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BIFURCATION AND STABILITY OF A DIFFUSIVE SIRS

EPIDEMIC MODEL WITH TIME DELAY

BOUNSANONG SOUNVORAVONG, SHANGJIANG GUO, YUZHEN BAI

Abstract. In this article, we study a reaction-diffusion system for a SIRS

epidemic model with time delay and nonlinear incidence rate. On the one hand,
we study the existence and stability of the disease-free equilibrium, endemic

equilibria and Hopf bifurcation, by analyzing the characteristic equations. On

the other hand, we establish formulas determining the direction and stability
of the bifurcating periodic solutions.

1. Introduction

Mathematical modelling in epidemiology provides us with an understanding of
the mechanisms which impact and influence the spread of diseases and in the process
advances the possibilities for control strategies. The earliest mathematical model,
concerning epidemic problem, was probably introduced by Bernoullin in 1760 to
describe the effect of cow-pox inoculation on the spread of smallpox. Epidemic
is caused by the pathogen, which can spread from people to people, people to
animals, and animals to animals. Because it can make a range of biological reduce
or lode labor, death and spread rapidly in a certain period of time. It caused the
scientists and mathematicians widespread attention. Epidemic model [1, 2, 7, 9,
13, 14, 15, 17, 19] is a basic differential equation model describing the interaction
between species. To describe the effects of disease latency or immunity, the delay is
often incorporated in such models. Kyrychko and Blyuss [10] proposed the following
delayed SIRS model which incorporates immunity and a general nonlinear incidence
rate

Ṡ(t) = µ− dS(t)− βf(I(t))S(t) + γe−dτI(t− τ),

İ(t) = βf(I(t))S(t)− (d+ γ)I(t),

Ṙ(t) = γI(t)− γe−dτI(t− τ)− dR(t),

(1.1)

where S(t), I(t) and R(t) denote the densities of the susceptible population, in-
fective population and the population who has been removed from the possibility
of infection through the temporary immunity, respectively, µ is the recruitment
rate of the susceptible population by birth or immigration, d is the natural death
rate, β is the infection rate from the suspectable class to the infected class, τ is
the length of the immunity period, γ is the recovery rate, the term γe−dτI(t − τ)
indicates that the individuals have survived from natural death in a recovery pool
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before becoming susceptible again. It is assumed that all newborns are susceptible
and there are no disease-caused deaths. All parameters in system (1.1) are positive
except τ ≥ 0. The nonlinear incidence rate which is given by the function f(I) is
assumed to satisfy the following properties:

f(0) = 0, lim
I→+∞

f(I) = c <∞, f ′(I) > 0, f ′′(I) < 0 ∀I ≥ 0 . (1.2)

In the case of linear incidence rate f(I) = I, Kyrychko and Blyuss [10] obtained
some sufficient conditions ensuring the globally asymptotical stability of the en-
demic equilibrium for system (1.1) by choosing some Lyapunov functional, and
also revealed the existence of periodic solutions by numerical simulations. Wen
and Yang [16] derived some sufficient conditions for the local/global asymptotic
stability of the endemic equilibrium of system (1.1) with f(I) = I. Jiang and Wei
[8] investigated the existence of Hopf bifurcations at the endemic equilibrium for
system (1.1) with the nonlinear incidence rate f(I) = I/(1 + I). By using the basic
reproduction number and an iteration technique, Xu, Ma, and Wang [18] investi-
gated the local asymptotic stability of the disease-free equilibrium and the endemic
equilibrium and the global asymptotic stability of the endemic equilibrium for sys-
tem (1.1) with the nonlinear incidence rate f(I) = I/(1 + αI), which was used by
Capasso and Serio [3] to represent a crowding effect or protection measure in mod-
eling the cholera epidemics in Bari in 1973. Obviously, this incidence rate seems
more reasonable than the bilinear incidence rate, because it includes the behavioral
change and crowding effect of the infective individuals and prevents the unbound-
edness of the contact rate by choosing suitable parameters. In particular, Liu et
al. [12] proposed a nonlinear saturated incidence function f(I) = I l/(1 + αIh) to
model the effect of behavioral changes to certain communicable diseases, where βI l

describes the infection force of the disease, 1/(1 + αIh) measures the inhibition
effect from the behavioral change of the susceptible individuals when the number
of infectious individuals increases, l and h are all positive constants, and α is a
nonnegative constant.

When the densities of the susceptible population, infective population and re-
moved population are spatially inhomogeneous in a bounded domain with smooth
boundary Ω ⊆ RN (N ≥ 1), instead of the ordinary delay differential system (1.3),
one gets the following reaction-diffusion system

St −∆S = µ− dS − βf(I)S + γe−dτI(x, t− τ), in Ω,

It −∆I = βf(I)S − (d+ γ)I, in Ω,

Rt −∆R = γI − γe−dτI(x, t− τ)− dR, in Ω,

∂S

∂n
=
∂I

∂n
=
∂R

∂n
= 0, on ∂Ω,

(1.3)

where parameters µ, d, β, γ, and τ are the same as system (1.1), the nonlinear
incidence rate f(I) satisfies (1.2), ∆ denotes the Laplacian operator on RN , n is
the outward unit normal vector on ∂Ω. The homogeneous Neumann boundary
condition means that the two species have zero flux across the boundary ∂Ω. The
initial conditions of system (1.3) are given as

S(·, 0) = S0 ∈ C+(Ω), R(·, 0) = R0 ∈ C+(Ω),

I(·, θ) = I0(·, θ) ∈ C+(Ω) for all θ ∈ [−τ, 0],
(1.4)
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where C+(Ω) is the space of nonnegative continuous functions. In this paper we
can also define a so-called basic reproduction number R0 such that the disease-free
equilibrium is stable when R0 < 1 and that there exists exactly one endemic equi-
librium when R0 > 1. Since the first two equations of system (1.3) are independent
of the third, in the following, one only considers the subsystem of system (1.3) as
follows:

