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A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES

PAULO CÉSAR CARRIÃO, RAQUEL LEHRER,

OLÍMPIO HIROSHI MIYAGAKI, ANDRÉ VICENTE

Abstract. We consider a Brezis-Nirenberg problem on the hyperbolic space

Hn. By using the stereographic projection, the problem becomes a singular
problem on the boundary of the open ball B1(0) ⊂ Rn. Thanks to the Hardy

inequality, in a version due to Brezis-Marcus, the difficulty involving singular-

ities can be overcame. We use the mountain pass theorem due to Ambrosetti-
Rabinowitz and Brezis-Nirenberg arguments to obtain a nontrivial solution.

1. Introduction

The main purpose of this article is to study the following Brezis-Nirenberg prob-
lem on the hyperbolic space Hn, for n ≥ 3,

−∆Hnu = λuq + u2∗−1 in Hn, (1.1)

where λ > 0 is a real parameter, ∆Hn denotes the Laplace-Beltrami operator on
Hn, and 1 < q < 2∗ − 1, where 2∗ := 2n

n−2 . Hn is the hyperbolic space defined as

Hn = {x ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n − x2

n+1 = −1 and xn+1 > 0}.

The corresponding equation in the Euclidean space arises in geometry and physics
problems, and the above equation is a natural generalization of the Brezis-Nirenberg
equation, introduced in the beautiful paper [13]. In the past years, many authors
have n treated this type of equations, in the Euclidean space, extending or comple-
menting it in several directions. We would like to cite the papers [1, 21, 29], as well
as the survey papers [11, 24, 28].

A result similar to the one in [13] for a Euclidean space, was obtained in [25]
for the hyperbolic space. More exactly, the author discussed problem (1.1) in a
bounded domain of Hn with q = 1 (homogeneous case). Also for the homogeneous
case of the above problem, in [20] it were studied the existence and nonexistence
of solutions and of an entire solution, i.e. a solution that belongs to the closure of
C∞c (Hn). We would like to mention [4, 7] for the existence of radial solutions, and
[17, 18] for sign changing solutions and nondegeneracy properties of solutions.

Some eigenvalue problems in an unbounded domain on the hyperbolic space have
been studied in [9], and some supercritical problems in [19]. We also mention the
papers [3, 5, 6] which studied problem (1.1) in the sphere Sn−1.
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We use the stereographic projection E : Hn → Rn, where each point P ′ ∈ Hn
is projected to P ∈ Rn, where P is the intersection of the straight line connecting
P ′ and the point (0, . . . , 0,−1). More exactly, we have the explicit projections
G : Rn → Hn and G−1 : Hn → Rn given by

G(x) = (xp(x), (1 + |x|2)p/2), G−1(y) =
1

yn+1
y, x, y ∈ Rn,

where p(x) = 2
1−|x|2 . This projection takes Hn into the open ball B1(0) ⊂ Rn

(see [23, 26]). Considering B1(0) endowed with the Riemannian metric g given
by gij = p2δij (see [17, 18, 25]) the gradient and the Laplace-Beltrami operator
corresponding to this metric are given by

∇Hnu =
∇u
p
, ∆Hnu = p−ndiv(pn−2∇u) = p−2∆ +

(n− 2)

p
〈x,∇〉.

Therefore, if u is a solution of (1.1), then v, defined by v = p
n−2
2 u, satisfies the

problem

−∆v +
n(n− 2)

4
p2v = λpαvq + v2∗−1, in B1(0)

v = 0, on ∂B1(0),
(1.2)

where α = n− (q + 1)n−2
2 .

From now on, we will consider Ω := B1(0). We denote by H1
0,r(Ω) the subspace

of H1
0 (Ω) of the radial functions which is endowed with the norm given by ‖v‖ =

‖∇v‖2, where ‖ · ‖2 is the usual norm of L2(Ω). Since the Euclidean sphere with
center at the origin 0 ∈ RN is also a hyperbolic sphere with center at the origin
0 ∈ Hn, H1

0,r(Ω) also can be seen as the subspace of H1
0 (Ω) consisting of hyperbolic

radial functions; see [7, Appendix].
We have the following functional I : H1

0,r(Ω)→ R associated with problem (1.2),

I(v) =
1

2

∫
Ω

|∇v|2 +
n(n− 2)

8

∫
Ω

p2v2 − λ

q + 1

∫
Ω

pαvq+1 − 1

2∗

∫
Ω

v2∗ ,

whose Gateaux derivative is

I ′(v)w =

∫
Ω

∇v · ∇w +
n(n− 2)

4

∫
Ω

p2vw − λ
∫

Ω

pα|v|q−1vw −
∫

Ω

|v|2
∗−2vw.

