerate when M(0) = 0, and non-degenerate when
M(0) > 0. In this paper we cover only the non-degenerate case. Throughout this
paper we shall assume that the weight function c : Ω → R, and the continuous
functions f, g : Ω× R→ R satisfy the following conditions:
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(A2) c ≥ 0 a.e. on Ω, c ∈ L∞(Ω) and
∫

Ω
c(x)dx > 0.

(A3) There exist constants b1, b2 > 0 such that

|f(x, u)| ≤ b1 + b2|u|r for all (x, u) ∈ Ω× R,
with 0 < r < p∗(N)− 1, and the critical exponent

p∗(N) =

{
Np
N−p , if p < N,

+∞, if p ≥ N.

(A4) There exists b3 > 0 such that b3|u|α ≤ f(x, u) for all (x, u) ∈ Ω×R+, with
1 < α+ 1 < p.

(A5) There exist positive constants a1 and a2 such that

|g(x, u)| ≤ a1 + a2|u|s for all (x, u) ∈ Ω× R,
with 0 < s < p1

∗(N)− 1, and the critical exponent

p1
∗(N) =

{
(N−1)p
N−p , if p < N,

+∞, if p ≥ N.

Problem (1.1) has its origin in the canonical model of Kirchhoff and Carrier which
describes small vibrations of an elastic stretched string. The interest in recent years
has been focused on the study of Kirchhoff type problems

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2dx)∂2u

∂x2
= 0, (1.2)

where L is the length of the string, h is the area of cross-section, E is the Young mod-
ulus of the material, ρ is the mass density, and P0 is the initial tension. Equation
(1.2) extends the classical D’Alembert’s wave equation by considering the effects of
the changes in the length of the strings during the vibrations.

We stress that because of the presence of the term

M
(∫

Ω

|∇u|pdx+

∫
Ω

c(x)|u|pdx
)
,

the first equation of (1.1) is no longer a pointwise equation, therefore it is often
called a nonlocal problem. This is a source of mathematical difficulties in the
analysis of (1.1), which makes the study of such class of problem, particularly
interesting.

In the previous years many authors studied the nonlocal problem

−M
(∫

Ω

|∇u|2dx
)

∆u = f(x, u)i nOmega, u = 0 on ∂Ω. (1.3)

Problems of the type (1.3) may be used to model several physical and biological
problems, see for example [2]. Many interesting results for problems of the Kirch-
hoff type have already been obtained, see [2, 7, 15], and the references therein.
The study of Kirchhoff-type equations was extended to the case involving the p-
Laplacian operator, see [9, 11, 16]. Systems of Kirchhoff-type equations where dealt
for example in [8, 10].

In [24] the authors studied a problem involving a Kirchhoff-type operator and
a nonlinear boundary condition. We also refer to [10], which involve a system
of equations with Neumann boundary condition. Problems involving a nonlinear
boundary condition were studied, for example, in [13, 23]. These works, however,
do not deal with a Kirchhoff-type operator.
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Let us consider µ1 and λ1 the first eigenvalues of the Steklov and Neumann
eigenvalues problems (we refer the reader to [4, 14]). The authors studied the
existence and multiplicity of solution to the elliptic equations, involving the p-
Laplacian,

−∆pu+ c(x)|u|p−2u = 0, in Ω,

|∇u|p−2 ∂u

∂η
= µ|u|p−2u, on ∂Ω,

(1.4)

and
−∆pu+ c(x)|u|p−2u = λ|u|p−2u, in Ω,

∂u

∂η
= 0, on ∂Ω.

(1.5)

Mavinga and Nkashama [23] established a similar result for problem (1.1) with
M = 1, p = 2, and the hypothesis:

(A6) there exist constants λ, µ ∈ R such that

lim sup
|u|→+∞

2F (x, u)

|u|2
≤ λ < λ1, lim sup

|u|→+∞

2G(x, u)

|u|2
≤ µ < µ1

uniformly for x ∈ Ω, with λ1µ+ µ1λ < µ1λ1. See Figure 1.

Figure 1. Region of solutions in the plane λµ obtained in [23].