St −∆S = µ− dS − βf(I)S + γe−dτI(x, t− τ), in Ω,

It −∆I = βf(I)S − (d+ γ)I, in Ω,

∂S

∂n
=
∂I

∂n
= 0, on ∂Ω,

(1.5)

with the initial conditions

S(·, 0) = S0 ∈ C+(Ω), I(·, θ) = I0(·, θ) ∈ C+(Ω) for all θ ∈ [−τ, 0],

satisfying I0(x, 0) > 0.
This article is organized as follows. In section 2, we consider the nonnegativity

and boundedness of the solutions of system (1.5). In Section 3, we study the global
asymptotical stability of the disease-free equilibrium of system (1.5). In Section 4,
we investigate the local asymptotical stability of the endemic equilibrium of system
(1.5) and the existence of local Hopf bifurcations. In Section 5, we show the Hopf
bifurcation direction and the stability of the bifurcating periodic solutions. At last,
some numerical simulations are carried out to support our theoretic results.

2. Nonnegativity and boundedness

From biological meaning, it is necessary to show that all solutions of system
(1.3) is nonnegative and bounded for all t ≥ 0. Generally speaking, the existence
of a local solution of (1.3) and (1.4) is guaranteed, but the existence of a global
solution for (1.3) and (1.4) depends on the fact that the solution does not become
infinite in a finite time. Since the growth functions are sufficiently smooth, the
standard parabolic equation theory (see Ladyzenskaja, Solonnikov and Uralceva
[11]) implies that the solution of (1.3) and (1.4) is unique and continuous for all
t ≥ 0 in Ω. Furthermore, we have the following result.

Lemma 2.1. For each initial value (S0, I0, R0) satisfying (1.4), system (1.3) has
a unique solution (S, I,R) ∈ C2,1(Ω × R+,R3

+) satisfying lim supt→+∞N(x, t) ≤
µ/d for all x ∈ Ω, where N(x, t) = S(x, t) + I(x, t) + R(x, t). In addition, D =
{(S, I,R) ∈ R3

+ : 0 ≤ S + I + R ≤ µ/d} attracts all solutions of system (1.3) and
is positive forward invariant.

Proof. Let [0, tmax) be the maximal existence interval of the solution (S, I,R). For
all t ∈ [0, τ ] ∩ [0, tmax), we have

St −∆S = µ− dS − βf(I)S + γe−dτI0(x, t− τ), in Ω,

It −∆I = βf(I)S − (d+ γ)I, in Ω,

Rt −∆R = γI − γe−dτI0(x, t− τ)− dR, in Ω,

∂S

∂n
=
∂I

∂n
=
∂R

∂n
= 0, on ∂Ω.

(2.1)

Using the strong maximum principle for parabolic equations, it follows that S(x, t) ≥
0, I(x, t) ≥ 0, and R(x, t) ≥ 0 for t ∈ [0, τ ] ∩ [0, tmax) and x ∈ Ω. Hence, by induc-
tion, we have S(x, t) ≥ 0, I(x, t) ≥ 0, and R(x, t) ≥ 0 for t ∈ [0, tmax) and x ∈ Ω.
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For t ∈ [0, tmax) and x ∈ Ω,

Nt −∆N = µ− dN.

This implies that every solution (S, I,R) of system (1.3) with initial value (S0, I0, R0)
satisfying (1.4) is bounded for t ∈ [0, tmax). Therefore, it foloows from continuation
theorem of solutions for functional differential equations that the maximal existence
interval of the solution (S(x, t), I(x, t), R(x, t)) of system (1.3) is [0,+∞). More-
over, (S(x, t), I(x, t), R(x, t)) is nonnegative and bounded on [0,+∞). Clearly, we
have lim supt→+∞N(x, t) ≤ µ/d for all x ∈ Ω. Using a similar argument, we see
that the solution (S(x, t), I(x, t), R(x, t)) of system (1.3) is positive on [0,+∞), if
S0 > 0 and I0 > 0. Finally, it is easy to show that D is a positively invariant set.
This completes the proof. �

3. Disease-free steady-state solution

To investigate the local stability of the positive homogeneous steady-states of
model (1.3), it suffices to discuss model (1.5). Let 0 = σ0 < σ1 < · · · < σn < · · ·
with limn→∞ σn = +∞ be the eigenvalues of the linear operator −∆ subject to
the homogeneous boundary condition ∂

∂nu = 0 on ∂Ω. Let S(λj) be the eigenspace
associated with σj with multiplicity nj ≥ 1. Let φjk, 1 ≤ k ≤ nj , be the normalized
eigenfunctions corresponding to σj then the set {φjk| j ≥ 0, 1 ≤ k ≤ nj} forms a

complete orthonormal basis in the Lebesgue space L2(Ω) of integrable functions
defined on Ω, φ0(x) > 0 for all x ∈ Ω. It follows that there exists an nj ×nj matrix
Bj = (bjks) such that −∆Φj = BjΦj , where Φj = (φj1, φj2, . . . , φjnj

)T and the
only eigenvalue of Bj is σj (also see [4, 20]).