Our main result is the following theorem.

Theorem 1.1. Problem (1.1) has a nontrivial solution u ∈ H1(Hn), provided that
the following conditions hold:

(i) 1 < q < 2∗ − 1, n ≥ 4 and for all λ > 0.
(ii) 3 < q < 5, n = 3 and for all λ > 0.

(iii) 1 < q ≤ 3, n = 3 and λ sufficiently large.

In this work we consider a Brezis-Nirenberg problem on the hyperbolic space
Hn. To the best of our knowledge, the way to solve this class of problems is to
work directly in the hyperbolic space Hn and/or to use the projection G and to
work in a subset of Rn endowed with the Riemannian metric g. See the references
[4, 7, 17, 19, 20]. The main purpose of this work is to show a new way to deal with
the problem. We use the stereographic projection, G, to change the original problem
in Hn into the singular problem (1.2) in B1(0). After this, we work in B1(0) with
the Euclidean metric. Precisely, after applying the stereographic projection, the
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problem in Hn becomes a singular problem on the boundary of B1(0). Therefore,
the function p, given by the projection, is considered as a non-constant coefficient.
The main difficulty of the paper is control the terms involving p, close to the
boundary of B1(0). Our main tool to overcome this problem is the Hardy inequality,
in a version of Brezis-Marcus (see Lemma 2.1). Finally, the criticality of the Sobolev
immersion is handled by adapting some arguments made in Brezis-Nirenberg [13],
as well as in Miyagaki [21]. Thus, the mountain pass theorem due to Ambrosetti-
Rabinowitz is used to obtain a nontrivial solution in H1

0,r(Ω), the subspace of H1
0 (Ω)

consisting of radial functions. The Principle of Symmetric Criticality of Palais (see
[22]) is used to prove that the nontrivial solution is into H1

0 (Ω).

2. Variational framework

We start with one of main parts of the paper.

Lemma 2.1. The following two inequalities hold∫
Ω

p2h2 ≤ C
∫

Ω

|∇h|2, ∀h ∈ H1
0 (Ω), (2.1)∫

Ω

pαhq+1 ≤ C
(∫

Ω

|∇h|2
) q+1

2

, ∀h ∈ H1
0 (Ω) (2.2)

Proof. In this proof we use the Hardy inequality (see [12])∫
Ωβ

(u
δ

)2 ≤ 4

∫
Ωβ

|∇u|2, ∀u ∈ H1
0 (Ω), (2.3)

where Ωβ = {x ∈ Ω; δ(x) < β}, for β sufficiently small and δ(x) = d(x, ∂Ω). If Ω
is convex, then the best constant is 4. In our case, we have δ(x) = 1 − |x|. Thus,
taking h ∈ H1

0 (Ω) we have∫
Ωβ

p2h2 =

∫
Ωβ

4h2

(1 + |x|)2(1− |x|)2
≤ 4

∫
Ωβ

h2

δ2
≤ 16

∫
Ωβ

|∇h|2. (2.4)

On the other hand, we have∫
Ωcβ

p2h2 ≤ Cβ
∫

Ωcβ

h2 ≤ Cβ
λ1

∫
Ωcβ

|∇h|2, (2.5)

where Ωcβ is the complementary set of Ωβ on B1(0) and λ1 is the first eigenvalue of

the Laplace operator. Therefore, from (2.4) and (2.5) we conclude that (2.1) holds.
Now, we prove the Hardy-Sobolev type inequality∫

Ωβ

uq+1

δα
≤ C

(∫
Ωβ

|∇u|2
) q+1

2

, ∀u ∈ H1
0 (Ω). (2.6)

Indeed, we have∫
Ωβ

uq+1

δα
=

∫
Ωβ

uqu1−αu
α

δα
≤
(∫

Ωβ

u(q+1−α)r
)1/r(∫

Ωβ

u2

δ2

)α/2
, (2.7)
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where r = 2/(2−α). Also, since (q+1−α)r = 2∗, we can use (2.3) and the Sobolev
immersion to obtain(∫

Ωβ

u2∗
)1/r(

4

∫
Ωβ

|∇u|2
)α/2

≤ 4α/2S−
2∗
2r

(∫
Ωβ

|∇u|2
) 2∗

2r
(∫

Ωβ

|∇u|2
)α/2

= C
(∫

Ωβ

|∇u|2
) q+1

2

.