In [13] the authors improve some results of [23] for the p-Laplacian operator with
the same relationship on the Steklov and Neumann eigenvalues. Motivated by the
above papers, especially [4, 10, 11, 15, 16, 23, 24], we consider problem (1.1) which
combines the Kirchhoff model. In this sense, one of the novelty of this paper is
that the problem (1.1) involve a nondegenerate nonlocal term once in the majority
of works in the literature the authors study the degenerate case. We also note
that we have to deal with nonlinear terms at the border. This generates another
difficulty for which we use the Theorem Trace and its properties of compactness.
Moreover, our results are established when the nonlinearity interacts with Steklov
and Neumann eigenvalues for p-Laplacian operator.

In this work we extend the results of [23] and [13] for Kirchhoff-type problems,
when the nonlinearities f and g have a p-sublinear growth. Moreover, in our results,
we obtain an independence between the eigenvalues λ1 and µ1, by eliminating the
necessity of the condition λ1µ+ µ1λ < µ1λ1. Thus, we get two results that extend
the area of solutions in the Cartesian plane λµ, as shown in Figures 2 and 3.
Furthermore, it was demonstrated that our solutions are nontrivial. Moreover,
supposing f and g odd functions and by using the Krasnoselskii’s genus theory, we
established two results of multiplicity of solution to problem (1.1).
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The structure of this article is as follows. First, in Section 2, we present our main
results. In Section 3, we introduce some basic preliminary results and lemmas. In
Section 4, we prove that the Euler Lagrange functional satisfies the Palais-Smale
condition. n the Section 5 we give the proofs of our main results. To the best of
our knowledge, this is the first study of the existence of infinite many solutions to
non-degenerate Kirchhoff type problems with nonlinear boundary conditions.

2. Existence results

Theorem 2.1. Suppose that assumptions (A1)–(A5) hold, and suppose that s+1 <
p. Let the potential F (x, u) =

∫ u
0
f(x, t)dt be such that

(A7) there exists λ ∈ R such that

lim sup
|u|→+∞

pF (x, u)

|u|p
≤ λ < λ1m0,

uniformly for x ∈ Ω. Then (1.1) has at least one nontrivial solution.

Theorem 2.2. Suppose that assumptions (A1)–(A5) hold, and suppose that s+1 <
p. Additionally suppose that

(A8) f(x,−t) = −f(x, t), for all (x, t) ∈ Ω× R;

(A9) g(x,−t) = −g(x, t), for all (x, t) ∈ Ω× R,

and the potential F (x, u) =
∫ u

0
f(x, t)dt satisfies (A7). Then (1.1) has infinitely

many solutions.

The region of the plane λµ obtained in the Theorems 2.1 and 2.2 is depicted in
figure 2.

Figure 2. Region obtained in Theorems 2.1 and 2.2.

Theorem 2.3. Suppose that assumptions (A1)–(A5) hold, and suppose that r+1 <
p. Let the potential G(x, u) =

∫ u
0
g(x, t)dt be such that

(A10) there exists µ ∈ R such that

lim sup
|u|→+∞

pG(x, u)

|u|p
≤ µ < µ1m0,

uniformly for x ∈ Ω.

Then (1.1) has at least one nontrivial solution.

Theorem 2.4. Suppose that assumptions (A1)–(A5), (A8)–(A10) hold, and sup-
pose that r + 1 < p. Then (1.1) has infinitely many solutions.
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Figure 3. Region obtained in Theorems 2.3 and 2.4.

The region in the plane λµ obtained in the Theorems 2.3 and 2.4 is depicted in
Figure 3.

In Theorem 2.1 we prove the existence of at least one weak solution via mini-
mization methods. With additional hypotheses of symmetry on the non-linearities,
in Theorem 2.2, we obtain infinite weak solutions to (1.1) via Krasnoselskii’s genus.
The proof Theorem 2.3 is analogous to Theorem 2.1 with a different growth hy-
pothesis (A10). The proof of Theorem 2.4 is analogous to Theorem 2.2.