It can be seen that system (1.5) has always a disease-free equilibrium E0(µ/d, 0).
The linearization of system (1.5) near E0 is

St −∆S = −dS − µβ

d
f ′(0)I + γe−dτI(x, t− τ), in Ω,

It −∆I =
µβ

d
f ′(0)I − (d+ γ)I, in Ω,

∂S

∂n
=
∂I

∂n
=
∂R

∂n
= 0, on ∂Ω,

(3.1)

If (3.1) has a solution of the form u(x, t) = P (x)eλt, then we have[
λ−∆ + d µβ

d f
′(0)− γe−(d+λ)τ

0 λ−∆ + d+ γ − µβ
d f
′(0)

]
P = 0 (3.2)

Substituting u =
∑∞
j=0 ujΦj with uj = (uj1, uj2, . . . , ujnj

) and ujk = (u1
jk, u

2
jk)T ∈

C2 for k ∈ {1, 2, . . . , nj} into (3.2) yields[
λ−∆ + d µβ

d f
′(0)− γe−(d+λ)τ

0 λ−∆ + d+ γ − µβ
d f
′(0)

]
ujΦj =

[
0
0

]
for all j ∈ N0; that is, Mj(λ)uj = 0 for all j ∈ N0, where

uj = (u1
j1, . . . , u

1
jnj
, u2
j1, . . . , u

2
jnj

)T ∈ C2nj ,

Mj(λ) =

[
(λ+ d)Id +BTj [µβd f

′(0)− γe−(d+λ)τ ]Id

0 [λ+ d+ γ − µβ
d f
′(0)]Id +BTj

]
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, This implies that for some j ∈ N0, uj 6= 0 if and only if detMj(λ) = 0; that is,
Pj(λ) = 0, where

Pj(λ) := (λ+ σj + d)[λ+ σj + d+ γ − µβ

d
f ′(0)]. (3.3)

Obviously, Pj(·) has two zeros −d−σj and µβ
d f
′(0)−d−γ−σj . Thus, the steady-

state solution E0 is locally asymptotically stable if µβ
d f
′(0) − d − γ < 0 and is

unstable if there exists some n ∈ N∪{0} such that µβ
d f
′(0)− d− γ > 0. Define the

basic reproduction number as

R0 =
µβf ′(0)

d(d+ γ)
.

Hence one can obtain the following theorem.

Theorem 3.1. For all τ ≥ 0, the disease-free steady-state solution E0 of system
(1.5) is locally asymptotically stable if R0 < 1, and is unstable if R0 > 1.

In what follows, we consider the global asymptotic stability of E0 of system (1.5)
when R0 < 1. For this purpose, we just need to consider the global attractivity of
E0. Since D is the attractive set and positively forward invariant for system (1.3),
hence we just consider system (1.5) in

D1 = {(S, I) ∈ R2
+ : 0 ≤ S + I ≤ µ/d}.

Define the Lyapunov functional

V (S(x, t), I(x, t)) =

∫
Ω

[
S(x, t)− µ

d
− µ

d
ln
dS(x, t)

µ
+ I(x, t)

]
dx.

Obviously, V (µ/d, 0) = 0, and V is positive definite with respect to (S, I) ∈ R2
+

and has the property V (S, I)→ +∞ as ‖(S, I)‖ → +∞. The derivative of V along
the solutions of system (1.5) is

Vt(S(x, t), I(x, t))

=

∫
Ω

[1− µ

dS(x, t)
][µ− dS(x, t)− βf(I(x, t))S(x, t) + γe−dτI(x, t− τ)]dx

+

∫
Ω

[βf(I(x, t))S(x, t)− (d+ γ)I(x, t)]dx

+

∫
Ω

[1− µ

dS
]∆S(x, t)dx+

∫
Ω

∆I(x, t)dx

=

∫
Ω

[1− µ

dS(x, t)
][µ− dS(x, t) + γe−dτI(x, t− τ)]dx

+
1

d

∫
Ω

[µβf(I(x, t))− (d+ γ)dI(x, t)]dx

−
∫

Ω

µ

dS2
|∇S(x, t)|2dx−

∫
Ω

|∇I(x, t)|2dx

It follows from S(x, t) < µ/d and f ′′(I) ≤ 0 for all I ≥ 0 that f(I(x, t)) ≤
f ′(0)I(x, t) for all (x, t) ∈ Ω× [0,+∞), and hence that

Vt(S(x, t), I(x, t)) ≤
∫

Ω

[1− µ

dS(x, t)
][γe−dτI(x, t− τ)]dx.
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This implies that Vt(S(x, t), I(x, t)) ≤ 0 along an orbit (S(x, t), I(x, t)) of system
(1.5) with any non-negative initial value D1 when R0 < 1. This, together with
Lemma 2.1 and Theorem 3.1, implies that E0 is globally asymptotically stable if
R0 < 1.

Theorem 3.2. For all τ ≥ 0, the disease-free steady-state solution E0 of system
(1.5) is globally asymptotically stable if R0 < 1.

4. Endemic steady-state solution

In this section, we shall study the existence and stability of the endemic steady-
state solution E∗(S∗τ , I

∗
τ ), where S∗τ and I∗τ satisfy

S∗τ =
(d+ γ)I∗τ
βf(I∗τ )

,
d(d+ γ)I∗τ
βf(I∗τ )

= µ+ [γe−dτ − d− γ]I∗τ .

Define H : R2
+ → R by

H(τ, x) = µ− d(d+ γ)x

βf(x)
+ [γe−dτ − d− γ]x.

In view of assumption (1.2), we have H(τ,+∞) = −∞, H(τ, 0) > 0 when R0 > 1,
and Hx(τ, x) < 0 and Hτ (τ, x) < 0 for all τ ≥ 0 and x ≥ 0. Therefore, we obtain
the following result.

Lemma 4.1. If R0 > 1, system (1.5) has exactly one endemic equilibrium E∗(S∗τ , I
∗
τ ).

Moreover, both S∗τ ∈ [S∗0 , S
∗
∞) and I∗τ ∈ [I∗0 , I

∗
∞) are monophonically increasing with

respective to τ ≥ 0, where

(S∗0 , I
∗
0 ) = lim

τ→0
(S∗τ , I

∗
τ ), (S∗∞, I

∗
∞) = lim

τ→∞
(S∗τ , I

∗
τ ).