(2.8)

Therefore, combining (2.7) and (2.8) we conclude that (2.6) holds. Similarly as
what was done for (2.1), we conclude that (2.2) holds. �

Lemma 2.2 (Mountain Pass Geometry). (a) There exist β > 0 and ρ > 0 such
that I(v) ≥ β when ‖v‖ = ρ.
(b) I(tv)→ −∞ as t→ +∞, i.e., there exists e ∈ H1

0,r(Ω) such that I(e) < 0.

Proof. For item (a), we observe that

I(v) ≥ 1

2

∫
Ω

|∇v|2 − λ

q + 1

∫
Ω

pαvq+1 − 1

2∗

∫
Ω

v2∗ .

Thus, using (2.2) and the Sobolev immersion result, we have

I(v) ≥ 1

2

∫
Ω

|∇v|2 − λC

q + 1

(∫
Ω

|∇v|2
) q+1

2 − C̃

2∗

(∫
Ω

|∇v|2
)2∗/2

≥ β > 0,

for ‖v‖ = ρ sufficiently small. The proof of item (b) is trivial so we omit it. �

Lemma 2.2 and Ekeland’s Variational Principle [2] allow us to use the general
minimax principle[27, Theorem 2.9] which gives us a Palais-Smale sequence, (uk) ⊂
H1

0,r(Ω), at the level c, i.e.,

I(uk)→ c and ‖I ′(uk)‖H1
0,r(Ω)∗ → 0, (2.9)

where

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
0,r(Ω)); γ(0) = 0, I(γ(1)) < 0}.

Lemma 2.3. The sequence (uk) ⊂ H1
0,r(Ω) defined above is bounded.

Proof. Since (uk) is a Palais-Smale sequence at level c, we can assume that

I(uk)− 1

q + 1
I ′(uk)uk ≤ c+ 1 + ‖uk‖.

Therefore, (1

2
− 1

q + 1

)
‖uk‖2 ≤ c+ 1 + ‖uk‖,

and the sequence is bounded. �

In the next proof, we follow some arguments from [13, 21]. In [13] the authors
considered a problem in a bounded domain of Rn, but without the presence of
singularities on the neighbourhood of the boundary. On the other hand, in the
present work, unlike in [21], the domain is bounded and we cannot use directly the
results of [21]. Therefore, some adaptations are necessary, specially in the proof of
the n = 3 case.
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Lemma 2.4. We have c < Sn/2

n , where

S := inf
u∈H1

0,r(Ω)

∫
Ω
|∇u|2( ∫

Ω
u2∗
)2/2∗ .

Proof. First we observe that it is sufficient to show that there exists a v0 ∈ H1
0,r(Ω),

v0 6= 0 such that

sup
t≥0

I(tv0) <
Sn/2

n
. (2.10)

Indeed, observing that I(tv0) → −∞ as t → ∞, there exists R > 0 such that
I(Rv0) < 0. Now, we write u1 := Rv0, and from Lemma 2.2, we have

0 < β ≤ c = inf
γ∈Γ

max
τ∈[0,1]

I(γ(τ)) ≤ sup
t≥0

I(tv0) <
Sn/2

n
.

Therefore, we are going to prove the existence of a function v0 such that (2.10)
holds.

Let 0 < R < 1 be fixed, chose in a way that 0 < 2R < 1, and let ϕ ∈ C∞0 (Ω)
be a cut-off function with support at B2R, such that ϕ is identically 1 on BR and
0 ≤ ϕ ≤ 1 on B2R, where Br denotes the ball in Rn with center at the origin and
radius r.

Given ε > 0 we set ψε(x) := ϕ(x)ωε(x), where

ωε(x) = (n(n− 2)ε)
n−2
4

1

(ε+ |x|2)
n−2
2

,

and ωε satisfies ∫
Rn
|∇ωε|2 =

∫
Rn
|ωε|2

∗
= Sn/2. (2.11)

From the definition of ωε, it can be shown that∫
BR

|∇ωε|2 ≤
∫
BR

|ωε|2
∗
, (2.12)∫

B1−BR
|∇ψε|2 = O(ε

n−2
2 ) as ε→ 0. (2.13)

Now, we define

vε :=
ψε( ∫

B2R
ψ2∗
ε

)1/2∗ , Xε :=

∫
B1

|∇vε|2.

