INTERPOLATION INEQUALITIES BETWEEN LORENTZ SPACE AND BMO: THE ENDPOINT CASE \((L^{1,\infty}, \text{BMO})\)

NGUYEN ANH DAO, NGUYEN THI NGOC HANH, TRAN MINH HIEU, HUY BAC NGUYEN

Communicated by Jesus Ildefonso Diaz

Abstract. We prove interpolation inequalities by means of the Lorentz norm, BMO norm, and the fractional Sobolev norm. In particular, we obtain an interpolation inequality for \((L^{1,\infty}, \text{BMO})\), that we call the endpoint case.

1. Introduction and statement of main results

The main purpose of this article is to study the interpolation inequalities between the Lorentz space \(L^{p,\alpha}(\mathbb{R}^n)\) and the BMO(\(\mathbb{R}^n\)) space, where \(n \geq 1\). It is known that the interpolation inequalities play a crucial role in studying the boundedness of operators and in studying PDEs, see, e.g. [12, 5, 6, 7, 8]. Thus, such an extension of the inequalities of this type is involved many purposes, for instance: the theory of Marcinkiewicz interpolation; the boundedness of the operators acting on Lorentz spaces (the Hardy-Littlewood maximal function, the Hilbert transform, and the Riesz transform); and the estimates in PDEs.

In this article, we want to prove an interpolation inequality between the Lorentz space \(L^{q,\alpha}(\mathbb{R}^n)\) and BMO(\(\mathbb{R}^n\)), for \(q \geq 1\), and \(\alpha > 0\). And we call the endpoint case when \(q = 1\). Our result is as follows.

Theorem 1.1. Let \(1 \leq q < p\), and \(0 < \alpha < \infty\). Let \(f \in L^{q,\infty}(\mathbb{R}^n) \cap \text{BMO}(\mathbb{R}^n)\). Then

\[
\|f\|_{L^{p,\alpha}(\mathbb{R}^n)} \lesssim \|f\|_{L^{q,\infty}(\mathbb{R}^n)}^{q/p} \|f\|_{\text{BMO}(\mathbb{R}^n)}^{1 - \frac{q}{p}}.
\]

(1.1)

This result extends the recent results in [2, 3]. As a consequence of Theorem 1.1 we obtain an interpolation inequality between \(L^{q,\infty}\) and the critical Sobolev space \(\dot{W}^{s,n/s}(\mathbb{R}^n)\) for \(s \in (0, 1)\).

Corollary 1.2. Let \(1 \leq q < p\), and \(\alpha > 0\). For any \(0 < s < 1\), we have

\[
\|f\|_{L^{p,\alpha}(\mathbb{R}^n)} \lesssim \|f\|_{L^{q,\infty}(\mathbb{R}^n)}^{q/p} \|f\|_{\dot{W}^{s,n/s}(\mathbb{R}^n)}^{1 - \frac{q}{p}}.
\]

(1.2)
Theorem 1.3. Let \(p > 1 \). Then
\[
\|f\|_{L^p(\mathbb{R}^n)} \lesssim \|f^t\|_{L^p(\mathbb{R}^n)},
\]
whenever the right hand side is well-defined.

After that, we denote by
\[
BMO(\mathbb{R}^n) = \{ f \in L^1_{loc}(\mathbb{R}^n) : \|f\|_{BMO(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n} f^t(x) < \infty \}.
\]

Finally, we denote the homogeneous fractional Sobolev space by
\[
\dot{W}^{s,p}(\mathbb{R}^n) = \left\{ f \in \mathcal{S}'(\mathbb{R}^n) : \|f\|_{\dot{W}^{s,p}(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x-y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty \right\},
\]
where \(\mathcal{S}'(\mathbb{R}^n) \) is the dual space of \(\mathcal{S}(\mathbb{R}^n) \) (the Schwartz space). To end this part, we denote \(A \lesssim B \) if \(A \leq cB \), where \(c > 0 \) is a constant.

2. Proof of Theorem 1.1

It suffices to show that (1.1) holds for \(q = 1 \). To start, we prove the following result.

Lemma 2.1. Let \(0 < q < p < r \leq \infty \) and \(\alpha > 0 \). If \(f \in L^{q,\infty}(\mathbb{R}^n) \cap L^{r,\infty}(\mathbb{R}^n) \), then \(f \in L^{p,\alpha}(\mathbb{R}^n) \), and
\[
\|f\|_{L^{p,\alpha}(\mathbb{R}^n)} \lesssim \|f\|_{L^{q,\infty}(\mathbb{R}^n)} \|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{1-\theta},
\]
with \(\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{r} \).