The linearization of (1.5) at the steady-state solution E∗ takes the form

St −∆S = −dS − βf ′(I∗τ )S∗τ I − βf(I∗τ )S + γe−dτI(x, t− τ), in Ω,

It −∆I = βf ′(I∗τ )S∗τ I + βf(I∗τ )S − (d+ γ)I, in Ω,

∂S

∂n
=
∂I

∂n
= 0, on ∂Ω,

(4.1)

The characteristic equation of system (4.1) is

Qn(τ, λ) := det

[
λ+ σn + d+ βf(I∗τ ) βf ′(I∗τ )S∗τ − γe−(d+λ)τ

−βf(I∗τ ) λ+ σn + d+ γ − βf ′(I∗τ )S∗τ

]
= 0

for n ∈ N0. In fact, we have

Qn(τ, λ) = λ2 + pn(τ)λ+ qn(τ) + r(τ)e−λτ . (4.2)

with

pn(τ) = 2σn + 2d+ γ + βf(I∗τ )− βf ′(I∗τ )S∗τ ,

qn(τ) = [σn + d+ βf(I∗τ )][σn + d+ γ − βf ′(I∗τ )S∗τ ] + β2f(I∗τ )f ′(I∗τ )S∗τ ,

rn(τ) = −βγe−dτf(I∗τ ).

We need to seek the necessary and sufficient condition ensuring that every zero
of Qn(τ, ·) has negative real parts. For this purpose, we introduce the following
results.

Lemma 4.2. (i) d+ γ + βf(I∗τ ) > βf ′(I∗τ )S∗τ for all τ ≥ 0;
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(ii) If [d+γ−βf(x)]f(x) > (d+γ)xf ′(x) for all x ∈ [I∗0 , I
∗
∞) then pn(τ), qn(τ),

and rn(τ) are all monotonically increasing with respect to τ ≥ 0.

Proof. It follows from (1.2) that f(x) ≥ xf ′(x) for all x ≥ 0 and hence

d+ γ + βf(x)

d+ γ
· f(x)

x
> f ′(x) for x > 0,

which implies

d+ γ + βf(I∗τ )

βS∗τ
=
d+ γ + βf(I∗τ )

d+ γ
· f(I∗τ )

I∗τ
> f ′(I∗τ );

that is, d+γ+βf(I∗τ ) > βf ′(I∗τ )S∗τ for all τ ≥ 0. If [d+γ−βf(x)]f(x) > (d+γ)xf ′(x)
for all x ∈ [I∗0 , I

∗
∞) then βf(x) − (d + γ)xf ′(x)/f(x) is monotonically increasing

with respect to x ∈ [I∗0 , I
∗
∞), which implies that pn(τ), qn(τ), and rn(τ) are all

monotonically increasing with respect to τ ≥ 0. The proof is complete. �

In view of Lemma 4.2, we have

qn(τ) + rn(τ) > 0, qn(τ)− rn(τ) > 0 (4.3)

for all τ ≥ 0, which implies that Qn(τ, ·) has no zero 0 for all τ ≥ 0. Moreover,
it follows from pn(0) > 0 and qn(0) + rn(0) > 0 that Qn(0, ·) has only zeroes
with negative real parts. In the following, we shall investigate the existence of
purely imaginary zeroes ±iω of Qn(τ, ·). Separating the real and imaginary parts
of Qn(τ, iω) = 0 yields

sin τω =
ωpn(τ)

rn(τ)
, cos τω =

ω2 − qn(τ)

rn(τ)
,

and hence

ω4 + [p2
n(τ)− 2qn(τ)]ω2 + q2

n(τ)− r2
n(τ) = 0. (4.4)

It follows from (4.3) that q2
n(τ) > r2

n(τ) for all τ ≥ 0. Note that

[p2
n(τ)− 2qn(τ)]2 − 4[q2

n(τ)− r2
n(τ)] = p4

n(τ)− 4p2
n(τ)qn(τ) + 4r2

n(τ).

Thus, equation (4.4) has no positive solutions ω if either p2
n(τ) > 2qn(τ) or p2

n(τ) <
2qn(τ) and p4

n(τ) + 4r2
n(τ) < 4p2

n(τ)qn(τ). If p2
n(τ) < 2qn(τ) and p4

n(τ) + 4r2
n(τ) >

4p2
n(τ)qn(τ); that is,

p2
n(τ) < 2qn(τ)− 2

√
q2
n(τ)− r2

n(τ) (4.5)

then (4.4) has exactly two positive real solutions ω±n (τ), where

ω±n (τ) =
1

2

(
4qn(τ)− 2p2

n(τ)± 2
√
p4
n(τ)− 4p2

n(τ)qn(τ) + 4r2
n(τ)

)1/2

.

Define ϑ : R+ → R by

ϑ(τ) = p2
n(τ)− 2qn(τ) + 2

√
q2
n(τ)− r2

n(τ)

Then we have

ϑ′(τ) = 2pn(τ)p′n(τ)− 2q′n(τ) +
2qn(τ)q′n(τ)− 2rn(τ)r′n(τ)√

q2
n(τ)− r2

n(τ)

= 2pn(τ)p′n(τ) +
2q′n(τ)[qn(τ)−

√
q2
n(τ)− r2

n(τ)]− 2rn(τ)r′n(τ)√
q2
n(τ)− r2

n(τ)
.
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This and Lemma 4.2, imply that ϑ′(τ) > 0 for all τ ≥ 0 if [d + γ − βf(x)]f(x) >
(d+ γ)xf ′(x) for all x ∈ [I∗0 , I

∗
∞). In this case, if ϑ(·) has at least one positive real

zero point. Thus, we have the following result.