Therefore, as [21], we have

Xε ≤ S +O(εδ). (2.14)

On the other hand, we have

lim
t→+∞

I(tvε) = −∞,∀ε > 0.

This implies that there exists tε > 0 such that supt≥0 I(tvε) = I(tεvε). Now, we
find an estimate for this tε. First, we consider the functional J , applied on tvε,
where J is given by

J(tvε) =
t2ε
2

(
Xε +

n(n− 2)

4

∫
B2R

p2v2
ε

)
− t2

∗

2∗

∫
B2R

v2∗

ε .
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Taking the derivative with respect to t and finding its critical points, we obtain

t
(
Xε +

n(n− 2)

4

∫
B2R

p2v2
ε

)
− t2

∗−1

∫
B2R

v2∗

ε = 0.

Therefore, since
∫
B2R

v2∗

ε = 1, we obtain that

t0 :=
(
Xε +

n(n− 2)

4

∫
B2R

p2v2
ε

) 1
2∗−2

is the point for which the path µ(t) = J(tvε) attains its maximum value. Since the
functional I differs from the functional J only by the negative term

−λt
q+1

q + 1

∫
B2R

pαvq+1
ε ,

we can conclude that the point tε for which the path γ(t) = I(tvε) attains its
maximum satisfies the inequality

tε ≤ t0.
Since the function t 7→ 1

2 t
2t2
∗−2

0 − 1
2∗ t

2∗ is increasing on [0, t0), and using (2.14) we
obtain

I(tεvε) =
1

n

(
Xε +

n(n− 2)

4

∫
B2R

p2v2
ε

) 2∗
2∗−2 − λtq+1

ε

q + 1

∫
B2R

pαvq+1
ε

≤ 1

n

(
S +O(εδ +

n(n− 2)

4
)

∫
B2R

p2v2
ε

)n/2
− λtq+1

ε

q + 1

∫
B2R

pαvq+1
ε .

Therefore,

I(tεvε) ≤
1

n

(
S +O(εδ) +

n(n− 2)

4

∫
B2R

p2v2
ε

)n/2
− λCε

∫
B2R

pαvq+1
ε ,

where Cε =
tq+1
ε

q+1 .

At this point, we can assume that there exists a positive constant C0 such that
Cε ≥ C0 > 0,∀ε > 0. If that was not the case, we could find a sequence εn → 0 as
n → ∞, such that tεn → 0 as n → ∞, since Cε ≥ 0. Now, up to a subsequence,
that we still denote by εn, we have tεnvεn → 0 as n→∞. Therefore,

0 < c ≤ sup
t≥0

I(tvεn) = I(tεnvεn) = I(0) = 0,

which is a contradiction.
Now, considering the inequality

(a+ b)β ≤ aβ + β(a+ b)β−1b,

for all β ≥ 1 and a, b > 0, and observing that
∫
B2R

p2v2
ε <∞, we conclude

I(tεvε) ≤
Sn/2

n
+O(εδ) +

∫
B2R

(
C
n(n− 2)

4
p2v2

ε − Cελpαvq+1
ε

)
, (2.15)

for some constant C > 0.
To complete the proof it is necessary to prove that

lim
ε→0

1

εδ

∫
B2R

(
C
n(n− 2)

4
p2v2

ε − Cελpαvq+1
ε

)
= −∞. (2.16)
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In fact, assuming that (2.16) is proved, from (2.15) we have

I(tεvε) <
Sn/2

n
,

for some ε > 0 sufficiently small, and the proof is complete.
Now, we prove (2.16). As in [13], we obtain∫

B2R

|ψε|2
∗

= (n(n− 2))n/2
∫
Rn

dx

(1 + |x|2)n
+O(εn/2). (2.17)

So, it is sufficient to show that

lim
ε→0

1

εδ

(∫
BR

(
C
n(n− 2)

4
p2ω2

ε − Cελpαωq+1
ε

))
= −∞, (2.18)∫

B2R−BR

(
C
n(n− 2)

4
p2v2

ε − Cελpαvq+1
ε

)
= O(εδ). (2.19)

First, we will consider (2.18) and recalling that δ = n−2
2 , we have

Iε =
1

εδ

∫
BR

(
C
n(n− 2)

4
p2ω2

ε − Cελpαωq+1
ε

)
= C

∫
BR

( 2

1− |x|2
)2 1

(ε+ |x|2)n−2

− λCεδ
(q−1)

2

∫
BR

( 2

1− |x|2
)α 1

(ε+ |x|2)δ(q+1)

= I1 − I2.