3. Preliminary results and variational framework

Consider Ω ⊂ RN , N ≥ 2, a bounded domain with boundary, ∂Ω, of class C0,1

e p > 1. Let W 1,p(Ω) be the Sobolev space with respect to the norm

‖u‖1,p =
(∫

Ω

[|∇u|p + |u|p]dx
)1/p

,

for all u ∈W 1,p(Ω). Since c : Ω→ R satisfies (A2), we have

‖u‖c =
(∫

Ω

[ |∇u|p + c(x)|u|p]dx
)1/p

is a norm in ∈ W 1,p(Ω) (see [18, Theorem 25]) and is equivalent to‖ · ‖1,p. In our
work we consider W 1,p(Ω) with respect to the norm ‖ · ‖c. As we can see in [22],

the embedding W 1,p(Ω) ↪→ Lq(Ω) is continuous if 1 ≤ p < N and 1 ≤ q ≤ Np
N−p or

p ≥ N and q ∈ [1,+∞). Moreover, if 1 ≤ p < N and 1 ≤ q < Np
N−p or p ≥ N and

q ∈ [1,+∞), this embedding is compact. The Compact Trace Theorem (see [1, 25])
establishes that there exists a unique continuous operator

Γ : W 1,p(Ω)→ Lq(∂Ω),

if p < N and 1 ≤ q ≤ (N−1)p
N−p or p ≥ N and q ∈ [1,+∞). Furthermore, if p < N

and 1 ≤ q < (N−1)p
N−p or p ≥ N and q ∈ [1,+∞), the operator Γ is compact. We

denote the norm of Lq(∂Ω) by ‖ · ‖q,∂ . The following inequalities are related to the
first eigenvalues, µ1 and λ1, respectively to the problems (1.4) and (1.5), and are
of our particular interest (see [13]):

‖u‖pc ≥ µ1‖u‖pp,∂ , ∀u ∈W
1,p(Ω), (3.1)

‖u‖pc ≥ λ1‖u‖pp, ∀u ∈W 1,p(Ω). (3.2)
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Since our approach is variational, we define the Euler-Lagrange functional, Ip :
W 1,p(Ω)→ R, as

Ip(u) =
1

p
M̂(‖u‖pc)−

∫
Ω

F (x, u)dx−
∫
∂Ω

G(x, u)dσ, (3.3)

for all u ∈ W 1,p(Ω), where M̂(t) :=
∫ t

0
M(s)ds, F (x, u) =

∫ u
0
f(x, s)ds, and

G(x, u) =
∫ u

0
g(x, s)ds. The functional Ip is well defined in W 1,p(Ω) and Ip ∈

C1(W 1,p(Ω),R). Moreover, Ip has Fréchet derivative in u ∈W 1,p(Ω), given by

I ′p(u)(v) = M(‖u‖pc)
∫

Ω

[|∇u|p−2∇u∇v + c(x)|u|p−2uv]dx

−
∫

Ω

f(x, u)vdx−
∫
∂Ω

g(x, u)vdσ,

for all v ∈W 1,p(Ω). Next define weak solutions of problem (1.1).

Definition 3.1. We say that u ∈W 1,p(Ω) is a weak solution of problem (1.1), if

M(‖u‖pc)
∫

Ω

[|∇u|p−2∇u∇v + c(x)|u|p−2uv]dx =

∫
Ω

f(x, u)vdx+

∫
∂Ω

g(x, u)vdσ,

for all v ∈W 1,p(Ω).

To prove results of multiplicity of solutions on the main theorems, our main tool
is a result due to Clark. We will give some basic notion on the Krasnoselskii genus
that we will use in the proof of Theorems 2.2 and 2.4.

Let E be a real Banach space. We denote by A the class of all closed subsets
A ⊂ E \ {0} that are symmetric with respect to the origin; that is, u ∈ A implies
−u ∈ A.

Definition 3.2. Let A ∈ A. The Krasnoselskii genus of A, γ(A), is defined as the
least positive integer k such that there is an odd mapping φ ∈ C(A,Rk) such that
φ(u) 6= 0, for all u ∈ A. If k does not exists we set γ(A) = +∞. Furthermore, by
definition, γ(∅) = 0.

In the sequel we enunciate some results on the Krasnoselskii genus that can be
found in [3, 6, 12, 20].

Proposition 3.3. Suppose that E = RN and ∂Ω the boundary of an open, sym-
metric, and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 3.4. If ∂Ω = SN−1 is the unit sphere in RN , then γ(SN−1) = N .

We now establish a result due to Clark [21].

Proposition 3.5 (Clark’s proposition). Consider Φ ∈ C1(X,R) a functional sat-
isfying the Palais-Smale condition and suppose that

(i) Φ is bounded from below, and even;
(ii) there is a compact set K ∈ A such that γ(K) = k and supu∈K Φ(u) < Φ(0).