Lemma 4.3. Let In = {τ ≥ 0 : p2
n(τ) < 2qn(τ)−2

√
q2
n(τ)− r2

n(τ)} then In+1 ⊆ In
for all n ∈ N0. Furthermore, for each n ∈ N0, In is either an empty set or a
connected subinterval of R+ if [d + γ − βf(x)]f(x) > (d + γ)xf ′(x) for all x ∈
[I∗0 , I

∗
∞).

Define G±n : In → R as

G±n (τ) =
ω±(τ)pn(τ)

[ω±(τ)]2 − qn(τ)
− tan[τω±(τ)]

for τ ∈ In. It follows from (1.2) that pn(τ), qn(τ), and rn(τ) are all bounded for
all τ ≥ 0. This, implies that G±n has at least one zero in In when In 6= ∅ and
[d+ γ − βf(x)]f(x) > (d+ γ)xf ′(x) for all x ∈ [I∗0 , I

∗
∞). Therefore, we obtain the

following result on the existence of Hopf bifurcations.

Lemma 4.4. (i) For all τ ∈ R+ \ In, Qn(τ, ·) has no purely imaginary zeros,
and hence all zeros of Qn(τ, ·) have negative real parts;

(ii) If G+
n (·) (or G−n (·)) has a zero τ∗ ∈ In then Qn(τ∗, ·) has a purely imaginary

zero iω+(τ∗) (respectively, iω−(τ∗)).

Thus, we obtain the following result.

Theorem 4.5. Assume that R0 > 1.

(i) The endemic equilibrium E∗ of model (1.5) is asymptotically stable for all
τ ∈ R+ \ I0;

(ii) If I0 6= ∅ and [d + γ − βf(x)]f(x) > (d + γ)xf ′(x) for all x ∈ [I∗0 , I
∗
∞),

then the endemic equilibrium E∗ is asymptotically stable for all τ ∈ [0, τ∗),
and becomes unstable for τ staying in a right neighborhood of τ∗, where τ∗

denotes the minimum of all the zeroes of G±n , n ∈ N0. In addition, system
(1.5) undergoes Hopf bifurcation and a branch of periodic solutions emerge
simultaneously from the endemic equilibrium E∗.

5. Hopf bifurcation

Throughout this section, we assume that

(H1) I0 6= ∅, [d+ γ − βf(x)]f(x) > (d+ γ)xf ′(x) for all x ∈ [I∗0 , I
∗
∞), τ∗ denotes

the minimum of all the zeroes of G±n , n ∈ N0; Moreover, G+
n∗(τ∗) = 0

and σn∗ is a simple eigenvalue σn of the linear operator −∆ subject to the
homogeneous boundary condition ∂

∂nu = 0 on ∂Ω.

Theorem 4.5(ii) tells us that assumption (H1) implies that a family of periodic
solutions bifurcate from the endemic equilibrium (S∗τ , I

∗
τ ) as the delay τ passes

through each critical value τ∗. In this section, we shall study the direction of the
Hopf bifurcation and stability of the bifurcating periodic solutions by using the
normal theory and the center manifold theorem due to Hassard et al. [6].

We first transform the steady state (S∗τ , I
∗
τ ) to the origin via the translation

u1(·, t) = S(·, τ t) − S∗τ and u2(·, t) = I(·, τ t) − I∗τ , and then system (1.5) can be
written as

ut(x, t) = B1(τ)u(x, t) +B2(τ)u(x, t− 1) +G(u(x, t), τ), (5.1)
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where u(x, t) = (u1(x, t), u2(x, t))T ,

B1(τ) = τ

[
∆− d− βf(I∗τ ) −βS∗τ f ′(I∗τ )

βf(I∗τ ) ∆ + βS∗τ f
′(I∗τ )− d− γ

]
,

B2(τ) = τ

[
0 γe−dτ

0 0

]
,

G(u, τ) = τ [βf ′(I∗τ )u1u2 +
1

2
βf ′′(I∗τ )(S∗τu

2
2 + u1u

2)]

[
−1
1

]
+

1

6
βS∗τ f

′′′(I∗τ )u3
2

[
−1
1

]
+ h.o.t.

Denote by Ck = Ck([−1, 0],X2) the Banach space of k-times continuously differ-
entiable mappings from [−1, 0] into X2 equipped with the supremum norm ‖φ‖ =
sup{‖φ(j)(θ)‖X2 : θ ∈ [−1, 0], j = 0, 1, . . . , k} for φ ∈ Ck. For convenience, we write
C0 as C. Let τ = τ∗ + υ then υ = 0 is the Hopf bifurcation value of system (5.1).
Thus, we transform system (5.1) into the following abstract functional differential
equation

du(t)

dt
= Lυ(ut) +G(u(t), τ∗ + υ), (5.2)

where ut ∈ C1, Lυ(φ) = B1(τ∗ + υ)φ(0) +B2(τ∗ + υ)φ(−1). For φ ∈ C, define

Aυφ =

{
dφ(θ)

dθ , θ ∈ [−1, 0),

Lυ(φ), θ = 0 ,

Γυφ =

{
0, θ ∈ [−1, 0),

G(φ, τ∗ + υ), θ = 0 .

Then system (5.2) is equivalent to

u̇t = Aυut + Γυut (5.3)

where ut(θ) = u(t+ θ) for θ ∈ [−1, 0]. For ψ ∈ C1([0, 1],X2), define

A∗ψ(s) =

{
−dψ(s)

ds , s ∈ (0, 1],

B1(τ∗ + υ)ψ(0) +B2(τ∗ + υ)ψ(1), s = 0 ,

and a bilinear inner product

〈〈ψ, φ〉〉 = 〈ψ(0), ψ(0)〉+

∫ 0

−1

〈ψ(ξ + 1), B2(τ∗)φ(ξ)〉dξ (5.4)

for ψ ∈ Dom(A0) and ψ̃ ∈ Dom(A∗0). Then A0 and A∗0 satisfy

〈〈A∗0ψ̃, ψ〉〉 = 〈〈ψ̃,A0ψ〉〉 for ψ ∈ D(A0) and ψ̃ ∈ D(A∗0). (5.5)

Then A0 and A∗0 are adjoint operator. By the discussion in section 3, we know that
±iω∗τ∗ are eigenvalues of A0, where ω∗ = ω+

n (τ∗) or ω∗ = ω−n (τ∗) for some n ∈ N0.
Hence, they are also eigenvalues of A∗0. Now, we need to compute the eigenvector
of A0 and A∗0 corresponding to ±iω∗τ∗ and ±iω∗τ∗, respectively.