(2.20)

We observe that on BR,

2 <
2

1− |x|2
≤ 2

1−R2
. (2.21)

Therefore, making the change of variables x = ε1/2y and later using polar coordi-
nates, we obtain

I1 ≤ C
4

(1−R2)2

∫
BR

1

(ε+ |x|2)n−2

=
4C

(1−R2)2

∫
B
Rε−1/2

εn/2

(ε+ ε|y|2)n−2

=
4C

(1−R2)2
ωε1−δ

∫ Rε−1/2

0

rn−1

(1 + r2)n−2
dr.

(2.22)

Now, for I2, considering again (2.21), the change of variables x = ε1/2y and later
the change for polar coordinates, we have

I2 ≥ λCεδ
(q−1)

2

∫
BR

( 2

1− |x|2
)α 1

(ε+ |x|2)δ(q+1)

≥ λCεδ
(q−1)

2 2α
∫
B
Rε−1/2

εn/2

(ε+ ε|y|2)δ(q+1)

= λCωε−δ
(q+1)

2 +1

∫ Rε−1/2

0

rn−1

(1 + r2)δ(q+1)
dr.

(2.23)
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Thus, combining (2.20), (2.22) and (2.23) we obtain

Iε ≤ Cε1−δ
∫ Rε−1/2

0

rn−1

(1 + r2)n−2
dr

− λCε−δ
(q+1)

2 +1

∫ Rε−1/2

0

rn−1

(1 + r2)δ(q+1)
dr

= I3 − I4.

(2.24)

At this point we divide our proof into three cases: n ≥ 5, n = 4 and n = 3.
Case n ≥ 5. We observe that

I3 ≤ Cε1−δ
∫ ∞

0

rn−1

(1 + r2)n−2
dr.

Since the integral
∫∞

0
rn−1

(1+r2)n−2 dr is convergent if n ≥ 5, we conclude

I3 ≤
C

(1−R2)2
ε1−δ. (2.25)

Again, since the integral
∫∞

0
rn−1

(1+r2)n−2 dr converges when n ≥ 5 and q > 1, it follows

that we have the estimate∫ Rε−1/2

0

rn−1

(1 + r2)δ(q+1)
dr ≥ C

2
.

Then there exists a constant C > 0 such that

I4 ≥ Cε−δ
(q+1)

2 +1. (2.26)

Thus, with the estimates (2.24), (2.25) and (2.26) we obtain

Iε ≤ Cε1−δ
(

1− ε−δ
(q−1)

2

Now, observing that q > 1 and taking the limit when ε→ 0, we obtain (2.18), since

the exponent −δ (q−1)
2 is negative.

Case n = 4. Since δ = 1 and q + 1 < 4 = 2∗, from (2.24) we obtain

Iε ≤ C
∫ Rε−1/2

0

r3

(1 + r2)2
dr − Cε−

q
2 + 1

2

∫ Rε−1/2

0

r3

(1 + r2)4
dr.

Observing that ∫ Rε−1/2

0

r3

(1 + r2)2
dr = ln

(
1 +

R2

ε

)
+

ε

ε+R2
− 1,∫ Rε−1/2

0

r3

(1 + r2)4
dr =

−ε2(ε+ 3R2)

12(ε+R2)3
+

1

12
:= a(ε),

we infer that

Iε ≤ C ln
(

1 +
R2

ε

)[
1− a(ε)b(ε)

]
+ c(ε),

where

b(ε) =
ε−

q
2 + 1

2

ln
(
1 + R2

ε

) and c(ε) = C
( ε

ε+R2
− 1
)
.

As limε→0+ a(ε) = 1
12 , limε→0+ b(ε) =∞ and limε→0+ c(ε) = −C we conclude that

(2.18) holds.
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Case n = 3. Since δ = 1
2 , from (2.24) we infer that

Iε ≤ Cε1/2

∫ Rε−1/2

0

r2

1 + r2
dr − λCε−

q−1
4

∫ Rε−1/2

0

r2

(1 + r2)
q+1
2

dr

≤ C − Cε1/2 tan−1(Rε−1/2)− λCε−
q−1
4

∫ Rε−1/2

0

r2

(1 + r2)
q+1
2

dr.