Then Φ possesses at least k distinct pairs of critical points and their corresponding
critical values are less than Φ(0).

We point out that this result is a consequence of a basic multiplicity theorem
involving an invariant functional under the action of a compact topological group.
The following theorem will be used in the proof of Theorems 2.1 and 2.3 (see [19]):
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Theorem 3.6. Let E be a Banach space. If I ∈ C1(E,R) satisfies the Palais-
Smale condition and is bounded from below, then l = infE I is a critical point of
I.

For using the above results, it is necessary that the functional Ip be coercive in
W 1,p(Ω). The next two lemmas are about this.

Lemma 3.7. Suppose that (A1), (A2), (A5), (A7) hold, and suppose that s+1 < p.
Then Ip is coercive in W 1,p(Ω).

Proof. It follows from (A7) that for ε > 0, there exists R = R(ε) > 0 such that

pF (x, u)

|u|p
≤ λ+ ε, (3.4)

for x ∈ Ω and |u| > R. Moreover, since Ω is bounded in RN , we have Ω compact
in RN . Thus Ω × [−R,R] is compact in RN+1. Since that F ∈ C1(Ω × R,R), we
can conclude that F achieve a maximum in Ω × [−R,R]. So, there exists Mε > 0
such that, if x ∈ Ω and |u| ≤ R, we have

F (x, u) ≤Mε. (3.5)

It follows from (3.4) and (3.5) that

F (x, u(x)) ≤ 1

p
(λ+ ε) |u(x)|p +Mε, (3.6)

for all x ∈ Ω and for all u ∈W 1,p(Ω). By using (A5), (3.2), (3.6), and the Compact
Trace Theorem, we obtain

Ip(u) =
1

p
M̂(‖u‖pc)−

∫
Ω

F (x, u)dx−
∫
∂Ω

G(x, u)dσ

≥ m0

p
‖u‖pc −

1

p
(λ+ ε) ‖u‖pp −Mε|Ω| − a1

∫
∂Ω

|u|dσ − a2

s+ 1

∫
∂Ω

|u|s+1dσ

≥ m0

p
‖u‖pc −

1

p

(λ+ ε)

λ1
‖u‖pc − a1‖u‖1,∂ −

a2

s+ 1
‖u‖s+1

s+1,∂ −Mε|Ω|

≥ 1

p

(
m0 −

λ

λ1
− ε

λ1

)
‖u‖pc − a1C̄‖u‖c −

a2

s+ 1
C̃‖u‖s+1

c −Mε|Ω|,

where |Ω| is the measure of Ω. Since λ < λ1m0, we have m0 − λ
λ1

> 0. For

ε < λ1m0 − λ, we obtain
(
m0 − λ

λ1
− ε

λ1

)
> 0. Since that s+ 1 < p,

lim
‖u‖c→+∞

Ip(u) = +∞.

It follows that Ip is coercive in W 1,p(Ω). �

Lemma 3.8. Suppose that (A1)–(A3), (A10) hold, and suppose that r + 1 < p.
Then Ip is coercive in W 1,p(Ω).

The proof of the above lemma is analogous to that of Lemma 3.7.; we omit it
here. Let A : W 1,p(Ω)→W 1,p(Ω)∗ be the map defined by

〈A(u), v〉 =

∫
Ω

|∇u|p−2∇u∇vdx, ∀u, v ∈W 1,p(Ω). (3.7)

From [17, Proposition 3.1], we have the following lemma.
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Lemma 3.9 (S+ condition). If the map A : W 1,p(Ω) → W 1,p(Ω)∗ is defined by
(??), then A is bounded, continuous, monotone and of type (S)+, that is, if un ⇀ u
weakly in W 1,p(Ω), as n→ +∞, and lim supn→+∞〈A(un), un−u〉 ≤ 0, then un → u
in W 1,p(Ω).

4. Palais-Smale condition

In this section we show that the functional Ip satisfies the Palais-Smale condition
if we assume (A7) or (A10).

Lemma 4.1. Suppose that (A1)–(A3), (A5), (A7) hold, and suppose that s+1 < p.
Then Ip satisfies the Palais-Smale condition.