Suppose q(θ) = (1, q1)Tϕne
iω∗τ∗θ is an eigenvector of A0 corresponding to iω∗τ∗

then A0q = iω∗τ∗q, where ϕn is the normalized eigenfunction associated with
the simple eigenvalue σn of the linear operator −∆ subject to the homogeneous
boundary condition ∂

∂nu = 0 on ∂Ω. It follows from the definition of A0 that

B1(τ∗)q(0) +B2(τ∗)q(−1) = iω∗τ∗q(0), (5.6)
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and hence that

q1 =
βf(I∗τ∗)

iω∗ + σn + d+ γ − βf ′(I∗τ∗)
.

Similarly, we can obtain the eigenvector q∗(s) = D(1, q∗1)ϕne
iω∗τ∗s of A∗ corre-

sponding to −iω∗τ∗, where

q∗1 =
−iω∗ + σn + d+ βf(I∗τ∗)

βf(I∗τ∗)

and D is chosen to assure 〈q∗(s), q(θ)〉 = 1. In fact, we have

D = [1 +
iω∗ + σn + d+ βf(I∗τ∗)[1 + τ∗γe−(d+iω∗)τ∗

]

iω∗ + σn + d+ γ − βf ′(I∗τ∗)
]−1.

Next we compute the coordinate to describe the center manifold C0 at υ = 0.
Let ut be the solution of (5.3) when υ = 0 define

z(t) = 〈〈q∗, ut〉〉, W (t, θ) = ut(θ)− 2 Re{z(t)q(θ)}. (5.7)

On the center manifold C0, we have W (t, θ) = W (z(t), z̄(t), θ), where

W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · . (5.8)

Here, z and z̄ are local coordinate for center manifold C0 in the direction of q∗ and
q̄∗. Note that W is real if ut is real. We only consider real solutions. For solution
ut ∈ C0 of (5.3), since υ = 0, we have

ż(t) = iω∗τ∗z + 〈q∗(0), G(W (z, z̄, 0) + 2 Re{zq(θ)}, τ∗)〉.

We rewrite this equation as

ż(t) = iω∗τ∗z(t) + g(z, z̄),

where
g(z, z̄) = 〈q∗(0), G(W (z, z̄, 0) + 2 Re{zq(θ)}, τ∗)〉

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ . . . .

(5.9)

It follows from (5.7) and (5.8) that

ut(θ) = W (t, θ) + 2 Re{z(t)q(θ)}

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, q)T eiω

∗τ∗θz + (1, q̄)T eiω
∗τ∗θ z̄ + · · · .

(5.10)
Comparing the coefficients with those in (5.9), we have

g20 = (q̄∗1 − 1)τ∗D̄[2βf ′(I∗τ∗)q1 + βf ′′(I∗τ∗)S∗τ∗q2
1 ],

g11 = (q̄∗1 − 1)τ∗D̄[2βf ′(I∗τ∗) Re(q1) + βf ′′(I∗τ∗)S∗τ∗ |q1|2],

g02 = (q̄∗1 − 1)τ∗D̄[2βf ′(I∗τ∗)q̄1 + βf ′′(I∗τ∗)S∗τ∗ q̄2
1 ],

g21 = (q̄∗1 − 1)τ∗D̄βf ′(I∗τ∗)[2W
(2)
11 (0) +W

(2)
20 (0) + q̄1W

(1)
20 (0)

+ 2q1W
(1)
11 (0)] + (q̄∗1 − 1)τ∗D̄βf ′′(I∗τ∗)S∗τ∗ [q̄1W

(2)
20 (0) + 2q1W

(2)
11 (0)]

+ (q̄∗1 − 1)τ∗D̄[βf ′′(I∗τ∗)
(
2|q1|2 + q2

1

)
+ βf ′′′(I∗τ∗)S∗τ∗q1|q1|2].

(5.11)
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Since W20(θ) and W11(θ) are contained in g21, we still need to compute them. From
(5.3) and (5.8), we have

Ẇ = u̇t − żq − ˙̄zq̄

=

{
A0W − 2 Re{g(z, z̄)q}+G(W + Re(zq), τ∗), θ = 0,

A0W − 2 Re{g(z, z̄)q}, θ ∈ [−1, 0),

=: A0W +H(z, z̄, θ),

(5.12)

Here,

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ . . . . (5.13)

Substituting the corresponding series into (5.12) and comparing the coefficients, we
have

(A0 − iω∗τ∗)W20(θ) = −H20(θ), A0W11(θ) = −H11(θ). (5.14)

From (5.12), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (5.15)

Comparing the coefficients with those in (5.13) gives

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (5.16)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (5.17)

From the definition of A0 and (5.14) and (5.16), we obtain

Ẇ20(θ) = 2iω∗τ∗W20(θ) + g20q(θ) + ḡ02q̄(θ).

and hence

W20(θ) =
ig20

ω∗τ∗
q(0)eiω

∗τ∗θ +
iḡ02

3ω∗τ∗
q̄(0)e−iω

∗τ∗θ + E1e
2iω∗τ∗θ, (5.18)

where E1 = (E
(1)
1 , E

(2)
1 )T is a constant vector. Similarly, from (5.14) and (5.17),

we have

W11(θ) = − ig11

ω∗τ∗
q(0)eiω

∗τ∗θ +
iḡ11

ω∗τ∗
q̄(0)e−iω

∗τ∗θ + E2, (5.19)

where E2 = (E
(1)
2 , E

(2)
2 )T is a constant vector.