(2.27)

Now, if q > 3, then the integral in (2.27) converges and, as limε→0+ ε−
q−1
4 = ∞,

we conclude that (2.18) holds. If 1 < q ≤ 3, then∫ Rε−1/2

0

r2

(1 + r2)
q+1
2

dr ≥
∫ Rε−1/2

0

1

1 + r2
dr ≥ C > 0,

for all ε < ε0, with ε0 small enough. Therefore, taking λ = ε−
1
2 , we conclude that

(2.18) also holds in this case. Therefore, we can conclude that (2.18) is true for
n ≥ 3.

Now, we prove (2.19), for n ≥ 3. First, we observe that we can find fix a ε > 0
sufficiently small such that O(εδ) + εδIε < 0. From (2.17) we obtain

1

εδ

∫
B2R−BR

(
C
n(n− 2)

4
p2v2

ε − λCεpαvq+1
ε

)
≤ C

εδ

∫
B2R−BR

p2ϕ2ω2
ε .

We define Θ = B2R −BR. Since R ≤ |x| ≤ 2R, we have

2

1−R2
≤ p(x) ≤ 2

1− 4R2
;

therefore

I5 :=
C

εδ

∫
Θ

p2ϕ2ω2
ε ≤

4C

εδ(1− 4R2)2

∫
Θ

ϕ2 ε
n−2
2

(ε+ |x|2)n−2
.

Making the change of variables x = ε1/2y and later changing to polar coordinates
we obtain

I5 ≤
4C

(1− 4R2)2

∫
Θ′
ϕ2(ε1/2y)

εn/2

(ε+ ε|y|2)n−2

≤ 4Cωεn/2

(1− 4R2)2εn−2

∫ 2Rε−1/2

Rε−1/2

rn−1

(1 + r2)n−2
dr

:=
Cεn/2

(1−R2)2εn−2
I6,

where Θ′ = B2Rε−1/2 −BRε−1/2 .
By the Mean Value Theorem for integrals, there exists r0 ∈ [Rε−1/2, 2Rε−1/2]

such that

I6 =
Rrn−1

0 ε−1/2

(1 + r2
0)n−2

≤ 2n−1Rnε−
n−1
2 ε−1/2

(1 + R2

ε )n−2
.

Thus,

I5 ≤
Cεn/2

(1− 4R2)2εn−2

2n−1Rnε−
n−1
2 ε−1/2

(1 + R2

ε )n−2
=

C(R)

(ε+R2)n−2
.
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Since 0 < ε ≤ 1, we have

1

(1 +R2)n−1
≤ 1

(ε+R2)n−2
≤ 1

R2(n−2)
.

Therefore,

I5 ≤
C(R)

R2(n−2)
,

and this allows us to complete the proof. �

3. Proof of the main result

To prove the main result we need the following lemma which is inspired by [7,
Theorem 3.1]; see also [14].

Lemma 3.1. Let (uk) be a sequence in H1
0,r(Ω) such that ‖uk‖ ≤M , for all k ∈ N.

Then

(a) there exists a constant K, independent of k, such that

|uk(|x|)| ≤ K

|x|n/2
(1− |x|2

2

)1/2
, a. e. in Ω.

(b) If uk ⇀ u in H1
0,r(Ω), then

∫
Ω
pαuq+1

k dx →
∫

Ω
pαuq+1 dx, where 1 < q <

2∗ − 1.

Proof. From polar coordinates, for each k ∈ N, we have∫
Ω

|∇uk|2 dx = wn−1

∫ 1

0

(u′k(s))2sn−1 ds,

where wn−1 is the surface area of Sn−1. Thus, from Hölder inequality,

|uk(|x|)| = −
∫ 1

|x|
u′k(s) ds ≤

(∫ 1

0

(u′k(s))2sn−1 ds
)1/2(∫ 1

|x|
s−(n−1) ds

)1/2

≤
w
− 1

2
n−1

|x|n/2
‖uk‖

(1− |x|2

2

)1/2

,

which proves item (a). To prove item (b), we observe that∫
Ω

pαuq+1
k dx =

∫
Ω1

pαuq+1
k dx+

∫
Ω2

pαuq+1
k dx := I1

k + I2
k , (3.1)

where Ω1 = {x; |x| ≤ 2
3} and Ω2 = Ω∩{x; |x| > 2

3}. As p is bounded in {x; |x| ≤ 2
3}

and q < 2∗ − 1, Rellich’s Theorem gives us the convergence of I1
k .