Proof. Let (un) ⊂W 1,p(Ω) be a Palais-Smale sequence at level l; that is, Ip(un)→ l
and I ′p(un)→ 0 (in the dual of W 1,p(Ω)), as n→ +∞. It follows from Lemma 3.7

that Ip is coercive in W 1,p(Ω). Thus (un) ⊂W 1,p(Ω) is bounded in W 1,p(Ω). Since
the norms ‖ · ‖c and ‖ · ‖1,p are equivalents, (W 1,p(Ω), ‖ · ‖1,p) is reflexive and (un)
is bounded in W 1,p(Ω), up to a subsequence, there exists u ∈W 1,p(Ω) such that

un ⇀ u weakly in W 1,p(Ω) as n→ +∞.
Moreover, as the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact, we have

un → u in Lp(Ω),

un(x)→ u(x) a.e. in Ω,

‖un‖ → t0 ≥ 0,

(4.1)

as n→ +∞. From the Compact Trace Theorem, we obtain

un → u in Lp(∂Ω),

un(x)→ u(x) a.e. in ∂Ω,
(4.2)

as n → +∞. Since (un) is bounded in W 1,p(Ω) and I ′p(un) → 0 (in the dual of

W 1,p(Ω)), we have I ′p(un)(un − u) = on(1), where limn→+∞ on(1) = 0; that is,

M(‖un‖pc)
∫

Ω

|∇un|p−2∇un∇(un − u)dx+

∫
Ω

c(x)|un|p−2un(un − u)dx

−
∫

Ω

f(x, un)(un − u)dx−
∫
∂Ω

g(x, un)(un − u)dx = on(1).

Using Hölder’s inequality, (??), (??), and the Dominated Convergence Theorem,
we obtain that f(x, un)(un−u) and c(x)|un|p−2un(un−u) converges to 0 in L1(Ω),
and g(x, un)(un − u) converges to 0 in L1(∂Ω). Thus, we have

M(‖un‖pc)
∫

Ω

|∇un|p−2∇un∇(un − u)dx = on(1).

Since that M is continuous and (un) is bounded in W 1,p(Ω), there exists C > 0
such that M(‖un‖pc) ≤ C. It follows from (A1) that

0 < m0 ≤M(‖un‖pc) ≤ C,
for all n ∈ N. Thus, we achieve∫

Ω

|∇un|p−2∇un∇(un − u)dx = on(1).

Using Lemma 3.9, the proof is complete. �
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Lemma 4.2. Suppose that (A1)–(A3), (A5), (A10) hold, and suppose that r+1 < p.
Then Ip satisfies the Palais-Smale condition.

The proof of this lemma is analogous to that of Lemma 4.1, changing Lemma
3.7 by Lemma 3.8. We omit it here.

5. Proof of main results

Proof of Theorem 2.1. It follows from Lemma 3.7 that Ip is bounded from below
in W 1,p(Ω). Moreover, from Lemma 4.1, Ip satisfies the Palais-Smale condition.
Since Ip ∈ C1(W 1,p(Ω),R), it follows from Theorem 3.6 that l = infW 1,p(Ω) Ip is a

critical value of Ip, that is, Ip has a critical point u0 ∈W 1,p(Ω) such that Ip(u0) = l.
Thus we have I ′p(u0)(v) = 0, for all v ∈ W 1,p(Ω); that is, u0 is a weak solution of
problem (1.1). The next lemma shows that u0 is nontrivial.

Lemma 5.1. Suppose that (A1)–(A5), (A7) hold and that s+ 1 < p. Then l < 0.

Proof. Let ϕ1 be the first positive engeinfunction of the problem

−∆pu = |u|p−2u in Ω,

u = 0 on ∂Ω,

(see [5]). Since ϕ1 = 0 in ∂Ω, we have G(x, tϕ1) = 0, for all t > 0 and for all x ∈ ∂Ω.
For t < 1, it follows from (A4) that there exists C > 0 (since M is continuous) such
that