In what follows, we shall seek the values of E1 and E2. From the definition of
A0 and (5.14), we have

L0W20 = 2iω∗τ∗W20(0)−H20(0), (5.20)

L0W11 = −H11(0). (5.21)

By (5.12), we know when that θ = 0,

H(z, z̄, θ) = −2 Re{g(z, z̄)q}+G(W + Re(zq), τ∗).

That is,
H20(0) = −g20q(0)− ḡ02q̄(0) +D1ϕ

2
n,

H11(0) = −g21q(0)− ḡ11q̄(0) +D2ϕ
2
n,

(5.22)

where

D1 = τ∗[2βf ′(I∗τ∗)q1 + βf ′′(I∗τ∗)S∗τ∗q2
1 ]

[
−1
1

]
,

D2 = τ∗[2βf ′(I∗τ∗) Re(q1) + βf ′′(I∗τ∗)S∗τ∗ |q1|2]

[
−1
1

]
.
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Substituting (5.18) and (5.22) into (5.20), and (5.19) and (5.22) into (5.21) we
obtain[

∆− d− βf(I∗τ )− 2iω∗ −βS∗τ f ′(I∗τ ) + γe−dτ
∗

βf(I∗τ ) ∆ + βS∗τ f
′(I∗τ )− d− γ − 2iω∗

]
E1 = D1ϕ

2
n,

and [
∆− d− βf(I∗τ ) −βS∗τ f ′(I∗τ ) + γe−dτ

∗

βf(I∗τ ) ∆ + βS∗τ f
′(I∗τ )− d− γ

]
E2 = D2ϕ

2
n.

It follows that

E1 =

[
∆− d− βf(I∗τ )− 2iω∗ −βS∗τ f ′(I∗τ ) + γe−dτ

∗

βf(I∗τ ) ∆ + βS∗τ f
′(I∗τ )− d− γ − 2iω∗

]−1

D1ϕ
2
n,

and

E2 =

[
∆− d− βf(I∗τ ) −βS∗τ f ′(I∗τ ) + γe−dτ

∗

βf(I∗τ ) ∆ + βS∗τ f
′(I∗τ )− d− γ

]−1

D2ϕ
2
n.

Thus, we can determine W20(θ) and W11(θ) from (5.18) and (5.19). Furthermore,
we can compute g21 by (5.11). Thus we can compute the following values [5, 6]:

C1(0) =
i

2ω∗τ∗
[
g11g20 − 2|g11|2 −

|g02|2

2

]
+
g21

2
,

µ2 = − Re{C1(0)}
Re{dλ(τ∗)

dτ }
, β2 = 2 Re{C1(0)},

T2 = −
Im{C1(0)}+ µ2 Im{dλ(τ∗)

dτ }
ω∗τ∗

,

which determine the qualities of bifurcating periodic solution on the center manifold
at the critical values τ∗. Therefore, we obtain the following results.

Theorem 5.1. µ2 determines the directions of the Hopf bifurcation: if µ2 > 0
(respectively, µ2 < 0), then the Hopf bifurcation is supercritical (respectively, sub-
critical) and the bifurcating periodic solutions exist for τ > τ∗ (respectively, τ < τ∗);
β2 determines the stability of the bifurcating periodic solutions: the bifurcating pe-
riodic solutions are stable (respectively, unstable) if β2 < 0 (respectively, β2 > 0);
and T2 determines the period of bifurcating periodic solutions: the period increase
(respectively, decrease) if T2 > 0 (respectively, T2 < 0).

6. Conclusion and numerical simulations

In this article, an SIRS system with time delay and the general nonlinear in-
cidence rate is considered. The positivity and boundedness of solutions are in-
vestigated. The basic reproductive number, R0, is derived. If R0 < 1, then the
disease-free equilibrium E0(µ/d, 0) is globally asymptotically stable and the dis-
ease dies out. If R0 > 1, then there exists a unique endemic equilibrium E∗(S∗τ , I

∗
τ )

whose locally asymptotical stability and the existence of local Hopf bifurcations are
established by analyzing the distribution of the characteristic values. An explicit
algorithm for determining the direction of Hopf bifurcations and the stability of
the bifurcating periodic solutions is derived by using the center manifold and the
normal form theory. In what follows, we present some numerical simulations to
support and supplement the our analytic results.

We first consider system (1.5) with f(I) = I, µ = 0.01 , d = 0.01, γ = 18.05,
Ω = (0, 3π), and initial values S(x, t) = 0.1+0.05 cos(x), I(x, t) = 0.1+0.05 cos(x).
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Choose β = 17, then we have R0 = 0.94 < 1 and hence the disease-free equilibrium
E0 of model (1.5) is asymptotically stable (see Figure 1). Choose β = 20, then
we have R0 = 1.11 > 1 and hence the endemic equilibrium E∗ of model (1.5) is
asymptotically stable (see Figure 2).

Figure 1. The disease-free equilibrium E0 of model (1.5) is
asymptotically stable when f(I) = I and R0 = 0.94 < 1.

Figure 2. The endemic equilibrium E∗ of model (1.5) is asymp-
totically stable when f(I) = I and R0 = 1.11 > 1 .