To prove the convergence of I2
k we use the Dominated Convergence Theorem of

Lebesgue. From the assumption, we have

pαuk → pαu a.e. in Ω2. (3.2)

On the other hand, by item (a), we observe that

pα|u(|x|)|q+1 ≤ C
(1− |x|2

2

)β
, (3.3)

a. e. in Ω2, where β = −n+ q+1
2 (n− 1). We have∫

Ω2

(1− |x|2

2

)β
dx = wn−1

∫ 1

2
3

(1− s2

2

)β
sn−1 ds ≤ wn−1

∫ 5
18

0

zβ dz. (3.4)
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As q > 1, we obtain that β+1 > 0, thus the last integral of (3.4) converges. There-
fore, (3.2)–(3.4) and Dominated Convergence Theorem give us the convergence of
I2
k , which concludes the proof. �

Now, we can prove the main result.

Proof of Theorem 1.1. By Lemma 2.3, we have that the sequence (uk) is bounded,
i.e., there exists a constant C > 0 such that

‖uk‖ ≤ C,∀k ∈ N. (3.5)

Then, there exists a subsequence, still denoted by (uk), such that

uk ⇀ u weakly in H1
0,r(Ω). (3.6)

By the Sobolev immersion, we obtain that

uk → u strongly in Ls(Ω), 1 < s < 2∗

and we find h ∈ Ls(Ω) such that, going to a subsequence, if necessary

uk → u a.e. in Ω,

|uk| ≤ h a.e. in Ω

(see [10]). Since (2.9) holds, we have

I ′(uk)v = o(1), ∀v ∈ H1
0,r(Ω). (3.7)

Now, we prove that

|I ′(uk)v − I ′(u)v| → 0, (3.8)

as k →∞, for all v ∈ C∞c (Ω). In fact, for v fixed, we have

|I ′(uk)v − I ′(u)v|

≤
∣∣ ∫

Ω

(∇uk −∇u) · ∇v
∣∣+

n(n− 2)

4
max
suppv

p2
∣∣ ∫

Ω

(uk − u)v
∣∣

+ λ max
supp v

pα
∣∣ ∫

Ω

(|uk|q−1uk − |u|q−1u)v
∣∣+
∣∣ ∫

Ω

(|uk|2
∗−2uk − |u|2

∗−2u)v
∣∣

:= I7 + I8 + I9 + I10.

From (3.6), I7 = o(1) and by the Dominated Convergence Theorem, I8 = o(1) and
I9 = o(1). Now, from the boundedness of (uk) in L2∗(Ω), it follows that

|uk|2
∗−2uk ⇀ |u|2

∗−2u weakly in L
2∗

2∗−1 (Ω), (3.9)

thus I10 = o(1). Therefore (3.8) holds. From (3.7) and (3.8) it follows that I ′(u)v =
0, for all v ∈ C∞c,rad(Ω). By density we conclude that

I ′(u)v = 0, ∀v ∈ H1
0,r(Ω), (3.10)

and u is a critical point of the functional I.
Now, we suppose that u ≡ 0. Considering v = uk in (3.7) we obtain

I ′(uk)uk =

∫
Ω

|∇uk|2 +
n(n− 2)

4

∫
Ω

p2u2
k − λ

∫
Ω

pαuq+1
k −

∫
Ω

u2∗

k = o(1). (3.11)

As u ≡ 0, from (3.6) we have

uk ⇀ 0 weakly in H1
0,r(Ω). (3.12)
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Therefore, (3.12) and Lemma 3.1 give us∫
Ω

pαuq+1
k → 0. (3.13)

Now, we define

L = lim

∫
Ω

u2∗

k . (3.14)

From (3.11), (3.13) and (3.14), we have

L = lim
(∫

Ω

|∇uk|2 +
n(n− 2)

4

∫
Ω

p2u2
k

)
. (3.15)

From the definition of S, given by Lemma 2.4, we have(∫
Ω

u2∗

k

)2/2∗

S ≤
∫

Ω

|∇uk|2 ≤
∫

Ω

|∇uk|2 +
n(n− 2)

4

∫
Ω

p2u2
k,

thus L2/2∗S ≤ L, and this gives us that

L ≥ Sn/2. (3.16)

On the other hand, from (2.9), (3.13), (3.14) and (3.15), we infer(1

2
− 1

2∗
)
L =

L

n
= c. (3.17)

From (3.16) and (3.17) we obtain c ≥ Sn/2/n, which is a contradiction with Lemma
2.4. Therefore, we conclude that u 6= 0.