Ip(tϕ1) =
1

p
M̂(‖tϕ1‖pc)−

∫
Ω

F (x, tϕ1)dx−
∫
∂Ω

G(x, tϕ1)dσ

≤ 1

p

∫ ‖tϕ1‖pc

0

M(s)ds− b3t
α+1

α+ 1

∫
Ω

|ϕ1|α+1dx

≤ C

p
tp‖ϕ1‖pc −

b3t
α+1

α+ 1

∫
Ω

|ϕ1|α+1dx

= C1t
p − C2t

α+1,

where C1 = C
p ‖ϕ1‖pc > 0 and C2 = b3

α+1

∫
Ω
|ϕ1|α+1dx > 0. Thus we obtain

Ip(tϕ1) < 0, ∀t < min
{

1,
(C2

C1

) 1
p−(α+1)

}
,

which implies l = infW 1,p(Ω) Ip < 0. �

By using Lemma 5.1 we have Ip(u0) = l < 0. Once that Ip(0) = 0, we obtain
u0 6= 0 and the proof Teorema 2.1 is complete.

Proof of Theorem 2.2. For the proof of Theorem 2.2, we will use Proposition
3.5. From the definition of F and G, and by using (A8) and (A9) we have that Ip
is even and Ip(0) = 0. Moreover, Ip ∈ C1(W 1,p(Ω),R), and by Lemmas 3.7 and
4.1, we get Ip bounded from below in W 1,p(Ω) and Ip satisfies the Palais-Smale
condition. The next lemma shows that Ip verifies the condition ii) of Proposition
3.5.

Lemma 5.2. Suppose that (A2),– (A5) hold. Then, there exists a compact set
S ⊂W 1,p(Ω) such that γ(S) = k <∞ and supu∈S Ip(u) < Ip(0) = 0.
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Proof. Since C∞0 (Ω) ⊂W 1,p
0 (Ω) ⊂W 1,p(Ω) has infinite di mension, for each k ∈ N,

there exists a k-dimensional linear subspace ofW 1,p
0 (Ω), Xk, such that Xk ⊂ C∞0 (Ω).

Thus, all norms in Xk are equivalent; that is, there exists a positive constant C(k),
which depends on k, such that

C(k)‖u‖α+1
c ≤ b3

α+ 1

∫
Ω

|u|α+1dx,

for all u ∈ Xk. Thus, if u ∈ Xk, it follows from (A4) that∫
Ω

F (x, u)dx ≥ b3
α+ 1

∫
Ω

|u|α+1dx ≥ C(k)‖u‖α+1
c .

Let u ∈ Xk be such that ‖u‖c ≤ 1. Since Xk ⊂ W 1,p
0 (Ω), we have u = 0 in ∂Ω.

From the continuity of M , there exists C > 0 such that

Ip(u) =
1

p
M̂(‖u‖pc)−

∫
Ω

F (x, u)dx−
∫
∂Ω

G(x, u)dσ

≤ 1

p

∫ ‖u‖pc
0

M(s)ds− C(k)‖u‖α+1
c

≤ C

p
‖u‖pc − C(k)‖u‖α+1

c ,

for all u ∈ Xk. Take

R = min
{

1,
(pC(k)

C

) 1
p−(α+1)

}
and consider S = {u ∈ Xk : ‖u‖ = s}, with 0 < s < R. Once 1 ≤ α+ 1 < p, for all
u ∈ S, we obtain

Ip(u) ≤ sα+1
[C
p
sp−(α+1) − C(k)

]
< 0 = Ip(0),

which implies supS Ip(u) < 0 = Ip(0). As Xk and Rk are isomorphic and S and
Sk−1 are homeomorphic, we conclude that γ(S) = k. �

Since Ip ∈ C1(W 1,p(Ω),R) is coercive, even, satisfies the Palais-Smale condition,
and, from Lemma 5.2, satisfies the condition (ii) of Proposition 3.5, we conclude
that Ip has at least k pairs of different critical points. It follows from the arbitrary
of k that Ip infinitely many critical points.

Proof of Theorem 2.3. The proof is analogous to that of Theorem 2.1. By using
Lemmas 3.8 and 4.2 we can apply Theorem 3.6 to obtain a weak solution of (1.1).
Similar to proof of the Lemma 5.1, we have that the solution is nontrivial. �

Proof of Theorem 2.4. By using Lemmas 3.8, 4.2, 5.2, and Proposition 3.5, the
proof of Theorem 2.4 follows analogously to the proof of Theorem 2.2. �
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[25] J. Necǎs; Direct methods in the theory of elliptic equations, Springer-Verlag Berlin Heidelberg,
2012.

Mateus Balbino Guimarães
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