And then we consider the case where f(I) = 15I
1+I , µ = 0.03, d = 0.4, γ =

25.12, Ω = (0, 3π), and initial values S(x, t) = 0.01 + 0.05 cos(x), I(x, t) = 0.01 +
0.05 cos(x). Choose β = 25, then we have R0 = 1.25 > 1 and hence the endemic
equilibrium E∗ of model (1.5) is asymptotically stable (see Figure 3). Choose
β = 20, then we have R0 = 0.89 < 1 and and hence the disease-free equilibrium E0

of model (1.5) is stable (see Figure 4).
Next we consider system (1.5) for f(I) = 10I

1+I with µ = −0.9, d = 1.7, β = 0.2,

γ = −1.8, Ω = (0, π), and initial values S(x, t) = sin2(x)
75 , I(x, t) = sin2(x)

125 , which
yieldsR0 = 8.47 and satisfies all the conditions given in Theorem 4.5. We can obtain
the positive critical time delay τ∗ = 6.47. Thus, we know that when τ ∈ [0, τ∗), E∗

is asymptotically stable. When τ passes through the critical value τ∗, E∗ loses its
stability and a Hopf bifurcating occurs and a family of periodic solutions bifurcate
from E∗, which can be illustrated in Figures 5 and 6.
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Figure 3. The endemic equilibrium E∗ of model (1.5) is asymp-
totically stable when f(I) = 15I

1+I and R0 = 1.12 > 1.

Figure 4. The disease-free equilibrium E0 of model (1.5) is
asymptotically stable when f(I) = 15I

1+I and R0 = 0.89 < 1.

Figure 5. Solutions of system (1.5) with τ = 5 < τ∗ tend to a
positive steady state.

References

[1] R. M. Anderson, R. M. May; Infection Diseases of Humans: Dynamic and Control, Oxford
University Press, Oxford, 1991.

[2] E. Beretta, T. Hara, W. Ma, Y. Takeuchi; Global asymptotic stability of an SIR epidemic

model with distributed time delay, Nonlinear Anal. 47 (2001) 4107-4115.
[3] V. Capasso, G. Serio; A generalization of the Kermack-McKendrick deterministic epidemic

model, Math. Biosci. 42 (1978), 41-61.



EJDE-2019/45 A DIFFUSIVE SIRS EPIDEMIC MODEL WITH TIME DELAY 15

Figure 6. Solutions of system (1.5) with τ = 11 > τ∗ tend to a
periodically oscillatory orbit.

[4] S. Guo; Patterns in a nonlocal time-delayed reaction-diffusion equation, Zeitschrift Fur Ange-

wandte Mathematik Und Physik, 69 (2018), 10.
[5] S. Guo, J. Wu; Bifurcation Theory of Functional Differential Equations (Springer-Verlag,

New York, 2013).

[6] B. Hassard, D. Kazarino, Y. Wan; Theory and applications of Hopf bifurcation, London
Mathematical Society Lecture Note Series, vol.41, Cambridge University Press, Cambidge

New York, 1981.
[7] H. W. Hethcote, P. Van den Driessche; An SIS epidemic model with variable population size

and a delay, J. Math. Biol., 34 (1995), 177-194.

[8] Z. C. Jiang, J. J. Wei; Stability and bifurcation analysis in a delayed SIR model, Chaos
Solitons Fractals, 35 (2008), 609–619.

[9] W. O. Kermack, A. G. Mckendrick; Contribution to the mathematical theory of epidemics,

Proc. R. Soc. Lond. Ser. A, 115 (1927), 700-721.
[10] Y. N. Kyrychko, K. B. Blyuss; Global properties of a delayed SIR model with temporary

immunity and nonlinear incidence rate, Nonlinear Analysis: Real World Applications, 6

(2005), 495–507.
[11] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva; Linear and Quasilinear Equation of

Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

[12] W. Liu, S. A. Levin, Y. Iwasa; Influence of nonlinear incidence rates upon the behavior of
SIRS epidemiological model, J. Math. Biol., 23 (1986), 187-204.

[13] H. Li, S. Guo; Dynamics of a SIRC epidemiological model, Electronic Journal of Differential
Equations, 2017 (2017), 121, 1-18.

[14] S. Ruan, W. Wang; Dynamical behaviour of an epidemic model with nonlinear incidence
rate, J. Differential Equations, 188 (2003), 135-163.

[15] Y. Wang, S. Guo; An SIS reaction-diffusion model with a free boundary condition and non-
homogeneous coefficients, Discrete and Continuous Dynamical Systems, Series B, 24 (2019),

1627–1652.
[16] L. S. Wen, X. Yang; Global stability of a delayed SIRS model with temporary immunity,

Chaos Solitons & Fractals, 38 (2008), 221–226
[17] D. Xiao, S. Ruan; Global analysis of an epidemic model with nonmonotonic incidence rate,

Math. Biosci. 208 (2007), 419–429.
[18] R. Xu, Z. E. Ma, Z. Wang; Global stability of a delayed SIRS epidemic model with saturation

incidence and temporary immunity, Comput. Math. Appl., 59 (2010), 3211–3221.
[19] X. Zhong, S. Guo, M. Peng; Stability of stochastic SIRS epidemic models with saturated

incidence rates and delay, Stochastic Analysis and Applications, 35 (2017), 1–26.

[20] R. Zou, S. Guo; Bifurcation of Reaction Cross-Diffusion Systems, International Journal of
Bifurcation and Chaos, 27 (2017), 1750049.



16 B. SOUNVORAVONG, S. GUO, Y. BAI EJDE-2019/45

Bounsanong Sounvoravong

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082,

China
Email address: tear1284@hotmail.com

Shangjiang Guo (corresponding author)
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082,

China

Email address: shangjguo@hnu.edu.cn

Yuzhen Bai

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

Email address: baiyu99@126.com


	1. Introduction
	2. Nonnegativity and boundedness
	3. Disease-free steady-state solution
	4. Endemic steady-state solution
	5. Hopf bifurcation
	6. Conclusion and numerical simulations
	References