Now, we follow the ideas in [8, 15, 16] (see also [22]). Since H1
0,r(Ω) is a closed

subspace of H1
0 (Ω), we can write

H1
0 (Ω) = H1

0,r(Ω)⊕H1
0,r(Ω)⊥,

where ·⊥ denotes the orthogonal complement of the space. Therefore, for each
w ∈ H1

0 (Ω), there exist ϑ ∈ H1
0,r(Ω) and ϑ⊥ ∈ H1

0,r(Ω)⊥ such that

w = ϑ+ ϑ⊥. (3.18)

As H1
0,r(Ω) is a Hilbert space and I ′(u) ∈ H1

0,r(Ω)∗, from the Riesz Representa-

tion Theorem there exists z ∈ H1
0,r(Ω) such that

I ′(u)v =

∫
Ω

∇z · ∇v, for all v ∈ H1
0,r(Ω).

Thus, as z ∈ H1
0,r(Ω) and ϑ⊥ ∈ H1

0,r(Ω)⊥, we have

I ′(u)ϑ⊥ = 0. (3.19)

From (3.10), (3.18) and (3.19), for each w ∈ H1
0 (Ω), we obtain I ′(u)w = I ′(u)ϑ +

I ′(u)ϑ⊥ = 0. This allows us to conclude that u is a critical point of the functional
I in H1

0 (Ω) and consequently a nontrivial weak solution for (1.2). This completes
the proof. �
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4. Final remarks

Arguing as in [13], we can consider a more general problem involving a lower-
order perturbation, namely

−∆Hnu = f(u) + u2∗−1 in Hn, (4.1)

where f : [0,∞]→ R is a Caratheodory function satisfying the following conditions:

(1) f(0) = 0 and limu→∞
f(u)
uq = 0, and 1 < q < 2∗ − 1.

(2) sup0≤u≤M |f(u)| <∞ for all M > 0.
(3) F (s) ≤ θsf(s), for some θ > 2 for all s > 0,
(4) f(u) ≥ 0 for all u ≥ 0.

Theorem 4.1. In addition to assumptions (1)–(4), suppose

lim
ε→0

ε

∫ ε−1/2

0

F
[( ε−1/2

1 + s2

)n−2
2
]
sn−1ds =∞. (4.2)

Then, problem (4.1) has a nontrivial solution u ∈ H1(Hn).

The proof is made by variational method. First of all, by stereographic projection
the problem (4.1) is equivalent to a problem in B1(0), namely,

−∆v +
n(n− 2)

4
p2v = p

n+2
2 f(p

2−n
2 v) + v2∗−1, in B1(0)

v = 0, on ∂B1(0),
(4.3)

where v := p
n−2
2 u.

The functional I : H1
0,r(Ω)→ R associated with problem (4.3) is

I(v) =
1

2

∫
Ω

|∇v|2 +
n(n− 2)

8

∫
Ω

p2v2 −
∫

Ω

p
n+2
2 F (p

2−n
2 v)− 1

2∗

∫
Ω

v2∗ ,

whose Gateaux derivative is

I ′(v)w =

∫
Ω

∇v.∇w +
n(n− 2)

4

∫
Ω

p2v.w −
∫

Ω

p
n+2
2 f(p

2−n
2 v) · w −

∫
Ω

|v|2
∗−2v · w,

where Ω := B1(0).
As I satisfies the Mountain Pass Geometry, similarly to lemma 2.2, by Ekeland’s

Variational Principle [2] there exists a sequence (uk) ⊂ H1
0,r(Ω) which is a Palais-

Smale sequence at the level c, i.e.,

I(uk)→ c and ‖I ′(uk)‖H1
0,r(Ω)∗ → 0,

where

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
0,r(Ω)); γ(0) = 0, I(γ(1)) < 0}.

The sketch of proof is the following:

(i) (uk) is bounded in H1
0,r(Ω) and un ⇀ u weakly in H1

0,r(Ω).

(ii) 0 < c < Sn/2

n .

(iii) u is a nontrivial solution for (4.1), that is, I ′(u)v = 0 for all v ∈ H1
0 (Ω).

The proof of item (i) follows by (f3). Item (ii) is obtained using assumptions (1)–
(4), (4.2) together with the arguments made in Lemma 2.4. Finally, the item (iii)
follows by applying the principle of symmetric criticality due to Palais [22].
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