Proof. We rewrite
\[
\|f\|_{L^{p,\alpha}(\mathbb{R}^n)} = p \int_0^{\lambda_0} \lambda^\alpha \left\{ |\{ f > \lambda\}|^{\alpha/p} \frac{d\lambda}{\lambda} + p \int_{\lambda_0}^{\infty} \lambda^\alpha \left\{ |\{ f > \lambda\}|^{\alpha/p} \frac{d\lambda}{\lambda} \right\} \right\},
\]
and
\[
\int_0^{\lambda_0} \lambda^\alpha |\{ f > \lambda\}|^{\alpha/p} \frac{d\lambda}{\lambda} \leq \int_0^{\lambda_0} \lambda^\alpha \left(\frac{\|f\|_{L^{q,\infty}(\mathbb{R}^n)}^q}{\lambda^q} \right)^{\alpha/p} \frac{d\lambda}{\lambda},
\]
and
\[
\int_0^{\lambda_0} \lambda^\alpha |\{ f > \lambda\}|^{\alpha/p} \frac{d\lambda}{\lambda} = \frac{\|f\|_{L^{q,\infty}(\mathbb{R}^n)}^{\alpha q/p}}{\alpha (1-q/p)} \lambda_0^{\alpha(1-q/p)},
\]
which completes the proof.
and
\[
\int_{\lambda_0}^{\infty} \lambda^\alpha \left\{ |f| > \lambda \right\} d\lambda \leq \int_{\lambda_0}^{\infty} \lambda^\alpha \left(\frac{\|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{\alpha r/p}}{\lambda^r} \right) \frac{\alpha p}{\lambda^r} d\lambda \\
= \|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{\alpha r/p} \lambda_0^{\alpha(r/p - 1)}.
\]
\[(2.4)\]

By \((2.2), (2.3)\) and \((2.4)\), we obtain
\[
\|f\|_{L^{p,\infty}(\mathbb{R}^n)}^\alpha \leq p \left(\frac{\|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{\alpha q/p}}{\alpha(1 - q/p)} \lambda_0^{\alpha(1 - q/p)} + \frac{\|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{\alpha r/p}}{\alpha(r/p - 1)} \lambda_0^{\alpha(1 - r/p)} \right).
\]

Now, we take
\[
\lambda_0^{\theta - q} = \frac{\|f\|_{L^{r,\infty}(\mathbb{R}^n)}^\alpha}{\|f\|_{L^{p,\infty}(\mathbb{R}^n)}},
\]
so the proof is complete. \(\square\)

Thanks to Lemma \(2.1\), we have for any \(r > p\)
\[
\|f\|_{L^{p,\infty}(\mathbb{R}^n)} \lesssim \|f\|_{L^{1,\infty}(\mathbb{R}^n)} \|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{1 - \theta},
\]
\[(2.5)\]
where \(\frac{1}{p} = \theta + \frac{1 - \theta}{r} \).

Since \(r > p > 1\), and by \((1.3)\), we obtain
\[
\|f\|_{L^{r,\infty}(\mathbb{R}^n)} \leq \|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{\theta} \|f\|_{L^{r,\infty}(\mathbb{R}^n)}^{1 - \theta} \lesssim \|f\|_{BMO(\mathbb{R}^n)} \|f\|_{L^{p,\infty}(\mathbb{R}^n)}^{\theta} \|f\|_{L^{p,\infty}(\mathbb{R}^n)}^{1 - \theta}.
\]
\[(2.6)\]

Combining \((2.5)\) and \((2.6)\) yields
\[
\|f\|_{L^{p,\infty}(\mathbb{R}^n)} \lesssim \|f\|_{L^{1,\infty}(\mathbb{R}^n)} \left(\|f\|_{BMO(\mathbb{R}^n)} \|f\|_{L^{p,\infty}(\mathbb{R}^n)} \right)^{1 - \theta} \lesssim \|f\|_{L^{1,\infty}(\mathbb{R}^n)} \left(\|f\|_{BMO(\mathbb{R}^n)} \|f\|_{L^{p,\infty}(\mathbb{R}^n)} \right)^{1 - \theta}.
\]

Then
\[
\|f\|_{L^{p,\infty}(\mathbb{R}^n)}^{1 - \frac{\theta}{p}(1 - \theta)} \lesssim \|f\|_{L^{1,\infty}(\mathbb{R}^n)} \|f\|_{BMO(\mathbb{R}^n)}^{(1 - \frac{\theta}{p})(1 - \theta)},
\]
\[
\|f\|_{L^{p,\infty}(\mathbb{R}^n)} \lesssim \|f\|_{L^{1,\infty}(\mathbb{R}^n)} \|f\|_{BMO(\mathbb{R}^n)}^{1 - \frac{1}{p}}.
\]

Thus, the proof is complete.

References

Nguyen Anh Dao
Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Email address: daonguyenanh@tdtu.edu.vn

Nguyen Thi Ngoc Hanh
Le Loi High school, Gia Lai Province, Vietnam
Email address: nguyenthingochanh.thptleloi@gmail.com

Tran Minh Hieu
Luong The Vinh High school, Gia Lai Province, Vietnam
Email address: tranhieukbang@gmail.com

Huy Bac Nguyen
Faculty of Electrical Engineering & Computer Science, Technical University of Ostrava, Czech Republic
Email address: huy.bac.nguyen.st@vsb.cz